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ON THE OSCILLATION OF CERTAIN ADVANCED

FUNCTIONAL DIFFERENTIAL EQUATIONS

USING COMPARISON METHODS

Abstract: Some new criteria for the oscillation of advanced
functional differential equations of the form

d

dt
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1

an−1(t)
d
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1
an−2(t)

d

dt
· · · 1

a1(t)
d
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x(t)

]α)
+ δ q(t)f(x[g(t)]) = 0

are presented in this paper. A discussion of neutral equations will
also be included.
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1. Introduction

In this paper we shall deal with the oscillatory behavior of solutions of
the advanced functional differential equation

(1.1; δ) Lnx(t) + δq(t)f(x[g(t)]) = 0,

where n ≥ 3, δ = ±1, and

(1.2)



L0 x(t) = x(t)

Lk x(t) =
1

ak(t)
d

dt
(Lk−1x(t)) , k = 1, 2, · · · , n− 1

Ln x(t) =
d

dt
([Ln−1x(t)]α) .

In what follows we shall assume that

(i) ai(t) ∈ C([t0,∞), IR+ = (0,∞)), t0 ≥ 0,

(1.3)
∫ ∞

ai(s)ds = ∞, i = 1, 2, · · · , n− 1,
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(ii) q(t) ∈ C([t0,∞), IR+),
(iii) g(t) ∈ C([t0,∞), IR = (−∞,∞)), g′(t) ≥ 0 and g(t) > t for t ≥ t0,

(iv) f ∈ C(IR, IR), xf(x) > 0 and f ′(x) ≥ 0 for x 6= 0, and
(v) α is the quotient of positive odd integers.

The domain D(Ln) of Ln is defined to be the set of all functions
x : [Tx,∞) → IR such that Ljx(t), j = 0, 1, · · · , n exist and are continuous
on [Tx,∞), Tx ≥ t0. Our attention is restricted to those solutions x ∈
D(Ln) of equation (1.1; δ) which satisfy sup{|x(t)| : t ≥ T} > 0 for every
T ≥ Tx. We make the standing hypothesis that equation (1.1; δ) does possess
such solutions. A solution of equation (1.1; δ) is called oscillatory if it has
arbitrarily large zeros; otherwise, it is called nonoscillatory. Equation (1.1; δ)
is called oscillatory if all its solutions are oscillatory.

Recently, the present authors [1–7] have established some results for the
oscillation of equation (1.1; δ) and other related equations with general de-
viating arguments as well as advanced arguments. The main goal of this
paper is to obtain some new criteria for the oscillation of equation (1.1; δ)
with advanced arguments.

2. Preliminaries

To formulate our results we shall use the following notation: For pi(t) ∈
C([t0,∞), IR), i = 1, 2, · · · , we define I0 = 1,

Ii(t, s; pi, pi−1, · · · , p1) =
∫ t

s
pi(u)Ii−1(u, s; pi−1, · · · , p1)du, i = 1, 2, · · · .

It is easy to verify from the definition of Ii that

Ii(t, s; p1, · · · , pi) = (−1)iIi(s, t; pi, · · · , p1)

and

Ii(t, s; p1, · · · , pi) =
∫ t

s
pi(u)Ii−1(t, u; p1, · · · , pi−1)du.

We shall need the following three lemmas.

Lemma 2.1. If x ∈ D(Ln), where Ln is Ln defined by (1.2) with α = 1,
then the following formulas hold for 0 ≤ i ≤ k ≤ n− 1 and t, s ∈ [t0,∞)

(2.1) Lix(t) =
k−1∑
j=i

Ij−i(t, s; ai+1, · · · , ak−1)Ljx(s)
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+
∫ t

s
Ik−i−1(t, u; ai+1, · · · , ak−1)ak(u)Lkx(u)du

and

(2.2) Lix(t) =
k−1∑
j=i

(−1)j−iIj−i(s, t; aj , · · · , ai+1)Ljx(s)

+ (−1)k−i

∫ s

t
Ik−i−1(u, t; ak−1, · · · , ai+1)ak(u)Lkx(u)du.

This lemma is a generalization of Taylor’s formula with remainder en-
countered in calculus. The proof is immediate.

Lemma 2.2. Suppose condition (1.3) holds. If x ∈ D(Ln) where Ln

is as in Lemma 2.1 is eventually of one sign, then there exist a tx ≥ t0 ≥ 0
and an integer `, 0 ≤ ` ≤ n with n + ` even for x(t)Lnx(t) nonnegative
eventually, or n + ` odd for x(t)Lnx(t) nonpositive eventually and such
that for every t ≥ tx,

(2.3)

{
` > 0 implies x(t)Lkx(t) > 0, k = 0, 1, · · · , `

` ≤ n− 1 implies (−1)`−kx(t)Lkx(t) > 0, k = `, ` + 1, · · · , n.

This lemma generalizes a well–known lemma of Kiguradze and can be
proved similarly.

Lemma 2.3. [11, 12]. Consider the integro–differential inequality with
advanced argument

(2.4) y′(t) ≥
∫ ∞

t
Q(t, s)y[g(s)]ds,

where Q ∈ C(IR+×IR+, IR+) and g(t) ∈ C(IR+, IR+), g(t) ≥ t for t ≥ t0 ≥ 0.
If

(2.5) lim inf
t→∞

∫ g(t)

t

∫ ∞

s
Q(s, u)duds >

1
e
,

then inequality (2.4) has no eventually positive solutions.

3. Main results

The equation (1.1; δ) is said to be almost oscillatory if:

(i1). for δ = 1 and n even, every solution of (1.1;1) is oscillatory,
(i2). for δ = 1 and n odd, every unbounded solution of (1.1;1) is oscillatory,
(i3). for δ = −1 and n odd, every solution of (1.1;−1) is oscillatory,
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(i4). for δ = −1 and n even, every unbounded solution of (1.1;−1) is
oscillatory.

Now, we present the following result.

Theorem 3.1. Let 1 ≤ ` ≤ n− 1, (−1)n−`δ = −1 and

(3.1) f(x) ≥ xα for x 6= 0.

If for 1 ≤ ` ≤ n− 2 and all large T ≥ t0 and t ≥ T,

(3.2; δ) lim inf
t→∞

∫ g(t)

t
a1(s)I`−1(s, T ; a2, · · · , a`)

×
(∫ ∞

s
In−`−2(u, s; an−2, · · · , a`+1)an−1(u)

×
(∫ ∞

u
q(τ)dτ

)1/α

du

)
ds >

1
e

and for ` = n− 1 there exists η(t) ∈ C([t0,∞), IR) such that g(t) ≥ η(t) > t
for all large t and the equation

(3.2;n− 1)
((

1
an−1(t)

y′(t)
)α)′

+ q(t)Iα
n−2(g(t), η(t); a1, · · · , an−2)

× yα[η(t)] = 0

is oscillatory, then N` = ∅, where N` is the set of all nonoscillatory solutions
of equation (1.1; δ) satisfying (2.3).

Proof. Let x ∈ N` and assume that x(t) > 0 for t ≥ t0 ≥ 0. Since
Lnx(t) is of one sign for t ≥ t0, then there exists a t1 ≥ t0 such that
Ljx(t) (0 ≤ j ≤ n− 1) are also of one sign for t ≥ t1. Moreover,

Lnx(t) =
d

dt
(Lα

n−1x(t)) = αLα−1
n−1x(t)Lnx(t),

where Ln is defined as in Lemma 2.1, we see that the sign of Ln and Ln are
the same for t ≥ t1. First, we let 1 ≤ ` ≤ n− 2. Replacing i and k by ` and
n− 1, respectively in (2.2), we get

(3.3) L` x(t) =
n−2∑
j=`

(−1)j−`Ij−`(s, t; aj , · · · , a`+1)Ljx(s) + (−1)n−`−1

×
∫ s

t
In−`−2(u, t; an−2, · · · , a`+1)an−1(u)Ln−1x(u)du

for s ≥ t ≥ t1.
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Using (2.3) in (3.3), we have

(3.4) L` x(t) ≥ (−1)n−`−1

×
∫ ∞

t
In−`−2(u, t; an−2, · · · , a`+1)an−1(u)Ln−1x(u)du for t ≥ t1.

Next, integrating equation (1.1; δ) from u ≥ t ≥ t1 to s and letting s →∞,
one can easily find

(3.5) δLn−1x(u) ≥
(∫ ∞

u
q(τ)f(x[g(τ)])dτ

)1/α

≥
(∫ ∞

u
q(τ)dτ

)1/α

f1/α(x[g(u)]) for u ≥ t ≥ t1.

Substituting (3.5) in (3.4), we have

(3.6) L` x(t) ≥
∫ ∞

t
In−`−2(u, t; an−2, · · · , a`+1)an−1(u)

×
(∫ ∞

u
q(τ)dτ

)1/α

f1/α(x[g(u)])du for t ≥ t1.

Replacing i, k and s by 1, ` and t1 respectively in (2.1), we get

(3.7) x′(t) = a1(t)
`−1∑
j=1

Ij−1(t, t1; a2, · · · , aj)Ljx(t1)

+ a1(t)
∫ t

t1

I`−2(t, u; a2, · · · , a`−1)a`(u)L` x(u)du

≥ a1(u)I`−1(t, t1; a2, · · · , a`)L`x(t) for t ≥ t1.

Combining (3.6) and (3.7) and using (3.1), we obtain

(3.8) x′(t) ≥
∫ ∞

t
a1(t)I`−1(t, t1; a2, · · · , a`)In−`−2(u, t; an−2, · · · , a`+1)

× an−1(u)
(∫ ∞

u
q(τ)dτ

)1/α

x[g(u)]du.

Inequality (3.8), in view of condition (3.2; `) and Lemma 2.3 has no eventu-
ally positive solutions, a contradiction.

Next, let ` = n− 1. This is the case when δ = 1. Replacing i, k by 0 and
n− 2 in (2.1), we can easily obtain

(3.9) x(t) ≥ In−2(t, s; a1, · · · , an−2)Ln−2x(s) for t ≥ s ≥ t1.
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Replacing t and s by g(t) and η(t) respectively in (3.9), we have

(3.10) x[g(t)] ≥ In−2(g(t), η(t); a1, · · · , an−2)Ln−2x[η(t)]

for g(t) > η(t) ≥ t1.

Using (3.1) and (3.10) in equation (1.1; δ), we get

−Lnx(t) = −d

dt

(
1

an−1(t)
d

dt
Ln−2x(t)

)α

= q(t)f(x[g(t)])

≥ q(t)xα[g(t)]

≥ q(t)Iα
n−2(g(t), η(t); a1, · · · , an−2) (Ln−2x[η(t)])α , t ≥ t1.

Set y(t) = Ln−1x(t) > 0 for t ≥ t1. Then, y(t) satisfies((
1

an−1(t)
y′(t)

)α)′
+ q(t)Iα

n−2(g(t), η(t); a1, · · · , an−2)yα[η(t)] ≤ 0

for t ≥ t1.

Now, by applying a result in [5, Chapter 2], we see that the equation((
1

an−1(t)
z′(t)

)α)′
+ q(t)Iα

n−2(g(t), η(t); a1, · · · , an−2)zα[η(t)] = 0

has an eventually positive solution, which contradicts our assumption. This
completes the proof. �

Next, we shall provide the sufficient conditions which ensure that Nn =
∅, where Nn is the set of all nonoscillatory solutions of equation (1.1; δ)
satisfying x(t)Ljx(t) > 0, 0 ≤ j ≤ n.

Theorem 3.2. Let δ = −1 and conditions (3.1) hold. If, either

(3.11) lim sup
t→∞

∫ g(t)

t
q(s)Iα

n−1(g(s), g(t); a1, · · · , an−1)ds > 1,

or

(3.12) lim sup
t→∞

∫ g(t)

t
In−2(g(t), u; a1, · · · , an−2)an−1(u)

×
(∫ u

t
q(s)ds

)1/α

du > 1,

then Nn = ∅.
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Proof. Let x ∈ Nn and assume that x(t) > 0 for t ≥ t0 ≥ 0. Then there
exists a t1 ≥ t0 such that

(3.13) Lix(t) > 0 (0 ≤ i ≤ n) on [t1,∞).

From (2.1) with i, k, t and s replaced by 0, n− 1, g(s) and g(t), respectively,

(3.14) x[g(s)] =
n−2∑
j=0

Ij(g(s), g(t); a1, · · · , aj)Ljx[g(t)]

+
∫ g(s)

g(t)
In−2(g(s), u; a1, · · · , an−2)an−1(u)Ln−1x(u)du.

Using (3.13) and noting that Ln−1x is increasing, we easily get

(3.15) x[g(s)] ≥ In−1(g(s), g(t); a1, · · · , an−1)Ln−1x[g(t)]

for t < s < g(t).

Using (3.1) and (3.15) in equation (1, 1;−1), we have

(3.16)
d

ds
(Lα

n−1x(s)) = q(s)f(x[g(s)]) ≥ q(s)xα[g(s)]

≥ q(s)Iα
n−1(g(s), g(t); a1, · · · , an−1)Lα

n−1x[g(t)]

for t1 < t < s < g(t).

Integrating both sides of (3.16) from t ≥ t1 to g(t), one can easily obtain

Lα
n−1x[g(t)]

[∫ g(t)

t
Iα
n−1(g(s), g(t); a1, · · · , an−1)ds− 1

]
≤ 0.

This is inconsistent with (3.11).

Next, it follows from (3.14) with g(s) and g(t) replaced by g(t) and t,
respectively that

(3.17) x[g(t)] ≥
∫ g(t)

t
In−2(g(t), u; a1, · · · , an−2)an−1(u)Ln−1x(u)du

for t < u < g(t).

Integrating equation (1, 1;−1) from t to u, we get

(3.18) Ln−1x(u) ≥
(∫ u

t
q(s)xα[g(s)]ds

)1/α

for u ≥ t ≥ t1.
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Substituting (3.18) in (3.17), we have

x[g(t)] ≥
∫ g(t)

t
In−2(g(t), u; a1, · · · , an−2)an−1(u)

(∫ u

t
q(s)ds

)1/α

x[g(t)]du,

or

1 ≥
∫ g(t)

t
In−2(g(t), u; a1, · · · , an−2)an−1(u)

(∫ u

t
q(s)ds

)1/α

ds,

which contradicts condition (3.12). This completes the proof. �

From Theorems 3.1 and 3.2 the following result follows:

Theorem 3.3. Suppose (i) – (v) and condition (3.1) hold. Equation
(1.1;δ) is almost oscillatory if
(I1). for δ = 1 and n even, condition (3.2;`) (` = 1, 3, · · · , n − 3) hold and

there exists η(t) ∈ C([t0,∞), IR) such that g(t) ≥ η(t) ≥ t for all large t
and equation (3.2;n-1) is oscillatory,

(I2). for δ = 1 and n odd, condition (3.2;`) (` = 2, 4, · · · , n − 3) hold and
there exists η(t) ∈ C([t0,∞), IR) such that g(t) ≥ η(t) ≥ t for all large t
and equation (3.2;n-1) is oscillatory,

(I3). for δ = −1 and n odd, condition (3.2;`) (` = 1, 3, · · · , n−2) and either
(3.11) or (3.12) holds,

(I4). for δ = −1 and n even, condition (3.2;`) (` = 2, 4, · · · , n − 2) and
either (3.11) or (3.12) holds.

Example 3.1. Consider the advanced differential equation

(3.19)

(((
e−t
(
e−t
(
e−tx′(t)

)′)′)′)α
)′

+ 4α(24)αxα[4t] = 0, t ≥ 0

where α is as in equation (1.1; δ). All conditions of Theorem 3.3 (I2) are
satisfied and hence all unbounded solutions of equation (3.19) are oscillatory.

We note that equation (3.19) has a bounded nonoscillatory solution
x(t) = e−t.

In the case when α = 1, we present the following result.

Theorem 3.4. Let n ≥ 2, 1 ≤ ` ≤ n− 1, (−1)n−`δ = −1, conditions (i)
– (iv) and (3.1) hold with α = 1. If for all large T ≥ t0 ≥ 0 and t ≥ T,

(3.20; `) lim inf
t→∞

∫ g(t)

t
a1(s)I`−1(s, T ; a2, · · · , a`)
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×
∫ ∞

s
In−`−1(u, s; an−1, · · · , a`+1)q(u)duds >

1
e

,

then N` = ∅.

Proof. Let x ∈ N` and assume that x(t) > 0 for t ≥ t0 ≥ 0. Proceeding
as in the proof of Theorem 3.1 and replacing i and k by ` and n, respectively,
in (2.2), we have

(3.21) L` x(t) =
n−1∑
j=`

(−1)j−`Ij−`(t, s; aj , · · · , a`+1)Ljx(s)

+(−1)n−`

∫ s

t
In−`−1(u, t; an−1, · · · , a`+1)Lnx(u)du

≥
∫ ∞

t
In−`−1(u, t; an−1, · · · , a`+1)q(u)x[g(u)]du for t ≥ t1.

Also, as in the proof of Theorem 3.1, we see (3.7) holds for t ≥ t1. Combining
(3.7) with (3.21), we get

(3.22) x′(t) ≥
∫ ∞

t
a1(t)I`−1(t, t1; a2, · · · , a`)In−`−1(u, t; an−1, · · · , a`+1)

× q(u) x[g(u)]du.

Inequality (3.22), in view of condition (3.20; `) and Lemma 2.3 has no even-
tually positive solution, a contradiction. This completes the proof. �

Theorem 3.5. Let n ≥ 2, conditions (i) – (iv) and (3.1) hold with
α = 1. Equation (1.1; δ) is almost oscillatory if
(i1). for δ = 1 and n even, condition (3.20;`) (` = 1, 3, · · · , n− 1),
(i2). for δ = 1 and n odd, condition (3.20;`) (` = 2, 4, · · · , n− 1),
(i3). for δ = −1 and n odd, condition (3.20;`) (` = 1, 3, · · · , n− 2)

and either condition (3.11) or (3.12),
(i4). for δ = −1 and n even, condition (3.20;`) (` = 2, 4, · · · , n− 2)

and either condition (3.11) or (3.12).

Note advanced differential equations can differ from ordinary differential
equations with respect to oscillation. For example(

1
t
x′(t)

)′
+

3
4t3

x[ct] = 0, t ≥ 1

is oscillatory by Theorem 3.5 (i1) for all c > exp (8/3e) , while the corre-
sponding ordinary differential equation(

1
t
x′(t)

)′
+

3
4t3

x(t) = 0, t ≥ 1
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has a nonoscillatory solution x(t) =
√

t.

Next, we obtain the following results.

Theorem 3.6. Let 1 ≤ ` ≤ n− 1, (−1)n−`δ = −1 and

(3.23)
∫ ±∞ du

f1/α(u)
< ∞.

If for 1 ≤ ` ≤ n− 1 and all large T ≥ t0, t ≥ T,

(3.24; `)
∫ ∞

a1(s)I`−1(s, T ; a2, · · · , a`)
(∫ ∞

s
In−`−2(u, s; an−2, · · · , a`+1)

× an−1(u)
(∫ ∞

u
q(τ)dτ

)1/α

du

)
ds = ∞,

and for ` = n− 1,

(3.24;n− 1)
∫ ∞

a1[g(s)]g′(s)

(∫ g(s)

s
In−2(g(s), u; a2, · · · , an−2)

× an−1(u)
(∫ ∞

u
q(τ)dτ

)1/α

du

)
ds = ∞,

then N` = ∅.

Proof. Let x ∈ N` and assume that x(t) > 0 for t ≥ t0 ≥ 0. As in the
proof of Theorem 3.1, we obtain (3.6) and (3.7), t ≥ t1, 1 ≤ ` ≤ n − 2.
Combining (3.6) and (3.7), we obtain

(3.25)
x′(t)

f1/α(x(t))
≥ a1(t)I`−1(t, t1; a2, · · · , a`)

×
∫ ∞

t
In−`−2(u, t; an−2, · · · , a`+1)an−2(u)

(∫ ∞

u
q(τ)dτ

)1/α

du.

Integrating (3.25) from t1 to T ≥ t1, we have∫ T

t1

a1(t)I`−1(t, t1; a2, · · · , a`)
(∫ ∞

t
In−`−2(u, t; an−2, · · · , a`+1)

× an−2(u)
(∫ ∞

u
q(τ)dτ

)1/α

du

)
dt ≤

∫ x(T )

x(t1)

du

f1/α(u)
.

Letting T → ∞ in the above inequality and using (3.23) we arrive at a
contradiction to (3.24; `), 1 ≤ ` ≤ n− 2.
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Next, let ` = n− 1. Replacing i, k, s and t by 1, n− 1, t and g(t), respec-
tively, we have

(3.26) x′[g(t)] ≥ a1[g(t)]
∫ g(t)

t
In−3(g(t), u; a2, · · · , an−2)

× an−1(u)Ln−1x(u)du.

As in the proof of Theorem 3.1, we obtain (3.5). Combining (3.5) and (3.26)
we have

x′[g(t)]g′(t) ≥ a1[g(t)]g′(t)
∫ g(t)

t
In−3(g(t), u; a2, · · · , an−2)

× an−1(u)
(∫ ∞

u
q(τ)dτ

)1/α

f1/α(x[g(u)])du, t ≥ t1

or

x′[g(t)]g′(t)
f1/α(x[g(t)])

≥ a1[g(t)]g′(t)
∫ g(t)

t
In−3(g(t), u; a2, · · · , an−2)

× an−1(u)
(∫ ∞

u
q(τ)dτ

)1/α

du.

The rest of the proof is similar to the above case and hence omitted. This
completes the proof. �

Theorem 3.7. Let δ = −1. If, either

(3.27) −f(−xy) ≥ f(xy) ≥ f(x)f(y) for xy > 0,

(3.28)
uα

f(u)
→ 0 as u →∞

and

(3.29) lim sup
t→∞

∫ g(t)

t
q(s)f(In−1(g(s), g(t); a1, · · · , an−1))ds > 0

or

(3.30) lim sup
t→∞

∫ g(t)

t
In−2(g(t), u; a1, · · · , an−2)

× an−1(u)
(∫ u

t
q(s)ds

)1/α

du > 0,

then Nn = ∅.
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Proof. The proof can be modelled on that of Theorem 3.2 and hence
omitted. �

Theorem 3.8. Let δ = −1, condition (3.27) hold and

(3.31)
∫ ±∞ du

f(u1/α)
< ∞.

If

(3.32)
∫ ∞

q(s)f(In−1(g(s), s; a1, · · · , an−1)ds = ∞,

then Nn = ∅.

Proof. Let x ∈ Nn and assume that x(t) > 0 for t ≥ t0 ≥ 0. Then there
exists a t1 ≥ t0 such that (3.13) holds on [t1,∞). Replacing i, k, t and s in
(2.1) by 0, n− 1, g(t) and t, respectively, we get

x[g(t)] =
n−2∑
j=0

Ij(g(t), t; a1, · · · , aj)Ljx(t)

+
∫ g(t)

t
In−2(g(t), u; a1, · · · , an−2)an−1(u)Ln−1x(u)du

≥
∫ g(t)

t
In−2(g(t), u; a1, · · · , an−2)an−1(u)Ln−1x(u)du

≥ In−1(g(t), t; a1, · · · , an−1)Ln−1x(t), t ≥ t1.

Set u(t) = Lα
n−1x(t). Then, u(t) satisfies

u′(t) = Lnx(t) = − δLnx(t) = q(t)f(x[g(t)])

≥ q(t)f(In−1(g(t), t; a1, · · · , an−1))f(u1/α(t)) for t ≥ t1.

Thus,∫ T

t1

q(t)f(In−1(g(t), t; a1, · · · , an−1))dt ≤
∫ T

t1

u′(t)
f(u1/α)

=
∫ u(T )

u(t1)

dw

f(w1/α)
.

Letting T →∞, we find∫ ∞

t1

q(t)f(In−1(g(t), t; a1, · · · , an−1))dt ≤
∫ ∞

u(t1)

dw

f(w1/α)
< ∞.
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This contradicts (3.32) and completes the proof. �

Combining Theorems 3.6 – 3.8, we have the following result.

Theorem 3.9. Suppose that (i) – (v) and condition (3.23) hold. A
sufficient condition for equation (1.1;δ) to be almost oscillatory is that
(I1). when δ = 1 and n even, condition (3.24;`) (` = 1, 3, · · · , n− 3)

and (3.24;n-1) hold,
(I2). when δ = 1 and n odd, condition (3.24;`) (` = 2, 4, · · · , n− 3)

and (3.24;n-1) hold,
(I3). when δ = −1 and n odd, condition (3.24;`) (` = 1, 3, · · · , n− 2)

and either (3.27) and (3.29), (3.30) or (3.27) and (3.32) hold,
(i4). when δ = −1 and n even, condition (3.24;`) (` = 2, 4, · · · , n− 2)

and either (3.27) and (3.29), (3.30) or (3.27) and (3.32) hold.

When α = 1, we can easily obtain the following immediate results.

Theorem 3.10. Let n ≥ 2, α = 1, 1 ≤ ` ≤ n − 1, (−1)n−`δ = −1,
conditions (i) – (iv) hold and

(3.33)
∫ ±∞ du

f(u)
< ∞.

If for all large T ≥ t0, t ≥ T,

(3.34; `)
∫ ∞

a1(s)I`−1(s, T ; a2, · · · , a`)
∫ ∞

s
In−`−1(u, s; an−1, · · · , a`+1)

× q(u) duds = ∞,

then N` = ∅.

Theorem 3.11. Let n ≥ 2, conditions (i) – (iv) and (3.33) hold. A
sufficient condition for equation (1.1;δ) with α = 1 to be almost oscillatory
is that
(i1). when δ = 1 and n even, condition (3.34;`) (` = 1, 3, · · · , n− 1) hold,
(i2). when δ = 1 and n odd, condition (3.34;`) (` = 2, 4, · · · , n− 1) hold,
(i3). when δ = −1 and n odd, condition (3.34;`) (` = 1, 3, · · · , n− 2) and

either (3.27) and (3.29), (3.30), or (3.27) and (3.32) with α = 1 hold,
(i4). when δ = −1 and n even, condition (3.34;`) (` = 2, 4, · · · , n− 2) and

either (3.27) and (3.29), (3.30), or (3.27) and (3.32) with α = 1 hold.
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4. Oscillation of neutral equations

In this section, we shall extend the results of Section 3 to neutral equa-
tions of the type

(4.1; δ)
d

dt
(Ln−1(x(t) + p(t)x[σ(t)]))α + δq(t)f(x[g(t)]) = 0,

where conditions (i) – (v) hold, and
(vi). p(t) ∈ C([t0,∞), [0,∞)),
(vii). σ(t) ∈ C([t0,∞), IR) and lim

t→∞
σ(t) = ∞.

If we define

(4.2) z(t) = x(t) + p(t)x[σ(t)],

then equation (4.1) becomes

(4.3; δ)
d

dt
(Ln−1z(t))α + δq(t)f(x[g(t)]) = 0.

If x(t) is a nonoscillatory solution of equation (4.1; δ), say, x(t) > 0 and
x[σ(t)] > 0 for t ≥ t0 ≥ 0, then z(t) > 0 for t ≥ t0 and there exists a t1 ≥ t0
and an integer `, 1 ≤ ` ≤ n such that

(4.4) z′(t) > 0 for t ≥ t1.

Now, we shall examine the following two cases:

(I). {0 ≤ p(t) ≤ 1, σ(t) < t} and (II). {p(t) ≥ 1, σ(t) > t}.

For the case (I), we assume that

(4.5) 0 ≤ p(t) ≤ 1, σ(t) < t and σ(t) is strictly increasing for t ≥ t0

and p(t) 6≡ 1 eventually.

Now, we have for t ≥ t1,

(4.6) x(t) = z(t)− p(t)x[σ(t)]

= z(t)− p(t)[z[σ(t)]− p[σ(t)]x[σ ◦ σ(t)]]

≥ z(t)− p(t)z[σ(t)] ≥ (1− p(t))z(t).

Using (4.6) in equation (4.3; δ), we have

(4.7; δ) −δ
d

dt
(Ln−1z(t))α = q(t)f(x[g(t)])
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≥ q(t)f((1− p[g(t)])z[g(t)]) for t ≥ t1.

Next, for the case (II), we assume that

(4.8) p(t) ≥ 1 and p(t) 6≡ 1 eventually, σ(t) > t

and σ(t) is strictly increasing for t ≥ t0 ≥ 0.

We also let

p∗(t) =
1

p[σ−1(t)]

(
1− 1

p[σ−1 ◦ σ−1(t)]

)
for all large t,

where σ−1 is the inverse function of σ.

Now, since (4.4) holds, we have

(4.9) x(t) =
1

p[σ−1(t)]
(
z[σ−1(t)]− x[σ−1(t)]

)
=

z[σ−1(t)]
p[σ−1(t)]

− 1
p[σ−1(t)]

(
z[σ−1 ◦ σ−1(t)]
p[σ−1 ◦ σ−1(t)]

− x[σ−1 ◦ σ−1(t)]
p[σ−1 ◦ σ−1(t)]

)
≥ z[σ−1(t)]

p[σ−1(t)]
− z[σ−1 ◦ σ−1(t)]

p[σ−1(t)]p[σ−1 ◦ σ−1(t)]

≥ 1
p[σ−1(t)]

[
1− 1

p[σ−1 ◦ σ−1(t)]

]
z[σ−1(t)]

= p∗(t)z[σ−1(t)] for t ≥ t1.

Using (4.9) in equation (4.3; δ), we get

(4.10; δ) −δ
d

dt
(Ln−1z(t))α = q(t)f(x[g(t)])

≥ q(t)f(p∗[g(t)]z[σ−1 ◦ g(t)]) for t ≥ t1.

It follows from the above discussion that Theorem 3.3 (as well as other
results of Section 3) can be applied to equation (4.1; δ) if in addition we as-
sume that conditions (vi), (vii) and (4.5) hold. In this case, q(t) in Theorem
3.3 is replaced by q(t)(1− p[g(t)])α.

Also, we see that Theorem 3.3 (say) is applicable to equation (4.1; δ)
provided that conditions (vi), (vii) and (4.8) hold. In this case, q(t) in
Theorem 3.3 is replaced by q(t)(p∗[g(t)])α and g(t) is replaced by σ−1 ◦
g(t)( > t).

The formulation of these results as well as others are left to the reader.
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5. Further results for the oscillation of equation (1.1;1)

In this section we shall extend some of the results given in the previous
sections to equation (1.1;1) when the function f need not be monotonic.

We need the following notations and a lemma due to Mahfoud [10]. Let

IRt0 =

{
(−∞,−t0] ∪ [t0,∞) if t0 > 0

(−∞, 0) ∪ (0,∞) if t0 = 0

and
CB(IRt0) = {f ∈ C(IR) : f is of bounded variation

on any interval [a, b] ⊂ IRt0}.

Lemma 5.1. [10]. Suppose t0 > 0 and f ∈ C(IR). Then, f ∈ CB(IRt0)
if and only if f(x) = H(x)G(x) for all x ∈ IR, where G : IRt0 → IR+ is
nondecreasing on (−∞,−t0) and nonincreasing on (t0,∞) and H : IRt0 → IR
is nondecreasing on IRt0 .

To obtain such extensions, we assume that f ∈ C(IRt0), t0 ≥ 0 and
let G and H be a pair of continuous components of f and H being the
nondecreasing one.

As in the proofs presented above, if x(t) is a nonoscillatory solution of
equation (1.1;1), say, x(t) > 0 for t ≥ t0 ≥ 0, then there exist a t1 ≥ t0 and
a constant b > 0 such that

(5.1) Ln−1x(t) ≤ b for t ≥ t1.

Integrating (5.1), (n− 1)–times, there exist a t2 ≥ t1 and a constant K > 0
such that g(t) ≥ t1 for t ≥ t2 and

(5.2) x[g(t)] ≤ K

∫ g(t)

t1

a1(s1)
∫ s1

t1

a2(s2)
∫ s2

t1

· · ·

×
∫ sn−2

t1

an−1(s)dsdsn−2 · · · ds1

= KI(g(t), t1) for t ≥ t2.

Now, it follows from equation (1.1;1) and Lemma 5.1 that

−d

dt
(Ln−1x(t))α = q(t)f(x[g(t)]) = q(t)G(x[g(t)])H(x[g(t)])

≥ q(t)G(KI(g(t), t1))H(x[g(t)]) for t ≥ t2.
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It follows from the above discussion that Theorem 3.3–(I1), (I2) (as well
as other results in Sections 3 and 4) is applicable to equation (1.1;1) if f is
replaced by H and q(t) is replaced by q(t)G(cI(g(t), T )) for every constant
c > 0 and all large T ≥ t0 with g(t) ≥ T and I is defined as in (5.2). The
formulation of this result as well as others are left to the reader.

The following functions are not monotonic:

(i) f(x) =
|x|β−1x

1 + |x|γ
, where β and γ are positive constants,

(ii) f(x) = |x|β−1x exp(−|x|γ), where β and γ are positive constants,
(iii) f(x) = |x|β−1x sechx, where β is a positive constant.

We note that the results of Section 3 are not applicable to equation (1.1; δ)
with any one of the above choices of f.
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