

R.P. Agarwal, S.R. Grace and D. O'Regan

ON THE OSCILLATION OF CERTAIN ADVANCED FUNCTIONAL DIFFERENTIAL EQUATIONS USING COMPARISON METHODS

Abstract: Some new criteria for the oscillation of advanced

 functional differential equations of the form$$
\begin{aligned}
\frac{d}{d t}\left(\left[\frac{1}{a_{n-1}(t)} \frac{d}{d t} \frac{1}{a_{n-2}(t)} \frac{d}{d t} \cdots\right.\right. & \left.\left.\frac{1}{a_{1}(t)} \frac{d}{d t} x(t)\right]^{a}\right) \\
& +\delta q(t) f(x[g(t)])=0
\end{aligned}
$$

are presented in this paper. A discussion of neutral equations will also be included.

KEY WORDS: oscillation, nonoscillation, advanced, nonlinear, comparison.

1. Introduction

In this paper we shall deal with the oscillatory behavior of solutions of the advanced functional differential equation

$$
L_{n} x(t)+\delta q(t) f(x[g(t)])=0
$$

where $n \geq 3, \delta= \pm 1$, and

$$
\left\{\begin{align*}
L_{0} x(t) & =x(t) \tag{1.2}\\
L_{k} x(t) & =\frac{1}{a_{k}(t)} \frac{d}{d t}\left(L_{k-1} x(t)\right), \quad k=1,2, \cdots, n-1 \\
L_{n} x(t) & =\frac{d}{d t}\left(\left[L_{n-1} x(t)\right]^{\alpha}\right) .
\end{align*}\right.
$$

In what follows we shall assume that
(i) $a_{i}(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}=(0, \infty)\right), t_{0} \geq 0$,

$$
\begin{equation*}
\int^{\infty} a_{i}(s) d s=\infty, \quad i=1,2, \cdots, n-1 \tag{1.3}
\end{equation*}
$$

(ii) $q(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right)$,
(iii) $g(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}=(-\infty, \infty)\right), g^{\prime}(t) \geq 0$ and $g(t)>t$ for $t \geq t_{0}$,
(iv) $f \in C(\mathbb{R}, \mathbb{R}), x f(x)>0$ and $f^{\prime}(x) \geq 0$ for $x \neq 0$, and
(v) α is the quotient of positive odd integers.

The domain $\mathcal{D}\left(L_{n}\right)$ of L_{n} is defined to be the set of all functions $x:\left[T_{x}, \infty\right) \rightarrow \mathbb{R}$ such that $L_{j} x(t), j=0,1, \cdots, n$ exist and are continuous on $\left[T_{x}, \infty\right), T_{x} \geq t_{0}$. Our attention is restricted to those solutions $x \in$ $\mathcal{D}\left(L_{n}\right)$ of equation $(1.1 ; \delta)$ which satisfy $\sup \{|x(t)|: t \geq T\}>0$ for every $T \geq T_{x}$. We make the standing hypothesis that equation $(1.1 ; \delta)$ does possess such solutions. A solution of equation $(1.1 ; \delta)$ is called oscillatory if it has arbitrarily large zeros; otherwise, it is called nonoscillatory. Equation $(1.1 ; \delta)$ is called oscillatory if all its solutions are oscillatory.

Recently, the present authors [1-7] have established some results for the oscillation of equation $(1.1 ; \delta)$ and other related equations with general deviating arguments as well as advanced arguments. The main goal of this paper is to obtain some new criteria for the oscillation of equation $(1.1 ; \delta)$ with advanced arguments.

2. Preliminaries

To formulate our results we shall use the following notation: For $p_{i}(t) \in$ $C\left(\left[t_{0}, \infty\right), \mathbb{R}\right), i=1,2, \cdots$, we define $I_{0}=1$,

$$
I_{i}\left(t, s ; p_{i}, p_{i-1}, \cdots, p_{1}\right)=\int_{s}^{t} p_{i}(u) I_{i-1}\left(u, s ; p_{i-1}, \cdots, p_{1}\right) d u, \quad i=1,2, \cdots
$$

It is easy to verify from the definition of I_{i} that

$$
I_{i}\left(t, s ; p_{1}, \cdots, p_{i}\right)=(-1)^{i} I_{i}\left(s, t ; p_{i}, \cdots, p_{1}\right)
$$

and

$$
I_{i}\left(t, s ; p_{1}, \cdots, p_{i}\right)=\int_{s}^{t} p_{i}(u) I_{i-1}\left(t, u ; p_{1}, \cdots, p_{i-1}\right) d u
$$

We shall need the following three lemmas.
Lemma 2.1. If $x \in \mathcal{D}\left(\bar{L}_{n}\right)$, where \bar{L}_{n} is L_{n} defined by (1.2) with $\alpha=1$, then the following formulas hold for $0 \leq i \leq k \leq n-1$ and $t, s \in\left[t_{0}, \infty\right)$

$$
\begin{equation*}
L_{i} x(t)=\sum_{j=i}^{k-1} I_{j-i}\left(t, s ; a_{i+1}, \cdots, a_{k-1}\right) L_{j} x(s) \tag{2.1}
\end{equation*}
$$

$$
+\int_{s}^{t} I_{k-i-1}\left(t, u ; a_{i+1}, \cdots, a_{k-1}\right) a_{k}(u) L_{k} x(u) d u
$$

and

$$
\begin{align*}
L_{i} x(t)= & \sum_{j=i}^{k-1}(-1)^{j-i} I_{j-i}\left(s, t ; a_{j}, \cdots, a_{i+1}\right) L_{j} x(s) \tag{2.2}\\
& +(-1)^{k-i} \int_{t}^{s} I_{k-i-1}\left(u, t ; a_{k-1}, \cdots, a_{i+1}\right) a_{k}(u) L_{k} x(u) d u
\end{align*}
$$

This lemma is a generalization of Taylor's formula with remainder encountered in calculus. The proof is immediate.

Lemma 2.2. Suppose condition (1.3) holds. If $x \in \mathcal{D}\left(\bar{L}_{n}\right)$ where \bar{L}_{n} is as in Lemma 2.1 is eventually of one sign, then there exist a $t_{x} \geq t_{0} \geq 0$ and an integer $\ell, 0 \leq \ell \leq n$ with $n+\ell$ even for $x(t) \bar{L}_{n} x(t)$ nonnegative eventually, or $n+\ell$ odd for $x(t) \bar{L}_{n} x(t)$ nonpositive eventually and such that for every $t \geq t_{x}$,

$$
\left\{\begin{array}{l}
\ell>0 \text { implies } x(t) \bar{L}_{k} x(t)>0, \quad k=0,1, \cdots, \ell \tag{2.3}\\
\ell \leq n-1 \text { implies }(-1)^{\ell-k} x(t) \bar{L}_{k} x(t)>0, \quad k=\ell, \ell+1, \cdots, n
\end{array}\right.
$$

This lemma generalizes a well-known lemma of Kiguradze and can be proved similarly.

Lemma 2.3. [11, 12]. Consider the integro-differential inequality with advanced argument

$$
\begin{equation*}
y^{\prime}(t) \geq \int_{t}^{\infty} Q(t, s) y[g(s)] d s \tag{2.4}
\end{equation*}
$$

where $Q \in C\left(\mathbb{R}^{+} \times \mathbb{R}^{+}, \mathbb{R}^{+}\right)$and $g(t) \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right), g(t) \geq t$ for $t \geq t_{0} \geq 0$. If

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{t}^{g(t)} \int_{s}^{\infty} Q(s, u) d u d s>\frac{1}{e} \tag{2.5}
\end{equation*}
$$

then inequality (2.4) has no eventually positive solutions.

3. Main results

The equation $(1.1 ; \delta)$ is said to be almost oscillatory if:
(i_{1}). for $\delta=1$ and n even, every solution of $(1.1 ; 1)$ is oscillatory,
(i i_{2}). for $\delta=1$ and n odd, every unbounded solution of $(1.1 ; 1)$ is oscillatory,
(i_{3}). for $\delta=-1$ and n odd, every solution of $(1.1 ;-1)$ is oscillatory,
$\left(\mathrm{i}_{4}\right)$. for $\delta=-1$ and n even, every unbounded solution of $(1.1 ;-1)$ is oscillatory.

Now, we present the following result.
Theorem 3.1. Let $1 \leq \ell \leq n-1,(-1)^{n-\ell} \delta=-1$ and

$$
\begin{equation*}
f(x) \geq x^{\alpha} \quad \text { for } \quad x \neq 0 . \tag{3.1}
\end{equation*}
$$

If for $1 \leq \ell \leq n-2$ and all large $T \geq t_{0}$ and $t \geq T$,

$$
\begin{align*}
& \liminf _{t \rightarrow \infty} \int_{t}^{g(t)} a_{1}(s) I_{\ell-1}\left(s, T ; a_{2}, \cdots, a_{\ell}\right) \\
& \quad \times\left(\int_{s}^{\infty} I_{n-\ell-2}\left(u, s ; a_{n-2}, \cdots, a_{\ell+1}\right) a_{n-1}(u)\right. \\
& \left.\quad \times\left(\int_{u}^{\infty} q(\tau) d \tau\right)^{1 / \alpha} d u\right) d s>\frac{1}{e}
\end{align*}
$$

and for $\ell=n-1$ there exists $\eta(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ such that $g(t) \geq \eta(t)>t$ for all large t and the equation

$$
\begin{aligned}
& \text { (3.2; } n-1) \quad\left(\left(\frac{1}{a_{n-1}(t)} y^{\prime}(t)\right)^{\alpha}\right)^{\prime}+q(t) I_{n-2}^{\alpha}\left(g(t), \eta(t) ; a_{1}, \cdots, a_{n-2}\right) \\
& \times y^{\alpha}[\eta(t)]=0
\end{aligned}
$$

is oscillatory, then $\mathcal{N}_{\ell}=\emptyset$, where \mathcal{N} 齵 the set of all nonoscillatory solutions of equation $(1.1 ; \delta)$ satisfying (2.3).

Proof. Let $x \in \mathcal{N}_{\ell}$ and assume that $x(t)>0$ for $t \geq t_{0} \geq 0$. Since $L_{n} x(t)$ is of one sign for $t \geq t_{0}$, then there exists a $t_{1} \geq t_{0}$ such that $L_{j} x(t)(0 \leq j \leq n-1)$ are also of one sign for $t \geq t_{1}$. Moreover,

$$
L_{n} x(t)=\frac{d}{d t}\left(L_{n-1}^{\alpha} x(t)\right)=\alpha L_{n-1}^{\alpha-1} x(t) \bar{L}_{n} x(t),
$$

where \bar{L}_{n} is defined as in Lemma 2.1, we see that the sign of \bar{L}_{n} and L_{n} are the same for $t \geq t_{1}$. First, we let $1 \leq \ell \leq n-2$. Replacing i and k by ℓ and $n-1$, respectively in (2.2), we get

$$
\begin{align*}
L_{\ell} x(t)= & \sum_{j=\ell}^{n-2}(-1)^{j-\ell} I_{j-\ell}\left(s, t ; a_{j}, \cdots, a_{\ell+1}\right) L_{j} x(s)+(-1)^{n-\ell-1} \tag{3.3}\\
& \times \int_{t}^{s} I_{n-\ell-2}\left(u, t ; a_{n-2}, \cdots, a_{\ell+1}\right) a_{n-1}(u) L_{n-1} x(u) d u \\
& \text { for } \quad s \geq t \geq t_{1} .
\end{align*}
$$

Using (2.3) in (3.3), we have

$$
\begin{align*}
& L_{\ell} x(t) \geq(-1)^{n-\ell-1} \tag{3.4}\\
& \quad \times \int_{t}^{\infty} I_{n-\ell-2}\left(u, t ; a_{n-2}, \cdots, a_{\ell+1}\right) a_{n-1}(u) L_{n-1} x(u) d u \text { for } t \geq t_{1}
\end{align*}
$$

Next, integrating equation $(1.1 ; \delta)$ from $u \geq t \geq t_{1}$ to s and letting $s \rightarrow \infty$, one can easily find

$$
\begin{align*}
\delta L_{n-1} x(u) & \geq\left(\int_{u}^{\infty} q(\tau) f(x[g(\tau)]) d \tau\right)^{1 / \alpha} \tag{3.5}\\
\geq & \left(\int_{u}^{\infty} q(\tau) d \tau\right)^{1 / \alpha} f^{1 / \alpha}(x[g(u)]) \quad \text { for } \quad u \geq t \geq t_{1}
\end{align*}
$$

Substituting (3.5) in (3.4), we have

$$
\begin{align*}
L_{\ell} x(t) \geq & \int_{t}^{\infty} I_{n-\ell-2}\left(u, t ; a_{n-2}, \cdots, a_{\ell+1}\right) a_{n-1}(u) \tag{3.6}\\
& \times\left(\int_{u}^{\infty} q(\tau) d \tau\right)^{1 / \alpha} f^{1 / \alpha}(x[g(u)]) d u \text { for } t \geq t_{1} .
\end{align*}
$$

Replacing i, k and s by $1, \ell$ and t_{1} respectively in (2.1), we get

$$
\begin{align*}
x^{\prime}(t)= & a_{1}(t) \sum_{j=1}^{\ell-1} I_{j-1}\left(t, t_{1} ; a_{2}, \cdots, a_{j}\right) L_{j} x\left(t_{1}\right) \tag{3.7}\\
& +a_{1}(t) \int_{t_{1}}^{t} I_{\ell-2}\left(t, u ; a_{2}, \cdots, a_{\ell-1}\right) a_{\ell}(u) L_{\ell} x(u) d u \\
\geq & a_{1}(u) I_{\ell-1}\left(t, t_{1} ; a_{2}, \cdots, a_{\ell}\right) L_{\ell} x(t) \quad \text { for } \quad t \geq t_{1}
\end{align*}
$$

Combining (3.6) and (3.7) and using (3.1), we obtain

$$
\begin{array}{r}
x^{\prime}(t) \geq \int_{t}^{\infty} a_{1}(t) I_{\ell-1}\left(t, t_{1} ; a_{2}, \cdots, a_{\ell}\right) I_{n-\ell-2}\left(u, t ; a_{n-2}, \cdots, a_{\ell+1}\right) \tag{3.8}\\
\times a_{n-1}(u)\left(\int_{u}^{\infty} q(\tau) d \tau\right)^{1 / \alpha} x[g(u)] d u .
\end{array}
$$

Inequality (3.8), in view of condition $(3.2 ; \ell)$ and Lemma 2.3 has no eventually positive solutions, a contradiction.

Next, let $\ell=n-1$. This is the case when $\delta=1$. Replacing i, k by 0 and $n-2$ in (2.1), we can easily obtain

$$
\begin{equation*}
x(t) \geq I_{n-2}\left(t, s ; a_{1}, \cdots, a_{n-2}\right) L_{n-2} x(s) \quad \text { for } \quad t \geq s \geq t_{1} \tag{3.9}
\end{equation*}
$$

Replacing t and s by $g(t)$ and $\eta(t)$ respectively in (3.9), we have

$$
\begin{align*}
& x[g(t)] \geq I_{n-2}\left(g(t), \eta(t) ; a_{1}, \cdots, a_{n-2}\right) L_{n-2} x[\eta(t)] \tag{3.10}\\
& \qquad \text { for } \quad g(t)>\eta(t) \geq t_{1} .
\end{align*}
$$

Using (3.1) and (3.10) in equation (1.1; δ), we get

$$
\begin{aligned}
-L_{n} x(t) & =-\frac{d}{d t}\left(\frac{1}{a_{n-1}(t)} \frac{d}{d t} L_{n-2} x(t)\right)^{\alpha}=q(t) f(x[g(t)]) \\
& \geq q(t) x^{\alpha}[g(t)] \\
& \geq q(t) I_{n-2}^{\alpha}\left(g(t), \eta(t) ; a_{1}, \cdots, a_{n-2}\right)\left(L_{n-2} x[\eta(t)]\right)^{\alpha}, \quad t \geq t_{1}
\end{aligned}
$$

Set $y(t)=L_{n-1} x(t)>0$ for $t \geq t_{1}$. Then, $y(t)$ satisfies

$$
\begin{array}{r}
\left(\left(\frac{1}{a_{n-1}(t)} y^{\prime}(t)\right)^{\alpha}\right)^{\prime}+q(t) I_{n-2}^{\alpha}\left(g(t), \eta(t) ; a_{1}, \cdots, a_{n-2}\right) y^{\alpha}[\eta(t)] \leq 0 \\
\text { for } t \geq t_{1}
\end{array}
$$

Now, by applying a result in [5, Chapter 2], we see that the equation

$$
\left(\left(\frac{1}{a_{n-1}(t)} z^{\prime}(t)\right)^{\alpha}\right)^{\prime}+q(t) I_{n-2}^{\alpha}\left(g(t), \eta(t) ; a_{1}, \cdots, a_{n-2}\right) z^{\alpha}[\eta(t)]=0
$$

has an eventually positive solution, which contradicts our assumption. This completes the proof.

Next, we shall provide the sufficient conditions which ensure that $\mathcal{N}_{n}=$ \emptyset, where \mathcal{N}_{n} is the set of all nonoscillatory solutions of equation $(1.1 ; \delta)$ satisfying $x(t) L_{j} x(t)>0,0 \leq j \leq n$.

Theorem 3.2. Let $\delta=-1$ and conditions (3.1) hold. If, either

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{t}^{g(t)} q(s) I_{n-1}^{\alpha}\left(g(s), g(t) ; a_{1}, \cdots, a_{n-1}\right) d s>1 \tag{3.11}
\end{equation*}
$$

or

$$
\begin{align*}
& \limsup _{t \rightarrow \infty} \int_{t}^{g(t)} I_{n-2}\left(g(t), u ; a_{1}, \cdots, a_{n-2}\right) a_{n-1}(u) \tag{3.12}\\
& \times\left(\int_{t}^{u} q(s) d s\right)^{1 / \alpha} d u>1
\end{align*}
$$

then $\mathcal{N}_{n}=\emptyset$.

Proof. Let $x \in \mathcal{N}_{n}$ and assume that $x(t)>0$ for $t \geq t_{0} \geq 0$. Then there exists a $t_{1} \geq t_{0}$ such that

$$
\begin{equation*}
L_{i} x(t)>0 \quad(0 \leq i \leq n) \quad \text { on } \quad\left[t_{1}, \infty\right) \tag{3.13}
\end{equation*}
$$

From (2.1) with i, k, t and s replaced by $0, n-1, g(s)$ and $g(t)$, respectively,

$$
\begin{align*}
x[g(s)]= & \sum_{j=0}^{n-2} I_{j}\left(g(s), g(t) ; a_{1}, \cdots, a_{j}\right) L_{j} x[g(t)] \tag{3.14}\\
& +\int_{g(t)}^{g(s)} I_{n-2}\left(g(s), u ; a_{1}, \cdots, a_{n-2}\right) a_{n-1}(u) L_{n-1} x(u) d u
\end{align*}
$$

Using (3.13) and noting that $L_{n-1} x$ is increasing, we easily get
(3.15) $x[g(s)] \geq I_{n-1}\left(g(s), g(t) ; a_{1}, \cdots, a_{n-1}\right) L_{n-1} x[g(t)]$

$$
\text { for } \quad t<s<g(t)
$$

Using (3.1) and (3.15) in equation $(1,1 ;-1)$, we have

$$
\begin{align*}
\frac{d}{d s}\left(L_{n-1}^{\alpha} x(s)\right) & =q(s) f(x[g(s)]) \geq q(s) x^{\alpha}[g(s)] \tag{3.16}\\
& \geq q(s) I_{n-1}^{\alpha}\left(g(s), g(t) ; a_{1}, \cdots, a_{n-1}\right) L_{n-1}^{\alpha} x[g(t)] \\
& \quad \text { for } t_{1}<t<s<g(t) .
\end{align*}
$$

Integrating both sides of (3.16) from $t \geq t_{1}$ to $g(t)$, one can easily obtain

$$
L_{n-1}^{\alpha} x[g(t)]\left[\int_{t}^{g(t)} I_{n-1}^{\alpha}\left(g(s), g(t) ; a_{1}, \cdots, a_{n-1}\right) d s-1\right] \leq 0
$$

This is inconsistent with (3.11).
Next, it follows from (3.14) with $g(s)$ and $g(t)$ replaced by $g(t)$ and t, respectively that

$$
\begin{array}{r}
x[g(t)] \geq \int_{t}^{g(t)} I_{n-2}\left(g(t), u ; a_{1}, \cdots, a_{n-2}\right) a_{n-1}(u) L_{n-1} x(u) d u \tag{3.17}\\
\qquad \text { for } \quad t<u<g(t)
\end{array}
$$

Integrating equation $(1,1 ;-1)$ from t to u, we get

$$
\begin{equation*}
L_{n-1} x(u) \geq\left(\int_{t}^{u} q(s) x^{\alpha}[g(s)] d s\right)^{1 / \alpha} \quad \text { for } \quad u \geq t \geq t_{1} \tag{3.18}
\end{equation*}
$$

Substituting (3.18) in (3.17), we have

$$
x[g(t)] \geq \int_{t}^{g(t)} I_{n-2}\left(g(t), u ; a_{1}, \cdots, a_{n-2}\right) a_{n-1}(u)\left(\int_{t}^{u} q(s) d s\right)^{1 / \alpha} x[g(t)] d u
$$

or

$$
1 \geq \int_{t}^{g(t)} I_{n-2}\left(g(t), u ; a_{1}, \cdots, a_{n-2}\right) a_{n-1}(u)\left(\int_{t}^{u} q(s) d s\right)^{1 / \alpha} d s
$$

which contradicts condition (3.12). This completes the proof.
From Theorems 3.1 and 3.2 the following result follows:
Theorem 3.3. Suppose (i) - (v) and condition (3.1) hold. Equation $(1.1 ; \delta)$ is almost oscillatory if
(I_{1}). for $\delta=1$ and n even, condition (3.2; $\left.\ell\right)(\ell=1,3, \cdots, n-3)$ hold and there exists $\eta(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ such that $g(t) \geq \eta(t) \geq t$ for all large t and equation (3.2;n-1) is oscillatory,
$\left(\mathrm{I}_{2}\right)$. for $\delta=1$ and n odd, condition (3.2; $\left.\ell\right)(\ell=2,4, \cdots, n-3)$ hold and there exists $\eta(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ such that $g(t) \geq \eta(t) \geq t$ for all large t and equation (3.2;n-1) is oscillatory,
$\left(\mathrm{I}_{3}\right)$. for $\delta=-1$ and n odd, condition (3.2; $\left.\ell\right)(\ell=1,3, \cdots, n-2)$ and either (3.11) or (3.12) holds,
$\left(\mathrm{I}_{4}\right)$. for $\delta=-1$ and n even, condition (3.2; $\left.\ell\right)(\ell=2,4, \cdots, n-2)$ and either (3.11) or (3.12) holds.
Example 3.1. Consider the advanced differential equation

$$
\begin{equation*}
\left(\left(\left(e^{-t}\left(e^{-t}\left(e^{-t} x^{\prime}(t)\right)^{\prime}\right)^{\prime}\right)^{\prime}\right)^{\alpha}\right)^{\prime}+4 \alpha(24)^{\alpha} x^{\alpha}[4 t]=0, \quad t \geq 0 \tag{3.19}
\end{equation*}
$$

where α is as in equation $(1.1 ; \delta)$. All conditions of Theorem $3.3\left(\mathrm{I}_{2}\right)$ are satisfied and hence all unbounded solutions of equation (3.19) are oscillatory.

We note that equation (3.19) has a bounded nonoscillatory solution $x(t)=e^{-t}$.

In the case when $\alpha=1$, we present the following result.
Theorem 3.4. Let $n \geq 2,1 \leq \ell \leq n-1,(-1)^{n-\ell} \delta=-1$, conditions (i) - (iv) and (3.1) hold with $\alpha=1$. If for all large $T \geq t_{0} \geq 0$ and $t \geq T$,

$$
\liminf _{t \rightarrow \infty} \int_{t}^{g(t)} a_{1}(s) I_{\ell-1}\left(s, T ; a_{2}, \cdots, a_{\ell}\right)
$$

$$
\times \int_{s}^{\infty} I_{n-\ell-1}\left(u, s ; a_{n-1}, \cdots, a_{\ell+1}\right) q(u) d u d s>\frac{1}{e},
$$

then $\mathcal{N}_{\ell}=\emptyset$.
Proof. Let $x \in \mathcal{N}_{\ell}$ and assume that $x(t)>0$ for $t \geq t_{0} \geq 0$. Proceeding as in the proof of Theorem 3.1 and replacing i and k by ℓ and n, respectively, in (2.2), we have

$$
\begin{align*}
& L_{\ell} x(t)=\sum_{j=\ell}^{n-1}(-1)^{j-\ell} I_{j-\ell}\left(t, s ; a_{j}, \cdots, a_{\ell+1}\right) L_{j} x(s) \tag{3.21}\\
& \quad \quad+(-1)^{n-\ell} \int_{t}^{s} I_{n-\ell-1}\left(u, t ; a_{n-1}, \cdots, a_{\ell+1}\right) L_{n} x(u) d u \\
& \geq \int_{t}^{\infty} I_{n-\ell-1}\left(u, t ; a_{n-1}, \cdots, a_{\ell+1}\right) q(u) x[g(u)] d u \quad \text { for } \quad t \geq t_{1} .
\end{align*}
$$

Also, as in the proof of Theorem 3.1, we see (3.7) holds for $t \geq t_{1}$. Combining (3.7) with (3.21), we get

$$
\begin{align*}
x^{\prime}(t) \geq \int_{t}^{\infty} a_{1}(t) I_{\ell-1}\left(t, t_{1} ; a_{2}, \cdots, a_{\ell}\right) I_{n-\ell-1}(u, t & \left.; a_{n-1}, \cdots, a_{\ell+1}\right) \tag{3.22}\\
\times & q(u) x[g(u)] d u .
\end{align*}
$$

Inequality (3.22), in view of condition $(3.20 ; \ell)$ and Lemma 2.3 has no eventually positive solution, a contradiction. This completes the proof.

Theorem 3.5. Let $n \geq 2$, conditions (i) - (iv) and (3.1) hold with $\alpha=1$. Equation $(1.1 ; \delta)$ is almost oscillatory if
(i_{1}). for $\delta=1$ and n even, condition $(3.20 ; \ell)(\ell=1,3, \cdots, n-1)$,
(i_{2}). for $\delta=1$ and n odd, condition (3.20; $\left.\ell\right)(\ell=2,4, \cdots, n-1)$,
(i_{3}). for $\delta=-1$ and n odd, condition (3.20; $\left.\ell\right)(\ell=1,3, \cdots, n-2)$ and either condition (3.11) or (3.12),
(i_{4}). for $\delta=-1$ and n even, condition (3.20; $\left.\ell\right)(\ell=2,4, \cdots, n-2)$
and either condition (3.11) or (3.12).
Note advanced differential equations can differ from ordinary differential equations with respect to oscillation. For example

$$
\left(\frac{1}{t} x^{\prime}(t)\right)^{\prime}+\frac{3}{4 t^{3}} x[c t]=0, \quad t \geq 1
$$

is oscillatory by Theorem $3.5\left(\mathrm{i}_{1}\right)$ for all $c>\exp (8 / 3 e)$, while the corresponding ordinary differential equation

$$
\left(\frac{1}{t} x^{\prime}(t)\right)^{\prime}+\frac{3}{4 t^{3}} x(t)=0, \quad t \geq 1
$$

has a nonoscillatory solution $x(t)=\sqrt{t}$.
Next, we obtain the following results.
Theorem 3.6. Let $1 \leq \ell \leq n-1,(-1)^{n-\ell} \delta=-1$ and

$$
\begin{equation*}
\int^{ \pm \infty} \frac{d u}{f^{1 / \alpha}(u)}<\infty \tag{3.23}
\end{equation*}
$$

If for $1 \leq \ell \leq n-1$ and all large $T \geq t_{0}, t \geq T$,
$(3.24 ; \ell) \quad \int^{\infty} a_{1}(s) I_{\ell-1}\left(s, T ; a_{2}, \cdots, a_{\ell}\right)\left(\int_{s}^{\infty} I_{n-\ell-2}\left(u, s ; a_{n-2}, \cdots, a_{\ell+1}\right)\right.$

$$
\left.\times a_{n-1}(u)\left(\int_{u}^{\infty} q(\tau) d \tau\right)^{1 / \alpha} d u\right) d s=\infty
$$

and for $\ell=n-1$,
$(3.24 ; n-1) \quad \int^{\infty} a_{1}[g(s)] g^{\prime}(s)\left(\int_{s}^{g(s)} I_{n-2}\left(g(s), u ; a_{2}, \cdots, a_{n-2}\right)\right.$

$$
\left.\times a_{n-1}(u)\left(\int_{u}^{\infty} q(\tau) d \tau\right)^{1 / \alpha} d u\right) d s=\infty
$$

then $\mathcal{N}_{\ell}=\emptyset$.
Proof. Let $x \in \mathcal{N}_{\ell}$ and assume that $x(t)>0$ for $t \geq t_{0} \geq 0$. As in the proof of Theorem 3.1, we obtain (3.6) and (3.7), $t \geq t_{1}, 1 \leq \ell \leq n-2$. Combining (3.6) and (3.7), we obtain

$$
\begin{align*}
& \frac{x^{\prime}(t)}{f^{1 / \alpha}(x(t))} \geq a_{1}(t) I_{\ell-1}\left(t, t_{1} ; a_{2}, \cdots, a_{\ell}\right) \tag{3.25}\\
& \quad \times \int_{t}^{\infty} I_{n-\ell-2}\left(u, t ; a_{n-2}, \cdots, a_{\ell+1}\right) a_{n-2}(u)\left(\int_{u}^{\infty} q(\tau) d \tau\right)^{1 / \alpha} d u
\end{align*}
$$

Integrating (3.25) from t_{1} to $T \geq t_{1}$, we have

$$
\begin{aligned}
& \int_{t_{1}}^{T} a_{1}(t) I_{\ell-1}\left(t, t_{1} ; a_{2}, \cdots, a_{\ell}\right)\left(\int_{t}^{\infty} I_{n-\ell-2}\left(u, t ; a_{n-2}, \cdots, a_{\ell+1}\right)\right. \\
&\left.\times a_{n-2}(u)\left(\int_{u}^{\infty} q(\tau) d \tau\right)^{1 / \alpha} d u\right) d t \leq \int_{x\left(t_{1}\right)}^{x(T)} \frac{d u}{f^{1 / \alpha}(u)}
\end{aligned}
$$

Letting $T \rightarrow \infty$ in the above inequality and using (3.23) we arrive at a contradiction to $(3.24 ; \ell), 1 \leq \ell \leq n-2$.

Next, let $\ell=n-1$. Replacing i, k, s and t by $1, n-1, t$ and $g(t)$, respectively, we have

$$
\begin{align*}
x^{\prime}[g(t)] \geq a_{1}[g(t)] \int_{t}^{g(t)} I_{n-3}(g(t), & \left.; a_{2}, \cdots, a_{n-2}\right) \tag{3.26}\\
& \times a_{n-1}(u) L_{n-1} x(u) d u
\end{align*}
$$

As in the proof of Theorem 3.1, we obtain (3.5). Combining (3.5) and (3.26) we have

$$
\begin{aligned}
x^{\prime}[g(t)] g^{\prime}(t) \geq & a_{1}[g(t)] g^{\prime}(t) \int_{t}^{g(t)} I_{n-3}\left(g(t), u ; a_{2}, \cdots, a_{n-2}\right) \\
& \times a_{n-1}(u)\left(\int_{u}^{\infty} q(\tau) d \tau\right)^{1 / \alpha} f^{1 / \alpha}(x[g(u)]) d u, \quad t \geq t_{1}
\end{aligned}
$$

or

$$
\begin{aligned}
\frac{x^{\prime}[g(t)] g^{\prime}(t)}{f^{1 / \alpha}(x[g(t)])} \geq a_{1}[g(t)] g^{\prime}(t) \int_{t}^{g(t)} & I_{n-3}\left(g(t), u ; a_{2}, \cdots, a_{n-2}\right) \\
& \times a_{n-1}(u)\left(\int_{u}^{\infty} q(\tau) d \tau\right)^{1 / \alpha} d u
\end{aligned}
$$

The rest of the proof is similar to the above case and hence omitted. This completes the proof.

Theorem 3.7. Let $\delta=-1$. If, either

$$
\begin{equation*}
-f(-x y) \geq f(x y) \geq f(x) f(y) \quad \text { for } \quad x y>0 \tag{3.27}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{t}^{g(t)} q(s) f\left(I_{n-1}\left(g(s), g(t) ; a_{1}, \cdots, a_{n-1}\right)\right) d s>0 \tag{3.29}
\end{equation*}
$$

or

$$
\begin{align*}
\limsup _{t \rightarrow \infty} \int_{t}^{g(t)} & I_{n-2}\left(g(t), u ; a_{1}, \cdots, a_{n-2}\right) \tag{3.30}\\
& \times a_{n-1}(u)\left(\int_{t}^{u} q(s) d s\right)^{1 / \alpha} d u>0
\end{align*}
$$

then $\mathcal{N}_{n}=\emptyset$.

Proof. The proof can be modelled on that of Theorem 3.2 and hence omitted.

Theorem 3.8. Let $\delta=-1$, condition (3.27) hold and

$$
\begin{equation*}
\int^{ \pm \infty} \frac{d u}{f\left(u^{1 / \alpha}\right)}<\infty \tag{3.31}
\end{equation*}
$$

If

$$
\begin{equation*}
\int^{\infty} q(s) f\left(I_{n-1}\left(g(s), s ; a_{1}, \cdots, a_{n-1}\right) d s=\infty\right. \tag{3.32}
\end{equation*}
$$

then $\mathcal{N}_{n}=\emptyset$.
Proof. Let $x \in \mathcal{N}_{n}$ and assume that $x(t)>0$ for $t \geq t_{0} \geq 0$. Then there exists a $t_{1} \geq t_{0}$ such that (3.13) holds on $\left[t_{1}, \infty\right)$. Replacing i, k, t and s in (2.1) by $0, n-1, g(t)$ and t, respectively, we get

$$
\begin{aligned}
x[g(t)]= & \sum_{j=0}^{n-2} I_{j}\left(g(t), t ; a_{1}, \cdots, a_{j}\right) L_{j} x(t) \\
& +\int_{t}^{g(t)} I_{n-2}\left(g(t), u ; a_{1}, \cdots, a_{n-2}\right) a_{n-1}(u) L_{n-1} x(u) d u \\
\geq & \int_{t}^{g(t)} I_{n-2}\left(g(t), u ; a_{1}, \cdots, a_{n-2}\right) a_{n-1}(u) L_{n-1} x(u) d u \\
\geq & I_{n-1}\left(g(t), t ; a_{1}, \cdots, a_{n-1}\right) L_{n-1} x(t), \quad t \geq t_{1} .
\end{aligned}
$$

Set $u(t)=L_{n-1}^{\alpha} x(t)$. Then, $u(t)$ satisfies

$$
\begin{aligned}
u^{\prime}(t) & =L_{n} x(t)=-\delta L_{n} x(t)=q(t) f(x[g(t)]) \\
& \geq q(t) f\left(I_{n-1}\left(g(t), t ; a_{1}, \cdots, a_{n-1}\right)\right) f\left(u^{1 / \alpha}(t)\right) \text { for } t \geq t_{1}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\int_{t_{1}}^{T} q(t) f\left(I_{n-1}\left(g(t), t ; a_{1}, \cdots, a_{n-1}\right)\right) d t & \leq \int_{t_{1}}^{T} \frac{u^{\prime}(t)}{f\left(u^{1 / \alpha}\right)} \\
& =\int_{u\left(t_{1}\right)}^{u(T)} \frac{d w}{f\left(w^{1 / \alpha}\right)}
\end{aligned}
$$

Letting $T \rightarrow \infty$, we find

$$
\int_{t_{1}}^{\infty} q(t) f\left(I_{n-1}\left(g(t), t ; a_{1}, \cdots, a_{n-1}\right)\right) d t \leq \int_{u\left(t_{1}\right)}^{\infty} \frac{d w}{f\left(w^{1 / \alpha}\right)}<\infty
$$

This contradicts (3.32) and completes the proof.

Combining Theorems $3.6-3.8$, we have the following result.
Theorem 3.9. Suppose that (i) - (v) and condition (3.23) hold. A sufficient condition for equation $(1.1 ; \delta)$ to be almost oscillatory is that
$\left(\mathrm{I}_{1}\right)$. when $\delta=1$ and n even, condition $(3.24 ; \ell)(\ell=1,3, \cdots, n-3)$ and (3.24;n-1) hold,
(I_{2}). when $\delta=1$ and n odd, condition (3.24; $)(\ell=2,4, \cdots, n-3)$ and (3.24;n-1) hold,
(I_{3}). when $\delta=-1$ and n odd, condition (3.24; $\left.\ell\right)(\ell=1,3, \cdots, n-2)$ and either (3.27) and (3.29), (3.30) or (3.27) and (3.32) hold,
(i_{4}). when $\delta=-1$ and n even, condition (3.24; $\left.\ell\right)(\ell=2,4, \cdots, n-2)$ and either (3.27) and (3.29), (3.30) or (3.27) and (3.32) hold.
When $\alpha=1$, we can easily obtain the following immediate results.
Theorem 3.10. Let $n \geq 2, \alpha=1,1 \leq \ell \leq n-1,(-1)^{n-\ell} \delta=-1$, conditions (i) - (iv) hold and

$$
\begin{equation*}
\int^{ \pm \infty} \frac{d u}{f(u)}<\infty \tag{3.33}
\end{equation*}
$$

If for all large $T \geq t_{0}, t \geq T$,
$(3.34 ; \ell) \quad \int^{\infty} a_{1}(s) I_{\ell-1}\left(s, T ; a_{2}, \cdots, a_{\ell}\right) \int_{s}^{\infty} I_{n-\ell-1}\left(u, s ; a_{n-1}, \cdots, a_{\ell+1}\right)$

$$
\times q(u) d u d s=\infty
$$

then $\mathcal{N}_{\ell}=\emptyset$.
Theorem 3.11. Let $n \geq 2$, conditions (i) - (iv) and (3.33) hold. A sufficient condition for equation $(1.1 ; \delta)$ with $\alpha=1$ to be almost oscillatory is that
(i_{1}). when $\delta=1$ and n even, condition $(3.34 ; \ell)(\ell=1,3, \cdots, n-1)$ hold,
(i2). when $\delta=1$ and n odd, condition $(3.34 ; \ell)(\ell=2,4, \cdots, n-1)$ hold,
(i_{3}). when $\delta=-1$ and n odd, condition (3.34; $\left.\ell\right)(\ell=1,3, \cdots, n-2)$ and either (3.27) and (3.29), (3.30), or (3.27) and (3.32) with $\alpha=1$ hold,
(i_{4}). when $\delta=-1$ and n even, condition (3.34; $\left.\ell\right)(\ell=2,4, \cdots, n-2)$ and either (3.27) and (3.29), (3.30), or (3.27) and (3.32) with $\alpha=1$ hold.

4. Oscillation of neutral equations

In this section, we shall extend the results of Section 3 to neutral equations of the type

$$
\frac{d}{d t}\left(L_{n-1}(x(t)+p(t) x[\sigma(t)])\right)^{\alpha}+\delta q(t) f(x[g(t)])=0
$$

where conditions (i) - (v) hold, and
(vi). $p(t) \in C\left(\left[t_{0}, \infty\right),[0, \infty)\right)$,
(vii). $\sigma(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ and $\lim _{t \rightarrow \infty} \sigma(t)=\infty$.

If we define

$$
\begin{equation*}
z(t)=x(t)+p(t) x[\sigma(t)] \tag{4.2}
\end{equation*}
$$

then equation (4.1) becomes

$$
\frac{d}{d t}\left(L_{n-1} z(t)\right)^{\alpha}+\delta q(t) f(x[g(t)])=0
$$

If $x(t)$ is a nonoscillatory solution of equation $(4.1 ; \delta)$, say, $x(t)>0$ and $x[\sigma(t)]>0$ for $t \geq t_{0} \geq 0$, then $z(t)>0$ for $t \geq t_{0}$ and there exists a $t_{1} \geq t_{0}$ and an integer $\ell, 1 \leq \ell \leq n$ such that

$$
\begin{equation*}
z^{\prime}(t)>0 \quad \text { for } \quad t \geq t_{1} \tag{4.4}
\end{equation*}
$$

Now, we shall examine the following two cases:

$$
(I) . \quad\{0 \leq p(t) \leq 1, \quad \sigma(t)<t\} \quad \text { and } \quad(I I) . \quad\{p(t) \geq 1, \quad \sigma(t)>t\} .
$$

For the case (I), we assume that
(4.5) $0 \leq p(t) \leq 1, \quad \sigma(t)<t$ and $\sigma(t)$ is strictly increasing for $t \geq t_{0}$ and $p(t) \not \equiv 1$ eventually.

Now, we have for $t \geq t_{1}$,

$$
\begin{align*}
x(t) & =z(t)-p(t) x[\sigma(t)] \tag{4.6}\\
& =z(t)-p(t)[z[\sigma(t)]-p[\sigma(t)] x[\sigma \circ \sigma(t)]] \\
& \geq z(t)-p(t) z[\sigma(t)] \geq(1-p(t)) z(t)
\end{align*}
$$

Using (4.6) in equation $(4.3 ; \delta)$, we have

$$
-\delta \frac{d}{d t}\left(L_{n-1} z(t)\right)^{\alpha}=q(t) f(x[g(t)])
$$

$$
\geq q(t) f((1-p[g(t)]) z[g(t)]) \quad \text { for } \quad t \geq t_{1}
$$

Next, for the case (II), we assume that

$$
\begin{equation*}
p(t) \geq 1 \quad \text { and } \quad p(t) \not \equiv 1 \text { eventually, } \sigma(t)>t \tag{4.8}
\end{equation*}
$$

$$
\text { and } \sigma(t) \text { is strictly increasing for } t \geq t_{0} \geq 0
$$

We also let

$$
p^{*}(t)=\frac{1}{p\left[\sigma^{-1}(t)\right]}\left(1-\frac{1}{p\left[\sigma^{-1} \circ \sigma^{-1}(t)\right]}\right) \quad \text { for all large } \quad t
$$

where σ^{-1} is the inverse function of σ.
Now, since (4.4) holds, we have

$$
\begin{align*}
x(t) & =\frac{1}{p\left[\sigma^{-1}(t)\right]}\left(z\left[\sigma^{-1}(t)\right]-x\left[\sigma^{-1}(t)\right]\right) \tag{4.9}\\
& =\frac{z\left[\sigma^{-1}(t)\right]}{p\left[\sigma^{-1}(t)\right]}-\frac{1}{p\left[\sigma^{-1}(t)\right]}\left(\frac{z\left[\sigma^{-1} \circ \sigma^{-1}(t)\right]}{p\left[\sigma^{-1} \circ \sigma^{-1}(t)\right]}-\frac{x\left[\sigma^{-1} \circ \sigma^{-1}(t)\right]}{p\left[\sigma^{-1} \circ \sigma^{-1}(t)\right]}\right) \\
& \geq \frac{z\left[\sigma^{-1}(t)\right]}{p\left[\sigma^{-1}(t)\right]}-\frac{z\left[\sigma^{-1} \circ \sigma^{-1}(t)\right]}{p\left[\sigma^{-1}(t)\right] p\left[\sigma^{-1} \circ \sigma^{-1}(t)\right]} \\
& \geq \frac{1}{p\left[\sigma^{-1}(t)\right]}\left[1-\frac{1}{p\left[\sigma^{-1} \circ \sigma^{-1}(t)\right]}\right] z\left[\sigma^{-1}(t)\right] \\
& =p^{*}(t) z\left[\sigma^{-1}(t)\right] \quad \text { for } \quad t \geq t_{1}
\end{align*}
$$

Using (4.9) in equation $(4.3 ; \delta)$, we get

$$
\begin{align*}
-\delta \frac{d}{d t}\left(L_{n-1} z(t)\right)^{\alpha} & =q(t) f(x[g(t)]) \\
& \geq q(t) f\left(p^{*}[g(t)] z\left[\sigma^{-1} \circ g(t)\right]\right) \quad \text { for } \quad t \geq t_{1}
\end{align*}
$$

It follows from the above discussion that Theorem 3.3 (as well as other results of Section 3) can be applied to equation $(4.1 ; \delta)$ if in addition we assume that conditions (vi), (vii) and (4.5) hold. In this case, $q(t)$ in Theorem 3.3 is replaced by $q(t)(1-p[g(t)])^{\alpha}$.

Also, we see that Theorem 3.3 (say) is applicable to equation $(4.1 ; \delta)$ provided that conditions (vi), (vii) and (4.8) hold. In this case, $q(t)$ in Theorem 3.3 is replaced by $q(t)\left(p^{*}[g(t)]\right)^{\alpha}$ and $g(t)$ is replaced by $\sigma^{-1} \circ$ $g(t)(>t)$.

The formulation of these results as well as others are left to the reader.

5. Further results for the oscillation of equation $(1.1 ; 1)$

In this section we shall extend some of the results given in the previous sections to equation $(1.1 ; 1)$ when the function f need not be monotonic.

We need the following notations and a lemma due to Mahfoud [10]. Let

$$
\mathbb{R}_{t_{0}}=\left\{\begin{array}{l}
\left(-\infty,-t_{0}\right] \cup\left[t_{0}, \infty\right) \quad \text { if } \quad t_{0}>0 \\
(-\infty, 0) \cup(0, \infty) \quad \text { if } \quad t_{0}=0
\end{array}\right.
$$

and

$$
\begin{aligned}
C_{B}\left(\mathbb{R}_{t_{0}}\right)=\{f \in C(\mathbb{R}): f & \text { is of bounded variation } \\
& \text { on any interval } \left.[a, b] \subset \mathbb{R}_{t_{0}}\right\}
\end{aligned}
$$

Lemma 5.1. [10]. Suppose $t_{0}>0$ and $f \in C(\mathbb{R})$. Then, $f \in C_{B}\left(\mathbb{R}_{t_{0}}\right)$ if and only if $f(x)=H(x) G(x)$ for all $x \in \mathbb{R}$, where $G: \mathbb{R}_{t_{0}} \rightarrow \mathbb{R}^{+}$is nondecreasing on $\left(-\infty,-t_{0}\right)$ and nonincreasing on $\left(t_{0}, \infty\right)$ and $H: \mathbb{R}_{t_{0}} \rightarrow \mathbb{R}$ is nondecreasing on $\mathbb{R}_{t_{0}}$.

To obtain such extensions, we assume that $f \in C\left(\mathbb{R}_{t_{0}}\right), t_{0} \geq 0$ and let G and H be a pair of continuous components of f and H being the nondecreasing one.

As in the proofs presented above, if $x(t)$ is a nonoscillatory solution of equation $(1.1 ; 1)$, say, $x(t)>0$ for $t \geq t_{0} \geq 0$, then there exist a $t_{1} \geq t_{0}$ and a constant $b>0$ such that

$$
\begin{equation*}
L_{n-1} x(t) \leq b \text { for } t \geq t_{1} \tag{5.1}
\end{equation*}
$$

Integrating (5.1), $(n-1)$-times, there exist a $t_{2} \geq t_{1}$ and a constant $K>0$ such that $g(t) \geq t_{1}$ for $t \geq t_{2}$ and

$$
\begin{align*}
x[g(t)] \leq & K \int_{t_{1}}^{g(t)} a_{1}\left(s_{1}\right) \int_{t_{1}}^{s_{1}} a_{2}\left(s_{2}\right) \int_{t_{1}}^{s_{2}} \cdots \tag{5.2}\\
& \times \int_{t_{1}}^{s_{n-2}} a_{n-1}(s) d s d s_{n-2} \cdots d s_{1} \\
= & K I\left(g(t), t_{1}\right) \quad \text { for } \quad t \geq t_{2}
\end{align*}
$$

Now, it follows from equation $(1.1 ; 1)$ and Lemma 5.1 that

$$
\begin{aligned}
-\frac{d}{d t}\left(L_{n-1} x(t)\right)^{\alpha} & =q(t) f(x[g(t)])=q(t) G(x[g(t)]) H(x[g(t)]) \\
& \geq q(t) G\left(K I\left(g(t), t_{1}\right)\right) H(x[g(t)]) \quad \text { for } \quad t \geq t_{2}
\end{aligned}
$$

It follows from the above discussion that Theorem 3.3-($\left.\mathrm{I}_{1}\right),\left(\mathrm{I}_{2}\right)$ (as well as other results in Sections 3 and 4) is applicable to equation $(1.1 ; 1)$ if f is replaced by H and $q(t)$ is replaced by $q(t) G(c I(g(t), T))$ for every constant $c>0$ and all large $T \geq t_{0}$ with $g(t) \geq T$ and I is defined as in (5.2). The formulation of this result as well as others are left to the reader.

The following functions are not monotonic:
(i) $f(x)=\frac{|x|^{\beta-1} x}{1+|x|^{\gamma}}$, where β and γ are positive constants,
(ii) $f(x)=|x|^{\beta-1} x \exp \left(-|x|^{\gamma}\right)$, where β and γ are positive constants,
(iii) $f(x)=|x|^{\beta-1} x \operatorname{sech} x$, where β is a positive constant.

We note that the results of Section 3 are not applicable to equation $(1.1 ; \delta)$ with any one of the above choices of f.

References

[1] R.P. Agarwal, S.R. Grace, Oscillation of certain functional differential equations, Computers Math. Applic., 38(1999), 143-153.
[2] R.P. Agarwal, S.R. Grace,,, On the oscillation of higher order differential equations with deviating arguments, Computers Math. Applic.. 38(1999), 185-199
[3] R.P. Agarwal, S.R. Grace, Oscillations of forced functional differential equations generated by advanced arguments, Aequationes Mathematicae, 63(2002), 26-45.
[4] R.P. Agarwal, S.R. Grace, D. O'Regan, Oscillation Theory for Difference and Functional Differential Equations, Kluwer, Dordrecht, 2000.
[5] R.P. Agarwal, S.R. Grace, D. O'Regan, Oscillation Theory for Second Order Linear, Half-linear, Superlinear and Sublinear Dynamic Equations, Kluwer, Dordrecht, 2002.
[6] R.P. Agarwal, S.R. Grace, D. O’Regan, Oscillation Theory for Second Order Dynamic Equations, Taylor \& Francis, U.K., 2003.
[7] R.P. Agarwal, S.R. Grace, D. O'Regan, Oscillation criteria for certain n-th order differential equations withdeviating arguments, J. Math. Anal. Appl., 262(2001), 601-622.
[8] Y. Kitamura, Oscillation of functional differential equations with general deviating arguments, Hiroshima Math. J., 15(1985), 445-491.
[9] T. Kusano, B.S. Lalli, On oscillation of half-linear functional differential equations with deviating arguments, Hiroshima Math. J., 24(1994), 549-563.
[10] W.E. Mahfoud, Oscillation and asymptotic behavior of solutions of N-th order nonlinear delay differential equations, J. Differential Equations, 24(1977), 75-98.
[11] J. Werbowski, Oscillation of first order differential inequalities with deviating arguments, Ann. Mat. Pura. Appl., 140(1985), 383-392.
[12] J. Werbowski, Oscillations of differential equations generated by advanced arguments, Funckcialaj Ekvac., 30(1987), 69-79.

Ravi P. Agarwal
Department of Mathematical Sciences
Florida Institute of Technology
Melbourne, FL 32901, USA
e-mail: agarwal@fit.edu

Said R. Grace
Department of Engineering Mathematics
Faculty of Engineering, Cairo University
Orman, Giza 12221, Egypt
e-mail: srgrace@alpha1-eng.cairo.eun.eg

Donal O'Regan

Department of Mathematics
National University of Ireland
Galway, Ireland
e-mail: donal.oregan@nuigalway.ie
Received on 09.07.2003 and, in revised from, on 20.10.2004

