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Abstract: In this paper we consider eigenvalue problems on
time scales involving linear Hamiltonian dynamic systems. We
give conditions that ensure that the eigenvalues of the problem are
isolated and bounded below. The presented results are applicable
also to Sturm-Liouville dynamic equations of higher order, and
further special cases of our systems are linear Hamiltonian differ-
ential systems as well as linear Hamiltonian difference systems.
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1. Introduction

A time scale is any nonempty closed subset of R. For an introduction to
the time scales calculus we refer the reader to [6, 7], see also [8, 12]. If f is
a function on T, we abbreviate ft := f(t) and fσ := f ◦ σ, where σ is the
forward jump operator. The time scale derivative f∆

t reduces to the usual
derivative f ′(t) if T = R and to the forward difference ∆ft = ft+1 − ft if
T = Z. The graininess function of T is µt := σt− t. The set of rd-continuous
functions is denoted by Crd and the set of rd-continuously differentiable
functions by C1

rd.
Let T := [a, b] be a time scale interval, a < b. The set T without its

possible isolated (i.e., a left-scattered) maximum will be denoted by Tκ;
thus Tκ = T if b is left-dense. Consider the linear Hamiltonian dynamic
system

(H) x∆ = Atx
σ + Btu, u∆ = Ctx

σ −AT
t u, t ∈ Tκ,

where A,B, C : Tκ → Rn×n are real rd-continuous matrices, Bt, Ct sym-
metric, and I − µtAt nonsingular. Motivated by [5], we consider eigenvalue
problems (with formally self-adjoint boundary conditions) involving the sys-
tem (H), where the matrices At, Bt, and Ct also depend on an eigenvalue
parameter λ ∈ R. We give conditions, among them the notion of strict



36 Martin Bohner, Roman Hilscher

controllability for system (H), that imply that the eigenvalues of (H) are
isolated and bounded below, i.e., they may be arranged as

−∞ < λ1 ≤ λ2 ≤ λ3 ≤ . . . ,

counting multiplicities. An eigenvalue problem on time scales of the Sturm-
Liouville type has been recently studied in [1].

The setup of this paper is as follows. In the following Section 2 we recall
some preliminaries on Hamiltonian systems that are needed later. Then, in
Section 3, we introduce our eigenvalue problem in detail and present basic
facts about this problem, e.g., how it is possible to characterize the eigen-
values. In this section we also present our main result on isolatedness and
lower boundedness of eigenvalues, which we prove by using some auxiliary
results that are given in detail in the last Section .

2. Preliminaries: Hamiltonian systems

By a solution of (H) we mean a pair (x, u) with x, u ∈ C1
rd(T) satisfying the

system (H) on Tκ. When referring to solutions of (H) we use a usual agree-
ment that the vector-valued solutions of (H) are denoted by small letters and
the n×n-matrix-valued solutions by capital ones. By rank M , Ker M , Im M ,
defM , indM , MT , MT−1, M †, M ≥ 0, and M > 0 we denote the rank,
kernel, image, defect (dimension of the kernel), index (number of negative
eigenvalues), transpose, inverse of the transpose, Moore-Penrose generalized
inverse (see [2, Chapter 1]), positive semidefiniteness, and positive definite-
ness, respectively, of the matrix M .

By setting

(1) H :=
(
−C AT

A B

)
, J :=

(
0 I
−I 0

)
, z :=

(
x
u

)
, z̃ :=

(
xσ

u

)
,

the linear Hamiltonian system (H) has the form

(H) L[z]t ≡ J z∆ +Htz̃ = 0, t ∈ Tκ.

A solution (X, U) of (H) is called a conjoined basis if rank(XT UT ) = n at
some (and hence at any) t ∈ T, and XT U−UT X ≡ 0 on T. The Wronski ma-
trix W = XT Ũ−UT X̃ is constant on T for any two solutions (X, U), (X̃, Ũ)
of (H). These two solutions are normalized if W = I. The (unique) solution
(X, U), resp. (X̃, Ũ), of (H) satisfying the initial conditions Xa = 0, Ua = I,
resp. X̃a = −I, Ũa = 0, is called the principal, resp. associated, solution of
(H) at a. Together they are called the special normalized conjoined bases of
(H) at a.
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Lemma 1. For any s ∈ T and any conjoined basis (X, U) of (H) there
exists another conjoined basis (X̃, Ũ) such that they are normalized, and X̃s

is invertible.

Proof. See [13, Corollary 3.3.9], [9, Remark 5]. �

A conjoined basis (X, U) of (H) is said to have no focal points in the
interval (a, b], provided Xt is invertible at all dense points t ∈ T \ {a}, and

Ker Xσ ⊆ Ker X and D := X(Xσ)†ÃB ≥ 0 on Tκ.

Recall that a point t ∈ T is dense if it is right-dense or left-dense. System
(H) is called disconjugate on T if the principal solution of (H) at a has no
focal points in (a, b].

A pair (x, u) is called admissible if x is piecewise rd-continuously differ-
entiable, denoted by x ∈ C1

p(T), u is piecewise rd-continuous, denoted by
u ∈ Cp(T), and (x, u) satisfies x∆ = Axσ +Bu on Tκ (at points t ∈ T, where
x∆ is not continuous, this is to be read as the corresponding right/left-sided
limit). Let R,S ∈ R2n×2n with S symmetric. The quadratic functional

F(x, u) ≡
∫ b

a

{
(xσ)T Cxσ + uT Bu

}
t
∆t +

(
−xa

xb

)T

S

(
−xa

xb

)
.

is called positive definite (F > 0), if F(x, u) > 0 for all admissible pairs
(x, u) with

(−xa
xb

)
∈ Im RT , x 6≡ 0.

Following [11], system (H) is called dense-normal on [a, s] whenever s ∈
(a, b] is a dense point and the only solution of the system

(2) u∆ = −AT
t u, Btu = 0, t ∈ [a, s]κ,

is the zero solution ut ≡ 0 on [a, s]. The hypothesis of dense-normality will
be denoted by

(D) System (H) is dense-normal on any interval of the form [a, s] ⊆ T.

Moreover, we say that (H) is normal on T if whenever xt ≡ 0 on T, then
ut ≡ 0 on T, i.e., system (H) is normal on T if whenever ut solves (2) with
s = b (not necessarily dense), then ut ≡ 0 on T.

The differentiation with respect to λ will be denoted by d
dλz = ż. We

require throughout that

(3)
d

dλ

{(
X
U

)∆

(λ)

}
=

{
d

dλ

(
X
U

)
(λ)

}∆

for every conjoined basis (X, U) of (H). This assumption is rather restrictive,
but it certainly holds for any time scale which has constant graininess, in
particular for T = R and T = Z.
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3. The eigenvalue problem

Let be given constant matrices R, R# ∈ R2n×2n such that rank(R# R) = 2n
and R#RT is symmetric. In this paper, the superscript # does not mean a
generalized inverse, but it is just an ordinary upper index. For λ ∈ R, we
consider the linear Hamiltonian system

(Hλ) x∆ = At(λ)xσ + Bt(λ)u, u∆ = Ct(λ)xσ −AT
t (λ)u, t ∈ Tκ,

subject to the (formally self-adjoint) boundary conditions

(4) R#

(
−xa

xb

)
+ R

(
ua

ub

)
= 0.

We employ the following general assumption
For all λ ∈ R, A(λ), B(λ), C(λ) ∈ Crd(T, Rn×n), B(λ), C(λ)are
symmetric, and I − µA(λ) is nonsingular on Tκ. For all t ∈ Tκ, At(·),
Bt(·) and Ct(·) are continuously differentiable with respect to λ.

We denote Ãt(λ) := [I − µtAt(λ)]−1.
First we derive the Lagrange identity for (H) on any time scale T.

Lemma 2 (Lagrange identity). For any z, w ∈ C1
rd(T, R2n), where z =

( x
u ) and w = ( y

v ), and with notation (1), we have∫ b

a

{
w̃TL[z]− LT [w]z̃

}
t
∆t = wT

t J zt

∣∣b
a
.

Proof. Let z = ( x
u ), w = ( y

v ), and z̃ = ( xσ

u ), w̃ = ( yσ

v ). For brevity, we
omit the argument t in the following computation. The integration by parts
in the third equality sign and the symmetry of Ht yield∫ b

a
w̃TL[z]∆t =

∫ b

a

{(
yσ

v

)T

J
(

x
u

)∆

+ w̃THz̃

}
∆t

=
∫ b

a

{
(yσ)T u∆ − vT x∆ + w̃THz̃

}
∆t

= yT u
∣∣b
a
− vT x

∣∣b
a

+
∫ b

a

{
−(y∆)T u + (v∆)T xσ + w̃THz̃

}
∆t

=
(

yb

vb

)T

J
(

xb

ub

)
−

(
ya

va

)T

J
(

xa

ua

)
+

∫ b

a

{(
y∆

v∆

)T

J T

(
xσ

u

)
+ w̃THz̃

}
∆t

= wTJ z
∣∣b
a

+
∫ b

a

{
Jw∆ +Hw̃

}T
z̃ ∆t

= wTJ z
∣∣b
a

+
∫ b

a
LT [w]z̃ ∆t.
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Therefore, the required identity follows. �

The boundary conditions (4) are called formally self-adjoint if wT
t J zt

∣∣b
a

=
0 for all z, w ∈ C1

rd(T, R2n) satisfying the given boundary conditions, i.e.,
z = ( x

u ) and w = ( y
v ) satisfy (4) and

R#

(
−ya

yb

)
+ R

(
va

vb

)
= 0,

respectively. Let us now remark that, in view of the next result, the symme-
try of R#RT is a natural assumption when considering formally self-adjoint
eigenvalue problems with the system (H).

Lemma 3 (Formally self-adjoint boundary conditions). Let R# and R
be real 2n × 2n-matrices such that rank(R# R) = 2n. Then the boundary
conditions (4) are formally self-adjoint iff R#RT is symmetric.

Proof. The proof is the same as the proof of [13, Proposition 2.1.1]. �

Remark 1. By [13, Remark 2.2.1], there exist matrices S, S# ∈ R2n×2n,
such that S is symmetric, rank(S# R) = 2n, Im(S#)T = Ker R, and R# =
RS + S#.

Definition 1 (Eigenvalue problem). The eigenvalue problem

(E) (Hλ), λ ∈ R, (4),

consists of the linear Hamiltonian dynamic system (Hλ) and the boundary
conditions (4). A number λ ∈ R is called an eigenvalue of (E) if there exists
a nontrivial solution (x, u) of (Hλ) satisfying (4). Such a solution is then
called an eigenfunction corresponding to the eigenvalue λ. The set of all
eigenfunctions corresponding to λ together with the zero function is called
an eigenspace, and its dimension is referred to as the multiplicity of the
eigenvalue λ.

Theorem 1 (Characterization of eigenvalues). Let λ ∈ R and let (X, U),
(X̃, Ũ) be any normalized conjoined bases of (Hλ). Then λ is an eigenvalue
of (E) iff the matrix Λ ∈ R2n×2n defined by

Λ := R#

(
−Xa −X̃a

Xb X̃b

)
+ R

(
Ua Ũa

Ub Ũb

)
is singular, and then def Λ is the multiplicity of the eigenvalue λ.

Proof. Let (x, u) be a nontrivial solution of (Hλ). We put

d :=
(

Xa X̃a

Ua Ũa

)−1 (
xa

ua

)
=

(
ŨT

a −X̃T
a

−UT
a XT

a

) (
xa

ua

)
6= 0,
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and thus ( xt
ut ) =

(
Xt X̃t

Ut Ũt

)
d on T. Hence,

R#

(
−xa

xb

)
+ R

(
ua

ub

)
= R#

(
−Xa −X̃a

Xb X̃b

)
d + R

(
Ua Ũa

Ub Ũb

)
d = Λd.

Thus, (x, u) satisfies the boundary conditions (4) iff Λd = 0, i.e., λ is an
eigenvalue of (E) iff Λ is singular. �

Corollary 1 (Separated boundary conditions). Assume that separated
boundary conditions are given, i.e.,

R =
(

Ra 0
0 Rb

)
, R# =

(
−R#

a 0
0 R#

b

)
,

where the n×n-matrices Ra, Rb, R
#
a , R#

b satisfy rank(R#
a Ra) = rank(R#

b Rb)
= n, Ra(R#

a )T = R#
a RT

a , and Rb(R
#

b )T = R#

b RT
b . Let (X, U) be the con-

joined basis of (Hλ), λ ∈ R, with Xa = −RT
a , Ua = (R#

a )T . Then λ is an
eigenvalue of (E) iff the matrix Ω ∈ Rn×n given by

Ω := R#

b Xb + RbUb

is singular.

Proof. Let λ ∈ R. For (X, U) there exists a conjoined basis (X̃, Ũ) of
(Hλ) such that they are normalized, by Lemma 1. Then, Theorem 1 implies
that λ is an eigenvalue of (E) iff Λ is singular. Since

Λ = R#

(
−Xa −X̃a

Xb X̃b

)
+ R

(
Ua Ũa

Ub Ũb

)
=

(
0 −I

Ω R#

b X̃b + RbŨb

)
,

we have Λ ( c1
c2 ) = 0 iff c2 = 0 and Ωc1 + (R#

b X̃b + RbŨb)c2 = 0, i.e., iff
Ωc1 = 0. Hence, Λ is singular iff Ω is singular. �

Definition 2 (Strict dense-normality). The set of systems (HR):= {(Hλ),
λ ∈ R}, is called strictly dense-normal on T if

(i) (Hλ) satisfies (D) for all λ ∈ R.
(ii) For all λ ∈ R, for any s ∈ T \ {a}, for any solution (x, u) of (Hλ), if

Ḣt(λ)
(

xσ
t

ut

)
= 0 for all t ∈ [a, s]κ,

then xt = ut ≡ 0 on T.



An eigenvalue problem for linear . . . 41

Remark 2. We are particularly interested in the case when At(λ) ≡ At

and Bt(λ) ≡ Bt are independent of λ and C depends on λ linearly, i.e., it is
of the form Ct−λC̃t. In this remark we discuss some features of this special
case.

(i) First, we note that

(ii) implies (i) in Definition 2.

To show this, let λ ∈ R and take any solution (x, u) of (Hλ) such that xt = 0
on [a, s], where s ∈ T is a dense point. We have

Ḣt(λ)
(

xσ
t

ut

)
=

(
−Ċt(λ) 0

0 0

) (
xσ

t

ut

)
= −Ċt(λ)xσ

t = C̃tx
σ
t = 0

on [a, s]κ, hence (ii) implies xt = ut ≡ 0 on T, so that (Hλ) is dense-normal
on [a, s].

(ii) Next, we show that

eigenvectors corresponding to different eigenvalues are orthogonal.

More precisely, let R,S#, S, S̃ ∈ R2n×2n be such that S, S̃ are symmetric,
rank(S# R) = 2n, Im(S#)T = KerR, and put

S(λ) := S − λS̃, R#(λ) := RS(λ) + S#.

Consider the eigenvalue problem

(Ẽ)


x∆ = Atx

σ + Btu, u∆ = (Ct − λC̃t)xσ −AT
t u, t ∈ Tκ,

λ ∈ R, R#(λ)
(
−xa

xb

)
+ R

(
ua

ub

)
= 0.

If (x, u) and (y, v) are eigenfunctions of (Ẽ) belonging to eigenvalues λ and
ν, respectively, λ 6= ν, then x ⊥ y with respect to C̃ and S̃, i.e.,

〈x, y〉 :=
∫ b

a
(xσ

t )T C̃ty
σ
t ∆t +

(
−xa

xb

)T

S̃

(
−ya

yb

)
= 0.

To show this, we follow the proof of [13, Proposition 2.2.2]. Since (x, u)
solves (Hλ) and (y, v) solves (Hν), integration by parts implies∫ b

a

{
(xσ)T (C − λC̃)yσ + uT Bv

}
t
∆t = uT

t yt

∣∣b
a
,(5) ∫ b

a

{
(yσ)T (C − νC̃)xσ + vT Bu

}
t
∆t = vT

t xt

∣∣b
a
.(6)
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By substracting (6) from (5) we obtain

(7) (ν − λ)
∫ b

a

{
(xσ)T C̃yσ

}
t
∆t = yT

t ut

∣∣b
a
− xT

t vt

∣∣b
a
.

Observe that S#RT = 0 and R#(λ) + λRS̃ = RS + S#. Moreover, from
[13, Proposition 2.1.2] it follows that (x, u) and (y, v) satisfy the boundary
conditions in (Ẽ) iff(
−xa

xb

)
= −RT c,

(
ua

ub

)
= {R#(λ)}T c,

(
−ya

yb

)
= −RT d,

(
va

vb

)
= {R#(ν)}T d,

for some c, d ∈ R2n. Thus, from (7) we have

(ν − λ) 〈x, y〉 = (ν − λ)
∫ b

a
(xσ

t )T C̃ty
σ
t ∆t +

(
−xa

xb

)T

(ν − λ)S̃
(
−ya

yb

)
= yT

t ut

∣∣b
a
− xT

t vt

∣∣b
a

+
(
−xa

xb

)T

(ν − λ)S̃
(
−ya

yb

)
=

(
−ya

yb

)T (
ua

ub

)
−

(
−xa

xb

)T (
va

vb

)
+

(
−xa

xb

)T

(ν − λ)S̃
(
−ya

yb

)
= −dT R{R#(λ)}T c + cT R{R#(ν)}T d + (ν − λ) cT RS̃RT d

= −dT R(RS + S#)T c + cT R(RS + S#)T d = 0.

Hence, x ⊥ y and the proof is complete.
(iii) If the system is strictly dense-normal and if S̃ and C̃t are all positive

semidefinite (which is satisfied in the present setting – note that throughout
this paper, with the exception of this remark, we assume S̃ = 0 – subject to
conditions (V1) and (V2) given after this remark), then

all eigenvalues are real.

To see this, let (x, u) be an eigenfunction corresponding to an eigenvalue λ.
Then (x̄, ū) is an eigenfunction corresponding to the eigenvalue λ̄, and we
may use the calculation from the second part of this remark to obtain

0 = (λ− λ̄)〈x̄, x〉

= (λ− λ̄)

{∫ b

a

{
(x̄σ)T C̃xσ

}
t
∆t +

(
−x̄a

x̄b

)T

S̃

(
−xa

xb

)}
.

Clearly, 〈x̄, x〉 6= 0, since otherwise the positive semidefiniteness of S̃ and C̃t

implies

S̃

(
−xa

xb

)
= 0 and C̃xσ = 0 on [a, b]κ
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and hence x = u ≡ 0 by strict dense-normality, which is impossible. There-
fore, λ− λ̄ = 0 and our claim λ ∈ R follows.

Let us continue with the investigation of the general eigenvalue problem
(E). Given the eigenvalue problem (E), we define the quadratic functional

F(x, u;λ) :=
∫ b

a

{
(xσ)T C(λ)xσ + uT B(λ)u

}
t
∆t +

(
−xa

xb

)T

S

(
−xa

xb

)
,

where the matrix S is determined by Remark . We consider the following
assumptions:
(V1) (HR) is strictly dense-normal on T.
(V2) λ1 ≤ λ2 always implies Ht(λ1) ≤ Ht(λ2) for all t ∈ Tκ.
(V3) There exists λ ∈ R such that F(·;λ) > 0 and λ ≤ λ always imply for

all t ∈ Tκ

Ker B(λ) ⊆ Ker B(λ) and B(λ)
{

B†(λ)−B†(λ)
}

B(λ) ≥ 0.

(V4) (Hλ) is normal on T for all λ ∈ R.
Now the main result of this paper reads as follows.

Theorem 2. Assume (V1)–(V4). Then, if there exist eigenvalues of (E),
they may be arranged by

−∞ < λ1 ≤ λ2 ≤ λ3 ≤ . . . ,

counting multiplicities. More precisely,
(i) (V1) and (V2) imply that the eigenvalues are isolated.
(ii) (V2)–(V4) imply that the eigenvalues are bounded below by λ, provided
(Hλ) satisfies (D) for all λ ∈ R.

Proof. Part (i) – isolatedness. Let (X(λ), U(λ)), (X̃(λ), Ũ(λ)) be the
special normalized conjoined bases of (Hλ) at a for each λ ∈ R. Fix λ0 ∈ R.
Then by Lemma 6 there exists ε > 0 such that Xb(λ) is invertible and(

I 0
Ub(λ) Ũb(λ)

) (
0 I

Xb(λ) X̃b(λ)

)−1

is strictly decreasing for all λ ∈ U(λ0, ε), where U(λ0, ε) := [λ0 − ε, λ0 + ε] \
{λ0} is the closed ε-interval around λ0 without λ0. It follows from the Index
Theorem (Proposition in the next section) that the singular points of

Λ(λ) = R#

(
0 I

Xb(λ) X̃b(λ)

)
+ R

(
I 0

Ub(λ) Ũb(λ)

)
= R#

(
−Xa(λ) −X̃a(λ)
Xb(λ) X̃b(λ)

)
+ R

(
Ua(λ) Ũa(λ)
Ub(λ) Ũb(λ)

)
,
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i.e., the eigenvalues of (E) by Theorem 1, are isolated. Furthermore, the
multiplicity of an eigenvalue λ0 is

def Λ(λ0) = indM(λ+
0 )− ind M(λ−0 ),

since X#

b =
(

0 I
Xb(λ0) X̃b(λ0)

)
is invertible (the matrix M(λ) is defined in

Proposition ). Hence, part (i) is proved.
Part (ii) – lower boundedness. Assume that (Hλ) satisfies (D) for all

λ ∈ R, and that (V2)–(V4) hold. For λ ∈ R define

M(λ) := R
{
S + Q#

b (λ)
}

RT ,

Q#

b (λ) :=
(

I 0
Ub(λ) Ũb(λ)

) (
0 I

Xb(λ) X̃b(λ)

)−1

.

We pick λ0 ≤ λ. Then F(·;λ0) > 0 by the Comparison Theorem (Theorem 3
in the next section). Since (Hλ0) is normal on T, Proposition implies that
Xb(λ0) and hence X#

b =
(

0 I
Xb(λ0) X̃b(λ0)

)
are invertible, and M(λ0) > 0 on

Im R. It follows that X#

b (λ) is invertible on some open interval J around
λ0. Moreover, the matrix Q#

b (λ) defined above is strictly decreasing on J ,
by Lemma 5, and indM(λ+

0 ) = 0 = ind M(λ−0 ). Now, we may apply the
Index Theorem (Proposition ) to obtain

def Λ(λ0) = indM(λ+
0 )− ind M(λ−0 ) + defX#

b = 0,

i.e., Λ(λ0) is invertible. This means in view of Theorem 1 that λ0 is not an
eigenvalue of (E). Therefore, if there exists an eigenvalue at all, there is the
smallest one λ1 and satisfies λ1 > λ. The proof is complete. �

4. Auxiliary results

In this section we collect auxiliary results needed in our work. Recall that
U(λ0, ε) is the closed ε-interval around λ0 (the center is removed).

Proposition 1 [Index Theorem [13, Theorem 3.4.1, Corollary 3.4.4]]. Let
m ∈ N and let there be given matrices R,R#, X, U ∈ Rm×m with rank(R# R) =
rank

(
X
U

)
= m and R(R#)T = R#RT , XT U = UT X. Let X(λ), U(λ) ∈

Rm×m be matrices such that XT (λ)U(λ) are symmetric for all λ ∈ U(λ0, ε),
for some ε > 0, X(λ) → X, U(λ) → U as λ → λ0, and X(λ) is invertible
for λ ∈ U(λ0, ε). Suppose that U(λ)X−1(λ) decreases strictly on [λ0− ε, λ0)
and on (λ0, λ0 + ε], and denote

M(λ) := R#RT + RU(λ)X−1(λ)RT ,

Λ(λ) := R#X(λ) + RU(λ), Λ := R#X + RU.
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Then

ind M(λ−0 ) := lim
λ→λ−0

ind M(λ), ind M(λ+
0 ) := lim

λ→λ+
0

ind M(λ)

both exist, Λ(λ) is invertible for all λ ∈ U(λ0, δ) for some δ ∈ (0, ε), and

def Λ = ind M(λ+
0 )− ind M(λ−0 ) + defX.

Proposition 2 [Jacobi Condition [10, 11]] Suppose (D) holds. Let (X, U),
(X̃, Ũ) be the special normalized conjoined bases of (H) at a. Then F > 0
iff (X, U) has no focal points in (a, b] and S + Q#

b > 0 on Im RT ∩ Im X#

b ,
where X# :=

(
0 I
X X̃

)
and Q# is a certain 2n × 2n-matrix built up from

(X, U), (X̃, Ũ). Moreover, if (H) is normal on T, then F > 0 implies Xb

(and hence X#

b ) is invertible.

Lemma 4. Suppose that (X(λ), U(λ)) is a conjoined basis of (Hλ) for
all λ ∈ R with Ẋa(λ) = 0 = U̇a, i.e., Xa and Ua are independent of λ. Then

XT
t (λ)U̇t(λ)− UT

t (λ)Ẋt(λ) = −
∫ t

a

(
Xσ

τ (λ)
Uτ (λ)

)T

Ḣτ (λ)
(

Xσ
τ (λ)

Uτ (λ)

)
∆τ

holds for all t ∈ T and for all λ ∈ R.

Proof. In the computation below we skip the evaluation at t ∈ T.
Compare [5, Lemma 4]. We have{
XT (ν) [U(λ)− U(ν)]− UT (ν)[X(λ)−X(ν)]

}∆

=

{(
X(ν)
U(ν)

)T (
U(λ)
−X(λ)

)}∆

=
(
−U(ν)
X(ν)

)∆T (
Xσ(λ)
U(λ)

)
−

(
Xσ(ν)
U(ν)

)T (
−U(λ)
X(λ)

)∆

=
(

Xσ(ν)
U(ν)

)T

{H(ν)−H(λ)}
(

Xσ(λ)
U(λ)

)
.

Now, dividing by λ− ν and letting ν → λ (observe that (3) is used) yields{
XT (λ)U̇(λ)− UT (λ)Ẋ(λ)

}∆
= −

(
Xσ(λ)
U(λ)

)T

Ḣ(λ)
(

Xσ(λ)
U(λ)

)
.

Integrating from a to t we get

−
∫ t

a

(
Xσ

τ (λ)
Uτ (λ)

)T

Ḣτ (λ)
(

Xσ
τ (λ)

Uτ (λ)

)
∆τ = XT

τ (λ)U̇τ (λ)− UT
τ (λ)Ẋτ (λ)

∣∣∣t
a
,

and Ẋa(λ) = 0 = U̇a yields the result. �
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Lemma 5. Suppose that (X(λ), U(λ)), (X̃(λ), Ũ(λ)) are normalized con-
joined bases of (Hλ) for each λ ∈ R with Ẋa(λ) = U̇a(λ) = 0 = ˙̃Xa(λ) =
˙̃Ua(λ). Let t ∈ T, t > a. Assume that Xt(λ) is invertible for λ in some open
interval J . For λ ∈ J put

Qt(λ) :=
(

I 0
Ut(λ) Ũt(λ)

) (
0 I

Xt(λ) X̃t(λ)

)−1

.

Then (V2) implies that Qt(λ) decreases on J . Moreover, (V1) and (V2)
imply Qt(λ) that decreases strictly on J .

Proof. The proof is similar to the proof of [5, Lemma 5], so we sketch it
only. Let t ∈ T, t > a, and λ ∈ J . We apply Lemma 4 to

X#

t (λ) :=
(

0 I

Xt(λ) X̃t(λ)

)
, U#

t (λ) :=
(

I 0
Ut(λ) Ũt(λ)

)
.

Then for d ∈ R2n×2n it follows that

dT Q̇t(λ)d = −
∫ t

a

(
xσ

τ

uτ

)T

Ḣτ

(
xσ

τ

uτ

)
≤ 0,

where (
x
u

)
:=

(
X(λ) X̃(λ)
U(λ) Ũ(λ)

)
(X#)−1(λ)d,

and where we used (V2), i.e., Ḣ(λ) ≥ 0. Suppose that (V1) and (V2)
hold with dT Q̇t(λ)d = 0. Then Ḣτ (λ)

(
xσ

τ
uτ

)
= 0 for all τ ∈ [a, t]κ. Strict

dense-normality implies xt = ut ≡ 0 on T, i.e., d = 0. Thus, Q̇t < 0
follows. �

Lemma 6. Let (X(λ), U(λ)), (X̃(λ), Ũ(λ)) be the special normalized
conjoined bases of (Hλ) at a for each λ ∈ R. Assumptions (V1) and (V2)
imply that for all λ0 ∈ R there exists ε > 0 such that Xb(λ) is invertible and
Qb(λ) defined by

(8) Qb(λ) :=
(

I 0
Ub(λ) Ũb(λ)

) (
0 I

Xb(λ) X̃b(λ)

)−1

is strictly decreasing for all λ ∈ U(λ0, ε).

Proof. Fix λ0 ∈ R and let (X̂, Û) be the conjoined basis of (Hλ0) such
that (X(λ0), U(λ0)) and (X̂, Û) are normalized and X̂b is invertible, see
Lemma 1. Let (X̂(λ), Û(λ)) be the conjoined basis of (Hλ) with X̂a(λ) =
X̂a, Ûa(λ) = Ûa, λ ∈ R. Due to continuity, X̂(λ) is invertible on some
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open interval around λ0 and on that interval we have, by Lemma 5 with
(−X̂(λ),−Û(λ)) and (X(λ), U(λ)), that the matrix(

I 0
−Ûb(λ) Ub(λ)

) (
0 I

−X̂b(λ) Xb(λ)

)−1

=
(

X̂−1
b (λ)Xb(λ) −X̂−1

b (λ)
−X̂T−1

b (λ) Ûb(λ)X̂−1
b (λ)

)
is strictly decreasing. Consequently, X̂−1

b (λ)Xb(λ) is strictly decreasing as
well. It follows that Xb(λ) is invertible on U(λ0, ε) for some ε > 0. Applying
Lemma 5 again, the strict monotonicity of the matrix Qb(λ) in (8) follows. �

Lemma 7. Let m ∈ N and let be given real m ×m-matrices A, A, B,
B, C , C such that the Hamiltonian matrices

H :=
(
−C AT

A B

)
, H :=

(
−C AT

A B

)
are symmetric. Suppose that

H ≥ H, Ker B ⊆ Ker B, B(B† −B†)B ≥ 0

hold. Then
xT Cx + uT Bu ≥ xT Cx + uT Bu

for all x, u, x, u ∈ Rm with Bu − Bu = (A − A)x. Moreover, there exists a
matrix E ∈ Rm×m such that

A−A = (B −B)E and ET (B −B)E ≤ C − C.

Proof. The proof is similar to the discrete case [5, Lemma 7], compare
also the continuous case [13, Lemma 3.1.10]. �

Remark 3. Observe that Ker B ⊆ Ker B from the above lemma is
equivalent to B = BB†B = BB†B, see [3, Lemma A5, pg. 94] or [4, Re-
mark 2(iii)].

Theorem 3 (Comparison Theorem). Suppose that (V2) and (V3) hold.
Then F(·;λ) > 0 for all λ ≤ λ.

Proof. Suppose F(·;λ) > 0 and let λ ≤ λ. From (V2) and (V3) we have

Bt(λ) ≥ Bt(λ), Ker Bt(λ) ⊆ Ker Bt(λ), Bt(λ)
{

B†
t (λ)−B†

t (λ)
}

Bt(λ) ≥ 0.

Let (x, u) be admissible for F(·;λ), i.e., x∆
t = At(λ)xσ

t + Bt(λ)ut, t ∈ Tκ,
with

(−xa
xb

)
∈ Im RT , and x 6≡ 0. For t ∈ Tκ we define

ut := B†
t (λ)Bt(λ)ut −

{
I −B†

t (λ)Bt(λ)
}

Etx
σ
t ,
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where E : Tκ → Rn×n is such that At(λ)− At(λ) = {Bt(λ)− Bt(λ)}Et, by
Lemma 7. Note also that Bt(λ)B†

t (λ)Bt(λ) = Bt(λ) by Remark . Then (all
functions evaluated at t)

B(λ)u−B(λ)u = B(λ)u−B(λ)B†(λ)B(λ)u

+
{

B(λ)−B(λ)B†(λ)B(λ)
}

Exσ

= {B(λ)−B(λ)}Exσ = {A(λ)−A(λ)}xσ,

so that
A(λ)xσ + B(λ)u = A(λ)xσ + B(λ)u = x∆,

i.e., (x, u) is admissible for F(·;λ). Applying Lemma 7 again we get

0 < F(x, u;λ) =
∫ b

a

{
(xσ)T C(λ)xσ + uT B(λ)u

}
t
∆t

+
(
−xa

xb

)T

S

(
−xa

xb

)
≤

∫ b

a

{
(xσ)T C(λ)xσ + uT B(λ)u

}
t
∆t

+
(
−xa

xb

)T

S

(
−xa

xb

)
= F(x, u;λ).

Hence, F(·;λ) > 0 as well. �
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