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ABSTRACT: Some new criteria for the oscillation of advanced
functional differential equations of the form

% <[an11(t) Ztanlg(t) %' ' 'all(t) letx(t)] “>

+dq(t)f(2[g(t)]) =0

are presented in this paper. A discussion of neutral equations will
also be included.
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1. Introduction

In this paper we shall deal with the oscillatory behavior of solutions of
the advanced functional differential equation

(1.1;0) Lypa(t) + 0q(t) f(z[g(t)]) = 0,
where n > 3, 6 = £1, and

Lox(t) = z(t)

(1.2) Lya(t) = akl(t) % (Lp1z(t)), k=1,2,--- n—1

e (L0,

In what follows we shall assume that

(i) ai(t) € C([ty,0), Rt = (0,00)), to >0,

Lyz(t) =

(1.3) / a;j(s)ds = oo, i=1,2,---,n—1,
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i) q(t) € C([to, ), RT),

iii) g(¢t) € C([to,0), R = (—00,00)), ¢'(t) >0 and g(t) >t for ¢ > to,
iv) feC(R,R), zf(z) >0 and f'(z) >0 for x #0, and

v) « is the quotient of positive odd integers.

(
(
(
(

The domain D(L,) of L, is defined to be the set of all functions
x: [Ty,00) — R such that Ljz(t), j =0,1,--- ,n exist and are continuous
on [T,,00), Ty > tg. Our attention is restricted to those solutions z €
D(L,) of equation (1.1;0) which satisfy sup{|z(¢)| : ¢t > T} > 0 for every
T > T,. We make the standing hypothesis that equation (1.1; ) does possess
such solutions. A solution of equation (1.1;¢) is called oscillatory if it has
arbitrarily large zeros; otherwise, it is called nonoscillatory. Equation (1.1; )
is called oscillatory if all its solutions are oscillatory.

Recently, the present authors [1-7] have established some results for the
oscillation of equation (1.1;d) and other related equations with general de-
viating arguments as well as advanced arguments. The main goal of this
paper is to obtain some new criteria for the oscillation of equation (1.1;0)
with advanced arguments.

2. Preliminaries

To formulate our results we shall use the following notation: For p;(t) €
C([to,>),R), i =1,2,--- , we define Iy =1,

Ii(t, s;piypi-1,- - s p1) = /tpi(u)fiﬂU,S;Pil,'“ pr)du, i=1,2,---.
s
It is easy to verify from the definition of I; that
Ltsipr, - opi) = (DLl 6, ,p1)
and .
Li(t, s;p1, -+ 5 pi) z/s pi(w)lima(t,wspr, -, pie1)du.

We shall need the following three lemmas.

Lemma 2.1. If v € D(L,,), where Ly, is L, defined by (1.2) with o = 1,
then the following formulas hold for 0 <i <k <n—1 andt,s € [ty,o0)

k-1
(2.1) Li;(}(t) = Z Ij_i(t, Sy Q41" ,ak,l)ij(s)
j=i
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t
+/ Ipio1(t,usaign, - agp—1)ag(u) Lyx(u)du

and

E

-1
(22)  Lia(t) =) (1) "Lmi(s,ts a5, ain) Lja(s)
J

S
—I-(—l)k_z/ I 1 (u,t;ap—1, -+ ,air1)ar(u) Lz (u)du.
t

i

This lemma is a generalization of Taylor’s formula with remainder en-
countered in calculus. The proof is immediate.

Lemma 2.2. Suppose condition (1.8) holds. If x € D(L,) where Ly
is as in Lemma 2.1 is eventually of one sign, then there exist a t; > tg > 0

and an integer £, 0 < ¢ <n with n+{ even for x(t)L,z(t) nonnegative

eventually, or n+ ¢ odd for x(t)L,x(t) nonpositive eventually and such
that for every t > t;,

(2.3) ¢ >0 implies z(t)Lpx(t) >0, k=0,1,---,¢
‘ ¢ <n—1 implies (—1)€_kx(t)ka(t) >0, k=(,0+1,--- ,n.

This lemma generalizes a well-known lemma of Kiguradze and can be
proved similarly.

Lemma 2.3. [11, 12]. Consider the integro—differential inequality with
advanced argument

(24 /(0 = [l
where Q € C(IRTxIRT, IR") and g(t) € C(IRT, IR"), g(t) >t fort >ty > 0.
If

t—oo

g(t) oo 1
(2.5) liminf/ / Q(s,u)duds > .
t s
then inequality (2.4) has no eventually positive solutions.

3. Main results

The equation (1.1;4) is said to be almost oscillatory if:
(iy). for 6 =1 and n even, every solution of (1.1;1) is oscillatory,
(iz). for 6 =1 and n odd, every unbounded solution of (1.1;1) is oscillatory,

(i3). for 6 = —1 and n odd, every solution of (1.1; —1) is oscillatory,
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(i4). for 6 = —1 and n even, every unbounded solution of (1.1;—1) is
oscillatory.
Now, we present the following result.

Theorem 3.1. Let 1 </ <n—1, (1) *§ = —1 and
(3.1) flx) > =% for x#0.

If for 1<t0<n-—2 andall large T >ty and t > T,

g(t)
(3.2;0) lim inf/ ay(s)lp—1(s,T;az,- -+ ,ay)
t

t—o00

o0
X (/ Lni—2(u, $;an—2, -, apy1)an—1(u)
S

x (/uooq(r)d7>1/adu> ds > %

and for £ =n — 1 there exists n(t) € C([tp, 00), IR) such that g(t) > n(t) >t
for all large t and the equation

(32:n 1) ((ﬂﬂyu))) O g(1), (1) an, - an )

xy*n@)] = 0
is oscillatory, then Ny = 0, where Ny is the set of all nonoscillatory solutions
of equation (1.1;0) satisfying (2.3).

Proof. Let z € N, and assume that z(t) > 0 for t > to > 0. Since
L,x(t) is of one sign for ¢ > tp, then there exists a ¢; > ¢y such that
Ljz(t) (0 <j<mn-—1) are also of one sign for ¢t > t;. Moreover,

Lualt) = T(LEa(0) = oLy te()Laa(0)

where L, is defined as in Lemma 2.1, we see that the sign of L,, and L,, are
the same for ¢ > ¢;. First, we let 1 < /¢ < n — 2. Replacing ¢ and k£ by ¢ and
n — 1, respectively in (2.2), we get

n—2

(3.3)  Lyx(t) = Z(—l)jféfj—e(sat; aj,--+app1)Ljz(s) + (=1)" 1
j=t

S
x / Tnta (s ansy - g41)nr (1) Lnr2(ut)
t

for s>t >t.
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Using (2.3) in (3.3), we have
(3.4) Lyx(t) > (-1)" 1
o0
X / I _v—o(u,t;an—2, -+ ,ap41)an—1(u)Ly_1x(u)du for t > t;.
t

Next, integrating equation (1.1;0) from v >t > ¢; to s and letting s — oo,
one can easily find

(3.5) 6Ln-12(u) > (/uoo Q(T)f(x[g(f)])d7>l/a

- (/:oqmm)l/afl/%c[g(u)]) for u>t>1,

Substituting (3.5) in (3.4), we have

oo
66 Lis®) > [ Leralutian s amon(w)
t

: (/m q(ﬂdf)l/a P (alg))du for ¢ > t.

Replacing i, k and s by 1,¢ and ¢; respectively in (2.1), we get
/—1

(3.7) ?(t) = ar(t) Y Lia(t triag, - ,a;)Lix(t)
j=1

t
+ai(t) / Ij_o(t,ujag, - ,ap—1)as(u) Ly x(u)du
t1

> ay(u)lp_1(t,t1;a9, - ,ap)Lex(t) for t>t;.
Combining (3.6) and (3.7) and using (3.1), we obtain

o0
(3.8) (¢ 2/ a1 (t)le—1(t, tisa, -, ap)ln—p—o(u,t;an—2, - ,ar41)
¢

X a1 (1) ( /u Ooq(r)d7'> v z[g(w)]du.

Inequality (3.8), in view of condition (3.2;¢) and Lemma 2.3 has no eventu-
ally positive solutions, a contradiction.

Next, let £ = n — 1. This is the case when § = 1. Replacing i, k by 0 and
n — 2 in (2.1), we can easily obtain

(3.9) xz(t) > IL,_ao(t,s;a1, - ,apn—2)Lp_2x(s) for t>s>1.
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Replacing t and s by g¢(t) and n(t) respectively in (3.9), we have
(3.10) zlg(t)] = In-2(g9(t),n(t); a1, , an—2)Lyp—2z[n(t)]

for g(t) > n(t) > ;.

Using (3.1) and (3.10) in equation (1.1;4), we get

—Lyx(t)

Y

Z( I 23;@)) = g()f(lg(®))
) Oé
)

V

> q(t ( (),n(t);alw- yan—2) (Ln—2z[n(t))*, ¢ = t1.

Set y(t) = Lp—12(t) > 0 for t > ¢;. Then, y(¢) satisfies

an—1

<<1(t)y/(t)>a>/+q(t) n—2(9(),n(t); a1, -+ an—2)y*n(t)] < 0

for t > ty.

Now, by applying a result in [5, Chapter 2], we see that the equation

((1(1”2/(”)&>/+Q(t) no(g(t),n(t); a1, an—2)z[n(t)] = 0

an—1

has an eventually positive solution, which contradicts our assumption. This

completes the proof.

Next, we shall provide the sufficient conditions which ensure that N, =
(), where N, is the set of all nonoscillatory solutions of equation (1.1;0)

satisfying «(t)Ljz(t) >0, 0 < j < n.
Theorem 3.2. Let § = —1 and conditions (3.1) hold. If, either

g(t)
(311)  limsup / )1 (g(), g(D)sar, - an_1)ds > 1,
t—oo t
or
g(t)
312 twsw [ Loalg0)wan e a2 (w)
t—o0 t

X </ q(s)ds> du > 1,
t

then N, = 0.



ON THE OSCILLATION OF CERTAIN ADVANCED. .. 11

Proof. Let x € NV,, and assume that z(¢) > 0 for ¢ >ty > 0. Then there
exists a t1 > tg such that

(3.13) Liz(t) > 0 (0<i<n) on [t1,00).

From (2.1) with 4, k, ¢t and s replaced by 0,n — 1, g(s) and g(t), respectively,

3.14)  zlg(s)] = ij(g(S),g(t); ar, - a;)Lzg(t)]

g(s)
—i—/() In_2(g9(s),u;a1, -+ yan—2)an—1(u)Ly_12(u)du.
g(t

Using (3.13) and noting that L,,_jz is increasing, we easily get
(3.15) z[g(s)] = In-1(g(s),g(t);a1, -, an—1)Ln_1z[g(t)]
for t<s<g(t).

Using (3.1) and (3.15) in equation (1,1;—1), we have

(3.16) %(Lg—ﬁ(s))ZQ(S)f(x[g(S)]) > q(s)z%[g(s)]

> q(s)I—1(9(s),9(t); a1, an—1)L5_1z[g(t)]
for t1 <t<s<g(t).

Integrating both sides of (3.16) from ¢ > ¢; to g(t), one can easily obtain

g(t)
Ly _1z[g(?)] [/t @ (g(s),g9(t);ar, -+ ,an_1)ds —1| < 0.

This is inconsistent with (3.11).

Next, it follows from (3.14) with g(s) and g(¢) replaced by ¢(t) and ¢,
respectively that

g(t)
(3.17) =z[g(t)] > /t In_o(g9(t),uw;a1,- - ,an—2)an—1(uw)Ly_1z(u)du

for t<u<g(t).
Integrating equation (1,1; —1) from ¢ to u, we get

1/a

(318)  Loaw(u) > ( /t ’ q<s>xa[g(s)}ds) for w>t>t.
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Substituting (3.18) in (3.17), we have

g(t) i 1/
z[g(t)] Z/t Ina(g(t), u;a1, -+ an—2)an—1(u) </t Q(S)ds) [g(t)]du,

or

9(t) i 1/
1 > / Inf2(g(t)> u;ag, - aaan)anfl(u) </ q(S)dS) dS,
t t

which contradicts condition (3.12). This completes the proof. [

From Theorems 3.1 and 3.2 the following result follows:

Theorem 3.3. Suppose (i) — (v) and condition (3.1) hold. Equation

(1.1;0) is almost oscillatory if

(I1). for 6 =1 and n even, condition (3.2;() ({ =1,3,---,n—3) hold and
there exists n(t) € C([to,00), IR) such that g(t) > n(t) >t for all large t
and equation (3.2;n-1) is oscillatory,

(I3). for 6 =1 and n odd, condition (3.2;¢) (¢ = 2,4,--- ,n — 3) hold and
there exists n(t) € C([to,00), IR) such that g(t) > n(t) >t for all large t
and equation (3.2;n-1) is oscillatory,

(I3). for 6 = —1 andn odd, condition (3.2;4) (£ =1,3,--- ,n—2) and either
(8.11) or (3.12) holds,

(Iy). for 6 = —1 and n even, condition (3.2;() ({ = 2,4,---,n —2) and
either (3.11) or (3.12) holds.

Example 3.1. Consider the advanced differential equation

(3.19) (<<e_t (e_t (e_twl(t))/>l>/>a>/+4a(24)°‘x°‘[4t] =0, t>0

where « is as in equation (1.1;6). All conditions of Theorem 3.3 (I3) are
satisfied and hence all unbounded solutions of equation (3.19) are oscillatory.

We note that equation (3.19) has a bounded nonoscillatory solution
z(t) =e L.
In the case when o = 1, we present the following result.

Theorem 3.4. Letn >2, 1 <{<n—1, (=1)" % = —1, conditions (i)
- () and (3.1) hold with o = 1. If for all large T >ty >0 and t > T,

g(t)
(3.20;¢) liminf/ a1(s)Ilp—1(s,T;az, - ,ay)
t

t—o00



ON THE OSCILLATION OF CERTAIN ADVANCED. .. 13

[e.9]
1
X / Infffl(/l% 8 0n—1,""" 7a€+1)q(u)dUds > g ’
S

then Ny = 0.

Proof. Let x € Ny and assume that z(t) > 0 for ¢ >ty > 0. Proceeding
as in the proof of Theorem 3.1 and replacing ¢ and k by ¢ and n, respectively,
in (2.2), we have

n—1

(821)  Lea(t) = Y (~1 Lot siaz,- - are) Lz (s)
j=¢

S
+(—1)”_£/ Lng—1(u,t;an-1,- -, app1) Lpz(u)du
t

2/ In—v—1(u,t;an—1, - yaps1)q(u)z[g(u)]du  for t>t.
t

Also, as in the proof of Theorem 3.1, we see (3.7) holds for ¢ > ¢;. Combining
(3.7) with (3.21), we get
(322) a'(t) > / a1 (t)Le—1(t, trsag, -+ ae) ln—g—1(u, t;an—1, -, ay1)
t
x q(u) z[g(u)]du.

Inequality (3.22), in view of condition (3.20;¢) and Lemma 2.3 has no even-
tually positive solution, a contradiction. This completes the proof. |

Theorem 3.5. Let n > 2, conditions (i) — (w) and (3.1) hold with
a = 1. FEquation (1.1;0) is almost oscillatory if

(i1). for 6 =1 and n even, condition (3.20;¢) ({ =1,3,--- ,n — 1),
(iz). for 0 =1 and n odd, condition (3.20;¢) (¢ =2,4,--- ,n—1),
(i3). for 6 = —1 and n odd, condition (3.20;¢) (¢ =1,3,--- ,n —2)

and either condition (3.11) or (3.12),
(i4). for 06 = —1 and n even, condition (3.20;) ({ =2,4,--- ,n — 2)
and either condition (3.11) or (3.12).

Note advanced differential equations can differ from ordinary differential
equations with respect to oscillation. For example

1 ' 3
/
— - — >
<tx(t)> —|—4t31‘[cﬂ 0, t>1

is oscillatory by Theorem 3.5 (i1) for all ¢ > exp (8/3e), while the corre-
sponding ordinary differential equation

1 "3
~z! — = >1
(tx(t)> +4t3x(t) 0, t>
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has a nonoscillatory solution z(t) = v/t
Next, we obtain the following results.

Theorem 3.6. Let 1 </ <n—1, (1) *§=—1 and

+oo W
(3.23) / fl;i(u) < oo.

If for 1 <0 <n-—1and all large T > ty, t > T,

(32476) / al(S)IZ—I(S7T; az,:-- 7a’€) (/ In—€—2(u78;an—27 e 7af+1)

s

S < /u ooq(f)d7> . du> ds = oo,

and for=n—1,

00 g(s)
(3.24;m 1) / arlg()]g'(5) (/ Lna(g(s),usaz, -, an_s)

o0 l/a
X Qp—1(u) </ q(T)dT) du) ds = oo,
then Ny = 0.

Proof. Let z € N, and assume that x(t) > 0 for ¢ > tp > 0. As in the
proof of Theorem 3.1, we obtain (3.6) and (3.7), t > t;, 1 < ¢ < n — 2.
Combining (3.6) and (3.7), we obtain

(3.25) m > a1(t) -1t tisaz, -, ap)

o0 o0 1/0&
x/ Iy _g—o(u,t;an—o, - ,aps1)an—2(u) </ q(T)dT) du.
t U

Integrating (3.25) from ¢; to T > t1, we have

T e
/ ()Tt b0, a2) ( / Lo oot tian o, - agsr)
t

t1
) 1/a z(T) du
X Gp_o(u q(t d7> du dtg/ _.
o) ([t ) o T

Letting T — oo in the above inequality and using (3.23) we arrive at a
contradiction to (3.24;¢), 1 </ <n—2.
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Next, let £ = n — 1. Replacing i, k,s and t by 1,n — 1,¢ and ¢(t), respec-
tively, we have
, g(t)
(3.26) a'[g(t)] = al[g(t)]/ In3(g(t),usag, -+, an—2)
t
X ap—1(u)Lp—12(u)du.

As in the proof of Theorem 3.1, we obtain (3.5). Combining (3.5) and (3.26)
we have

q(t)

Pg®)g 1) > ailg(t)]d(®) / Lo s(g(t).usaz, - s an_2)

<onst) ([ atryir) e alg)du, ¢ 1

or

! / g(t)
W > a1[9<t)]g’(t)/ In-3(9(t),usaz, -, an-2)

X an_1(1) ( /u b q(T)dT> "

The rest of the proof is similar to the above case and hence omitted. This
completes the proof. |

Theorem 3.7. Let § = —1. If, either

(3.27) —f(=zy) = flzy) = f@)f(y) for xy>0,
ua
(3.28) ) — 0 as u— o0
and
g(t)
(3.29) Iiinsup/ q(s)f(Ln-1(g(s),g(t);a1, -+ ,an—1))ds > 0
—00 t
or
9(t)
(3.30) timsup [ Lalg(®).usan, - an-a)
t—o0 t

U 1/04
X Gp—1(w) </ q(s)ds> du > 0,
t
then N,, = 0.
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Proof. The proof can be modelled on that of Theorem 3.2 and hence
omitted. |

Theorem 3.8. Let 6 = —1, condition (3.27) hold and

+oo du
If
(3.32) / q(s)f(In-1(g(s),s;a1, -+ ,an—1)ds = o0,
then N, = 0.

Proof. Let x € NV,, and assume that x(t) > 0 for t > ¢y > 0. Then there
exists a 1 > to such that (3.13) holds on [t1,00). Replacing i, k,¢ and s in
(2.1) by 0,n — 1, ¢g(t) and t, respectively, we get

n—2
zlg®)] = Y Ii(g(t).tiar,- -+ a;)Lix(t)
=0

9(t)
+/ Ly 2(g(t),usa1,- -+, an—2)an—1(u)Lyp_12(u)du
t

> /t " Ln_a(g(t), usay, -+, an—2)an—1(u)Ly_12(u)du
> Ia(g(t).tiar, - an—1)Lnra(t), t>t.
Set u(t) = L_,x(t). Then, u(t) satisfies
W(t) = Lnx(t) = —0Lnx(t) = q(t)f(x[g(t)])

> qt)f(In—1(g(t), t;an, - yan—1)) f(u/(t)) for t>t;.

Thus,

IN

/TQ(t)f(I C(g(t),tiar, - an_1))dt T (t)
31 n y Uy A1, y Un £ f(ul/o‘)

/u(T) dw
 Juy Fw)

/tIOOQ(t)f(In1(9(75)’75;@1"" an-1))dt < /u:l)f(i% =

Letting T' — oo, we find
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This contradicts (3.32) and completes the proof. [ |

Combining Theorems 3.6 — 3.8, we have the following result.
Theorem 3.9. Suppose that (i) — (v) and condition (3.23) hold. A
sufficient condition for equation (1.1;5) to be almost oscillatory is that
(I1). when § =1 and n even, condition (3.24;¢) ({ =1,3,--- ,n —3)
and (3.24;n-1) hold,
(I2). when § =1 and n odd, condition (3.24;() (¢ =2,4,--- ,n—3)
and (3.24;n-1) hold,
(Iz). when § = —1 and n odd, condition (3.24;¢) ({=1,3,--- ,n —2)
and either (3.27) and (3.29), (3.30) or (3.27) and (3.32) hold,
(i4). when § = —1 and n even, condition (3.24;¢) (£ =2,4,--- ,n—2)
and either (3.27) and (3.29), (3.30) or (3.27) and (3.32) hold.
When o = 1, we can easily obtain the following immediate results.

Theorem 3.10. Letn > 2, a=1, 1 </(<n—1, (-1)" = —1,
conditions (i) — (iv) hold and

+o0 U
(3.33) / f‘fu) < .

If for all large T > tg, t > T,

[e.9]

o0
(3.34;0) /al(S)IZ—l(SaTECL%'”aaé)/ In—o—1(u, S an—1," "+ ,ap41)

s

X q(u) duds = oo,
then Ny = 0.

Theorem 3.11. Let n > 2, conditions (i) — (i) and (3.33) hold. A
sufficient condition for equation (1.1;0) with o =1 to be almost oscillatory
is that

(i1). when § =1 and n even, condition (3.34;¢) ({ =1,3,--- ,n—1) hold,
(iz). when § =1 and n odd, condition (3.34;() (¢ =2,4,--- ,n— 1) hold,
(i3). when § = —1 and n odd, condition (3.34;() ({ =1,3,--- ,n—2) and
either (3.27) and (3.29), (3.80), or (3.27) and (3.32) with o = 1 hold,
(i4). when § = —1 and n even, condition (3.34;¢) (£ =2,4,--- ,n —2) and
either (3.27) and (3.29), (3.30), or (3.27) and (3.32) with o = 1 hold.
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4. Oscillation of neutral equations
In this section, we shall extend the results of Section 3 to neutral equa-

tions of the type

d

4.1; —

(Ln1(z(t) +p(H)z[o (D))" + 6q(t) f(x[g(1)]) = 0,

where conditions (i) — (v) hold, and
(vi). p(t) € C([to, 0), [0, 00)),
(vii). o(t) € C([to,0),R) and tlirgo o(t) = oo.

If we define
(4.2) 2(t) = () +pt)z[o()];
then equation (4.1) becomes

d

4. . _

(Lu12(6)* + Sq() f(2lg()]) = .

If x(t) is a nonoscillatory solution of equation (4.1;9), say, xz(t) > 0 and
z[o(t)] > 0fort >ty > 0, then z(t) > 0 for t > ¢y and there exists a t; > tg
and an integer ¢, 1 < ¢ < n such that

(4.4) Z(t) > 0 for t>t.
Now, we shall examine the following two cases:
(I). {0<p(t) <1, o(t)<t}y and (II). {p(t)>1, o(t) >t}
For the case (I), we assume that

(4.5) 0<p(t) <1, o(t)<t and o(t) is strictly increasing for t > to
and p(t) Z1 eventually.

Now, we have for ¢t > tq,

(4.6) 2(t) = 2(t) = p(H)lo(t)

Using (4.6) in equation (4.3;9), we have

@T0) b (Laaz(0)” = o) f(alg(0)
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> q(t)f(1 = plg(D))z[g(B)]) for &>t
Next, for the case (II), we assume that
(4.8) p(t) >1 and p(t) #1 eventually, o(t) >t
and o(t) is strictly increasing for t > to > 0.
We also let
1 (1 _ 1
plo=1(t)] plot oo (t)]

where o1 is the inverse function of o.

pr(t) = > for all large t,

Now, since (4.4) holds, we have

(49)  2(t) = —— = (zlo™ ()] — 207 (1))

_ z[o1(t)] 1 (Z[a_l oo (t)] B zlo~lo a_l(t)]>
plo~too™(t)]  plo~t oo 1(t)]
] zlo7t oo 1(t)]

)
)] plo~ (@)lple~ 0 07 1(2)]

1 — 1 2ot
Z o) [1 p[alo(,l(t)ﬂ o (1)
— p*(t)z[a_l(t)] for t>t;.

Using (4.9) in equation (4.3;9), we get

(110:0) 0% (La12(0)” = a(0) (elo(t)
> 4()f (" lo))zlo ™ 0 g(0]) for ¢ >0

It follows from the above discussion that Theorem 3.3 (as well as other
results of Section 3) can be applied to equation (4.1;0) if in addition we as-
sume that conditions (vi), (vii) and (4.5) hold. In this case, ¢(¢) in Theorem
3.3 is replaced by q(t)(1 — p[g(t)])*.

Also, we see that Theorem 3.3 (say) is applicable to equation (4.1;0)
provided that conditions (vi), (vii) and (4.8) hold. In this case, ¢(t) in
Theorem 3.3 is replaced by q(t)(p*[g(t)])® and g(t) is replaced by o' o
g(®)( > ).

The formulation of these results as well as others are left to the reader.
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5. Further results for the oscillation of equation (1.1;1)

In this section we shall extend some of the results given in the previous
sections to equation (1.1;1) when the function f need not be monotonic.

We need the following notations and a lemma due to Mahfoud [10]. Let

R (—OO, —to] U [to, OO) if t, >0
T (o0, 0)U(0,00) if g =0

and
Cp(Ry,) = {f € C(R): f isof bounded variation
on any interval [a,b] C Ry,}.

Lemma 5.1. [10]. Suppose tg > 0 and f € C(IR). Then, f € Cp(IRy,)
if and only if f(x) = H(z)G(z) for all x € R, where G : Ry, — IR is
nondecreasing on (—oo, —tg) and nonincreasing on (tg,00) and H : Ry, — IR
s nondecreasing on IRy, .

To obtain such extensions, we assume that f € C(IRy,), to > 0 and
let G and H be a pair of continuous components of f and H being the
nondecreasing one.

As in the proofs presented above, if x(t) is a nonoscillatory solution of
equation (1.1;1), say, z(t) > 0 for t > tg > 0, then there exist a t; > ¢y and
a constant b > 0 such that

(5.1) Ln_lﬂf(t) < b for tZtl.

Integrating (5.1), (n — 1)—times, there exist a t3 > ¢; and a constant K > 0
such that g(t) > t; for t > t9 and

IN

() S1 S2
(5.2) o) < K [ al(sl)/ aQ(SQ)/

t1 t1 t1

Sn—2
X / an—1(8)dsdsp—o - ds;

t1
= KlI(g(t),t1) for t>to.
Now, it follows from equation (1.1;1) and Lemma 5.1 that

L L) = qOFGlO) = adOCEEODH()

dt
> g(OG(KI(g(t), ) H(xlg(t)]) for t 3> ta.
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It follows from the above discussion that Theorem 3.3—(1;), (I2) (as well
as other results in Sections 3 and 4) is applicable to equation (1.1;1) if f is
replaced by H and ¢(t) is replaced by q(t)G(cI(g(t),T)) for every constant
¢ > 0 and all large T' > o with g(¢) > T and [ is defined as in (5.2). The
formulation of this result as well as others are left to the reader.

The following functions are not monotonic:

B—1
(i) flz)= M, where B and v are positive constants,
x

(i) f(z) = |z Tz exp(—|z|?), where B and ~ are positive constants,
(iii) f(x) = |z|’~'a sechz, where § is a positive constant.

We note that the results of Section 3 are not applicable to equation (1.1; )
with any one of the above choices of f.
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