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GLOBAL ATTRACTIVITY IN A

NON-AUTONOMOUS LOGISTIC TYPE

MODEL WITH UNBOUNDED DELAY

Abstract: Consider the non-autonomous logistic model

∆xn = pnxn
1− xn−kn

1− λxn−kn

, n = 0, 1, 2, · · ·,

where {pn} is a sequence of positive real numbers, {kn} a sequence
of nonnegative integers satisfying limn→∞(n−kn) = ∞, λ ∈ [0, 1).
We obtain new sufficient conditions for the attractivity of equi-
librium x = 1 of the model, which improve and generalize some
recent results established by Chen and Yu [4], Zhou and Zhang
[6].
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1. Introduction

The asymptotic behavior of solutions of difference equations with unbounded
delay was studied in [1, 5, 6, 9, 10, 11]. In this paper, we consider the non-
autonomous logistic model

(1) ∆xn = pnxn
1− xn−kn

1− λxn−kn

, n = 0, 1, 2, · · ·,

where {pn} is a sequence of positive real numbers, {kn} a sequence of nonne-
gative integers satisfying limn→∞(n−kn) = ∞, λ ∈ [0, 1), ∆xn = xn+1−xn.
Eq.(1) contains the special case

(2) ∆xn = pnxn(1− xn−kn), n = 0, 1, 2, · · ·,
Let r = −min{n − kn, n ≥ 0} be a nonnegative integer, σ0 = max{n :
n − kn < 0} + 1, σ = max{n : n − kn < σ0} + 1. By a solution of Eq.(1)
we mean a sequence {xn} which is defined for n ≥ −r, and satisfies (1) for
n ≥ 0. The initial condition of Eq.(1) is

(3) xi = ai, i = −r,−r + 1, · · ·, 0,
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with ai ∈ (0, 1/λ), for i = −r,−r + 1, · · ·, 0. The global attractivity of
equilibrium x = 1 of Eq.(2) has been well studied by [5, 6]. In most results
of these papers, it is supposed that the solution {xn} satisfies 0 < xn < 1/λ,
but we find that this does not always succeed. One may see the examples
in paper [10].

Two problems appear naturally, one is under what conditions every so-
lution satisfies 0 < xn < 1/λ. The other is under what conditions every
solution satisfying 0 < xn < 1/λ converges to 1. To answer these problems,
in a recent paper [10], the authors studied the global attractivity of Eq(1),
following result was proved:

Theorem LG1. Suppose that there are β > 0 and θ > 1 such that

n∑

j=n−kn

pj ≤ α, n = σ0, σ0 + 1, · · ·; pn ≤ β, n = 0, 1, 2, · · · , σ,

θα + 1
θα + λ

(1 + β)σ <
1 + α

λ + α
.

where α is real root of the transcendental equation

eα

(
1− λ

1− λe−α

) 1−λ
λ

=
α + 1
α + λ

, λ ∈ (0, 1);

or
eα−1+e−α

= 1 +
1
α

, λ = 0.

Furthermore, the initial condition satisfies

0 < xi <
θα + 1
θα + λ

, i = −r,−r + 1, · · ·,−1, 0.

Then every solution of Eq.(1) with initial condition (9) satisfies

0 < xn ≤ α + 1
α + λ

, n = 1, 2, · · ·.

Theorem LG2. Suppose that λ ∈ (0, 1) and there is a constant δ > 0
such that for sufficiently large n

n∑

s=n−kn

ps ≤ δ(1− λ),

holds and
+∞∑

n=1

pn = +∞
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(4) 1− δ(δ − 1
2
)e(δ− 1

2
)(1−λ) ≥ 0

are valid. Then every solution that satisfies 0 < xn < 1/λ tends to 1 as
n → +∞.

The purpose of this paper is to present a different answer to above pro-
blems. In section 2, we answer the first problem, and in section 3, the second
problem is settled.

By the way, Eq.(1) is the discrete type of the following equation

(5) N ′(t) = r(t)N(t)
1−N(t− τ)
1− λN(t− τ)

,

which was studied by many authors, see [2 − 4] and the references cited
therein.

2. Every solution satisfies 0 < xn < 1/λ

Theorem 1. Suppose that there are β > 0 and θ > 1 such that

n∑

j=n−kn

pj ≤ α, n = σ0, σ0 + 1, · · ·; pn ≤ β, n = 0, 1, 2, · · · , σ;(6)

θα + 1
θα + λ

(1 + β)σ <
1 + α

λ + α
.

where α is real root of the transcendental equation

(7) eα =
α + 1
α + λ

, λ ∈ (0, 1);

Furthermore, suppose that the initial condition satisfies

(8) 0 < xi <
θα + 1
θα + λ

, i = −r,−r + 1, · · ·,−1, 0.

Then every solution of Eq.(1) with initial condition (8) satisfies

(9) 0 < xn ≤ α + 1
α + λ

, n = 1, 2, · · ·.

Proof. By (1), we get

xn+1 = xn(1 + pn
1− xn−kn

1− λxn−kn

).
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Since 0 < x−r, x−r+1, · · · , x0 < θα+1
θα+λ < α+1

α+λ , by (6), (7), we find

x1 = x0(1+ p0
1− x−k0

1− λx−k0

) > x0(1+ p0

1− α+1
α+λ

1− λα+1
α+λ

) ≥ x0(1+α
1− α+1

α+λ

1− λα+1
α+λ

) = 0.

x1 = x0(1 + p0
1− x−k0

1− λx−k0

) ≤ θα + 1
θα + λ

(1 + β) <
α + 1
α + λ

.

Similarly, one obtains

x2 = x1(1+p1
1− x1−k1

1− λx1−k1

) > x1(1+p1

1− α+1
α+λ

1− λα+1
α+λ

) ≥ x1(1+α
1− α+1

α+λ

1− λα+1
α+λ

) = 0.

x2 = x1(1 + p1
1− x1−k1

1− λx1−k1

) ≤ θα + 1
θα + λ

(1 + β)2 <
α + 1
α + λ

.

· · · · · ·
Finally, we get

xσ = xσ−1(1 + pσ−1
1− xσ−1−kσ−1

1− λxσ−1−kσ−1

) > xσ−1(1 + pσ−1

1− α+1
α+λ

1− λα+1
α+λ

)

≥ xσ−1(1 + α
1− α+1

α+λ

1− λα+1
α+λ

) = 0.

xσ = xσ−1(1 + pσ−1
1− xσ−1−kσ−1

1− λxσ−1−kσ−1

) ≤ θα + 1
θα + λ

(1 + β)σ <
α + 1
α + λ

.

Now, it suffices to prove the following results: if n0 ≥ σ, and

(10) 0 < xn ≤ α + 1
α + λ

, 0 ≤ n ≤ n0,

then

(11) 0 < xn0+1 <
α + 1
α + λ

.

By (6), (10), and λ ∈ [0, 1), since the function f(x) = (x − 1)/(1 − λx) is
increasing on (0, 1/λ), then

pn0

xn0−kn0
− 1

1− λxn0−kn0

< α
α+1
α+λ − 1

1− λα+1
α+λ

= 1,

(1) implies
xn0+1 > 0.
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Next, we prove that

(12) xn0+1 <
α + 1
α + λ

.

If xn0+1 < α+1
α+λ , then (12) is obvious. If xn0+1 ≥ α+1

α+λ , let p(t) = pn for
t ∈ [n, n + 1), n = 0, 1, 2, · · ·, n0, and

(13) x(t) =
{

xn, t = n,
xn(xn+1

xn
)t−n, n ≤ t < n + 1,

then x(t) is positive continuous function on internal [0, n0 + 1] and x(n) =
xn, n ≥ 0, x(t) is monotone on [n, n+1). Let [.] denote the maximum integer
function, x′(t) stands for the left derivative of function x(t), then

(14) x′(t) = x(t) ln{1 + p(t)
1− x([t− k[t]])
1− λx([t− k[t]])

}, 0 ≤ t ≤ n0 + 1.

Since x([t − k[t]]) > 0, 0 ≤ t ≤ n0 + 1, by (1− x)/(1 − λx) ≤ 1, 1
λ > x ≥ 0,

we have

(15) x′(t) ≤ x(t) ln(1 + p(t)) ≤ p(t)x(t), 0 ≤ t < n0 + 1, a.e.

Again by ∆xn0 = xn0+1−xn0 > 0 and (1), we have xn0−kn0
< 1. Then there

exists ξ ∈ [n0−kn0 , n0+1) such that x(ξ) = 1 and x(t) > 1 for t ∈ (ξ, n0+1].
It follows that

(16) lnx(n0 + 1) <

∫ n0+1

ξ
p(t)dt.

Since
∫ n0+1
ξ p(t)dt ≤

n0∑
j=n0−kn0

pj ≤ α, we get

ln x(n0 + 1) < α,

and

(17) xn0+1 = x(n0 + 1) < eα =
α + 1
α + λ

,

which contradicts the assumption xn0+1 ≥ α+1
α+λ . This completes the proof.

By a similar method, we can get the theorem in the case λ = 0. ¥

Remark 1. Since 1 < θα+1
θα+λ < α+1

α+λ < 1
λ , theorem 1 gives the sufficient

conditions which guarantee 0 < xn < 1
λ for each solution {xn} of Eq.(1).
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3. Global attractivity

In this section, we give the sufficient condition that guarantees every solution
satisfying 0 < xn < 1

λ to converge to 1 as n →∞.

Theorem 2. Suppose that λ ∈ [0, 1) and there is a constant δ > 0 such
that δ(1− 2λ) + λ > 0 and for sufficiently large n

(18)
n∑

s=n−kn

ps ≤ δ(1− λ),

holds and

(19)
+∞∑

n=1

pn = +∞,

(20)
δ(1− 2λ) + 1
δ(1− 2λ) + λ

≥ e
δ2

2

are satisfied. Then every solution satisfying 0 < xn < 1/λ tends to 1 as
n → +∞.

In order to prove theorem 2, we need the following lemmas.

Lemma 1. Suppose (19) holds, {xn} is a solution of Eq.(1) that sat-
isfies 0 < xn < 1/λ. Furthermore, if {xn} is eventually greater than 1 or
eventually less than 1, then {xn} tends to 1 as n → +∞.

The proof is similar to that of the result in [5] and is omitted.

Lemma 2. Suppose that (18), (20) hold and {xn},0 < xn < 1/λ, is a
solution of (1) oscillating about 1. Then there are 0 < a < b < 1

λ such that
{xn} satisfies a < xn < b for every n.

Proof. Set ln xn = yn, for n ≥ 0, then {yn} is oscillatory. By (1), we
find

(21) ∆yn = ln(1 + pn
1− eyn−kn

1− λeyn−kn
), n = 0, 1, 2, · · ·.

Then

(22) ∆yn ≤ ln(1 + pn), n = 0, 1, 2, · · ·.

Now, let yni be any left maximum term of {yn} with ni > σ, yni > 0
and yni ≥ yni−1, by (21) one gets yni−1−kni−1 ≤ 0 and then there is n∗i ,
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ni − 1− kni−1 ≤ n∗i ≤ ni − 1 such that yn∗i ≤ 0, yn > 0 for n∗i + 1 ≤ n ≤ ni.
Choose a number ξi ∈ [0, 1) such that

(23) yn∗i + ξi(yn∗i +1 − yn∗i ) = 0.

By the inequality

(
m∏

i=1

aαi
i )

1
mP

i=1
αi ≤

m∑
i=1

αiai

m∑
i=1

αi

,

we get

−yj−kj = −yn∗i +
n∗i−1∑

s=j−kj

(ys+1 − ys)

= ξi(yn∗i +1 − yn∗i ) +
n∗i−1∑

s=j−kj

ln(1 + ps
1− eys−ks

1− λeys−ks
)

≤ ξi ln(1 +
pn∗i

1− λ
) +

n∗i−1∑

s=j−kj

ln(1 +
ps

1− λ
)

≤ (n∗i − j + kj + ξi) ln[1 +
1

1− λ

1
n∗i − j + kj + ξi

(ξipn∗i +
n∗i−1∑

s=j−kj

ps)].

Then

e
yj−kj ≥ [1 +

1
1− λ

1
n∗i − j + kj + ξi

(ξipn∗i +
n∗i−1∑

s=j−kj

ps)]−(n∗i−j+kj+ξi).

By (1 + x
n)−n ≥ 1− x, for n > 0, x ≥ 0, we have

(24) e
yj−kj ≥ 1− 1

1− λ
(ξipn∗i +

n∗i−1∑

s=j−kj

ps).

Thus by (23) and (24), we get

yni = yn∗i +1 +
ni−1∑

s=n∗i +1

(ys+1 − ys)

= (1− ξi)(yn∗i +1 − yn∗i ) +
ni−1∑

n=n∗i +1

ln(1 + pn
1− eyn−kn

1− λeyn−kn
)
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≤ (1− ξi) ln(1 +
pn∗i

1− λ
(1− e

yn∗
i
−kn∗

i )) +
ni−1∑

n=n∗i +1

ln(1 +
pn

1− λ
(1− eyn−kn ))

≤ (1− ξi) ln[1 +
pn∗i

(1− λ)2
(ξipn∗i +

n∗i−1∑

s=n∗i−kn∗
i

ps)]

+
ni−1∑

n=n∗i +1

ln[1 +
pn

(1− λ)2
(ξipn∗i +

n∗i−1∑

s=n−kn

ps)].

By condition (18), we have

yni ≤ (1− ξi) ln[1 +
pn∗i

(1− λ)2
(δ(1− λ)− (1− ξi)pn∗i )]

+
ni−1∑

n=n∗i +1

ln[1 +
pn

(1− λ)2
(δ(1− λ)−

n∑

s=n∗i +1

ps − (1− ξi)pn∗i )]

≤ (ni−n∗i −ξi) ln{1+
1

ni − n∗i − ξi)
1

(1− λ)2
[(1−ξi)pn∗i (δ(1−λ)−(1−ξi)pn∗i )

+
ni−1∑

n=n∗i +1

pn(δ(1− λ)−
n∑

s=n∗i +1

ps − (1− ξi)pn∗i )]}.

Suppose kn ≤ k, since ni − n∗i − ξi ≤ kni−1 + 1 ≤ k + 1, it results in

yni ≤ (k + 1) ln{1 +
1

k + 1
1

(1− λ)2
[(1− ξi)pn∗i (δ(1− λ)− (1− ξi)pn∗i )

+
ni−1∑

n=n∗i +1

pn(δ(1−λ)−
n∑

s=n∗i +1

ps− (1− ξi)pn∗i )]}.

Let di =
ni−1∑

n=n∗i +1

pn + (1− ξi)pn∗i . Then by the inequality

m∑

i=1

x2
s ≥

1
m

(
m∑

s=1

xs)2,

we get

yni ≤ (k + 1) ln{1 +
1

k + 1
δ

1− λ
di

− 1
k + 1

1
(1− λ)2

[(1− ξi)2p2
n∗i

+ (1− ξi)pn∗i

ni−1∑

n=n∗i−1

pn
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+
ni−1∑

n=n∗i +1

pn

ni−1∑

s=n∗i +1

ps]}

= (k + 1) ln{1 +
1

k + 1
δ

1− λ
di − 1

2(k + 1)
1

(1− λ)2
d2

i

− 1
2(k + 1)(1− λ)2

[
ni−1∑

n=n∗i +1

p2
n + (1− ξi)2p2

n∗i
]}

≤ (k + 1) ln{1 +
δ

(k + 1)(1− λ)
di − 1

2(k + 1)(1− λ)2
d2

i

− 1
2(k + 1)(1− λ)2

1
ni − n∗i

d2
i }

≤ (k + 1) ln{1 +
δ

(k + 1)(1− λ)
di − k + 2

2(k + 1)2(1− λ)2
d2

i }.

Since function δ
1−λx − k+2

2(k+1)(1−λ)2
x2 is increasing when x ≤ k+1

k+2δ(1 − λ),

the maximum point of function is x = k+1
k+2δ(1− λ), we get

(25) yni ≤ (k + 1) ln(1 +
δ2

2(k + 2)
).

It is easy to see that function x ln(1+ δ2

2(x+1)) is increasing on (0, +∞), hence

lim sup
n→∞

yn ≤ (k + 1) ln(1 +
δ2

2(k + 2)
) → δ2

2
, k →∞

it combines condition (20), we have

yni ≤ ln
δ(1− 2λ) + 1
δ(1− 2λ) + λ

− ln
1
λ

+ ln
1
λ

= ln
δ(1− 2λ)λ + λ

δ(1− 2λ) + λ
+ ln

1
λ

< ln
1
λ

.

So {xn} is bounded above away from 1
λ . Now we prove that {yn} is bounded

below. Suppose yn ≤ M < ln 1
λ , then from (21),

eyn+1−yn ≥ 1 + pn
1− eyn−kn

1− λeyn−kn
.

Let yn∗ = max{1, xn}. Suppose yni is a left minimum term of {yn}, then
from (1), yni−1−kni−1 > 0, we get

eyni ≥
ni−1∏

s=ni−1−kni−1

(1 + ps
1− eys−ks

1− λeys−ks
)
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≥ 1 +
ni−1∑

s=ys−ks

ps
1− ey(s−ks)∗

1− λey(s−ks)∗

≥ 1 + δ(1− λ)
1− eM

1− λeM
= a > 0.

This shows that {yn} is bounded below. The proof is complete. ¥

Proof of Theorem 2. By Lemma 1, it suffices to prove that every
solution of Eq.(1) satisfying 0 < xn < 1

λ converges to 1 as n tends to
infinity. By Lemma 2, {xn} is bounded above away from 1

λ and bounded
below away from zero. We prove now that lim

n→+∞ yn = 0. Let

(26) lim sup
n→+∞

yn = u, lim inf
n→+∞ yn = v.

Then
−∞ < v ≤ 0 ≤ u < ln

1
λ

,

and there are two subsequence of {yn}, denoted by {yni} and {ymi} such
that

yni > 0, yni ≥ yni−1, i = 1, 2, · · ·, lim
i→∞

ni = ∞, lim
i→∞

yni = u,

ymi < 0, ymi ≥ yni−1, i = 1, 2, · · ·, lim
i→∞

mi = ∞, lim
i→∞

ymi = v.

For any ε ∈ (0, ln 1
λ − u), there is N1 such that

(27) v1 = v − ε < yn−kn < u + ε = u1, n = N1, N1 + 1, · · ·,

Then by (21), we have

(28) ∆yn ≤ ln(1 + pn
1− ev1

1− λev1
),

(29) ∆yn ≥ ln(1 + pn
1− eu1

1− λeu1
).

Again from (21), (28), by the same method using in the proof of Lemma 2,
we obtain

(30) yni ≤ ln(1 +
δ2(1− λ)
2(k + 2)

1− ev1

1− λev1
)k+1,

Let
yn∗ = max{1, yn}.
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Again since ∆ymi−1 ≤ 0, by (21), ymi−1−kmi−1 ≥ 0, one sees

ymi = ymi−1−kmi−1 +
mi−1∑

s=mi−1−kmi−1

ln(1 + ps
1− eys−ks

1− λeys−ks
)

≥
mi−1∑

s=mi−1−kmi−1

ln(1 + ps
1− ey(s−ks)∗

1− λey(s−ks)∗
)

≥ ln(1 +
mi−1∑

s=mi−1−kmi−1

ps
1− ey(s−ks)∗

1− λey(s−ks)∗
)

≥ ln(1 + δ(1− λ)
1− eu1

1− λeu1
),

and hence

(31) eymi ≥ 1 + δ(1− λ)
1− eu1

1− λeu1
.

Let i → +∞, ε → 0, one has

(32) u ≤ ln(1 +
δ2(1− λ)
2(k + 2)

1− ev

1− λev
)k+1,

(33) ev ≥ 1 + δ(1− λ)
1− eu

1− λeu
.

If u 6= 0, then u > 0. By (32), (33), we get

(34) u ≤ ln(1 +
δ3(1− λ)
2(k + 2)

eu − 1
1− δλ− δ(1− δ)eu

)k+1.

From (32),

(35) u < ln(1 +
δ2

2(k + 2)
)k+1 = u0.

Let

(36) f(u) = u− ln(1 +
δ3(1− λ)
2(k + 2)

eu − 1
1− δλ− λ(1− δ)eu

)k+1.

Clearly,
f(0) = 0, f ′′(u) ≤ 0,
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f(u) has at most two zero points in [0,+∞) and

f(u0) = ln(1 +
δ2

2(k + 2)
)k+1 − ln(1 +

δ3(1− λ)
2(k + 2)

eu0 − 1
1− δλ− λ(1− δ)eu0

)k+1.

By (35), u0 ≤ δ2

2 , hence eu0 ≤ e
δ2

2 , using (20), we get

eu0 ≤ δ(1− 2λ) + 1
δ(1− 2λ) + λ

.

So

(37)
δ(1− λ)(eu0 − 1)

1− δλ− λ(1− δ)eu0
≤ 1.

Thus f(u0) ≥ 0, we see f(u) > 0 for u ∈ (0, u0), this contradicts (34), then
u = 0 and v = 0, which implies lim

n→+∞ yn = 0, this completes the proof. ¥

Corollary 1. Suppose that (19) holds and there is an integer n0 such
that for sufficiently large n

(38)
n∑

s=n−kn

ps ≤ 1− λ, n = n0, n0 + 1, · · ·

is valid. Then every solution of Eq.(1) satisfying 0 < xn < 1
λ tends to 1 as

n tends to infinity.

Corollary 2. Suppose that (19) holds and there is an integer δ > 0 such
that for sufficiently large n

(39)
n∑

s=n−kn

ps ≤ δ

is valid, and

(40) (1 +
δ2

2(k + 2)
)k+1 ≤ 1 +

1
δ
.

Then every positive solution of Eq.(2) tends to 1 as n tends to infinity.

The proofs of corollary 3 and 4 come directly from Theorem 2.

Theorem 3. Assume that (19) holds and kn ≤ k for all n = 0, 1, · · · ,
furthermore, for sufficiently large n

(41)
n∑

s=n−kn

ps ≤ δ(1− λ)
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is valid, and

(42) 1− δ(δ − k + 2
2(k + 2)

)eδ− k+2
2(k+1) ≥ 0,

then every solution of Eq.(1) satisfying 0 < xn < 1
λ tends to 1 as n tends to

infinity.

Proof. Since

1− ex

1− λex
≤ − 1

1− λ
x, ln(1 + x) ≤ x,

by (21), we have
∆yn ≤ − pn

1− λ
yn−kn .

Then (28) implies ,

∆yn ≤ pn
1− ev1

1− λev1
.

Using the method in [7], we have

u ≤ (δ − k + 2
2(k + 1)

)(1− λ)
1− ev1

1− λev1
.

By the same method in the proof of Theorem 2, we have (33). Hence we
obtain

u ≤ −δ(δ − k + 2
2(k + 1)

)(1− λ)
1− eu

1− λδ − λ(1− δ)eu
.

We note δ ≥ 1, so

u ≤ −δ(δ − k + 2
2(k + 1)

)(1− eu).

Let
f(u) = u + δ(δ − k + 2

2(k + 1)
)(1− eu),

then f(0) = 0 and

f ′(u) = 1− δ(δ − k + 2
2(k + 1)

)eu,

From the condition (42) and u ≤ δ − k+2
2(k+1) , we have f ′(u) > 0. Then

f(u) > 0, which is a contradiction. The proof is completed. ¥

When {kn} is unbounded, condition (42) can be substituted

(43) 1− δ(δ − 1
2
)eδ− 1

2 ≥ 0.
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Remark 2. Theorem 1 is new. Theorem 2 improves the known results.
In [4], Chen and Yu proved that if

(44) lim sup
n→+∞

n∑

s=n−kn

ps <
1
2
,

and (19) hold then all positive solution of Eq.(2) tend to 1 as n tends to
infinity.

In [6], Zhou and Zhang proved that if

(45) lim sup
n→+∞

n∑

s=n−kn

ps < α,

and (19) hold, then all positive solution of Eq.(2) tend to 1 as n tends to

infinity, where α satisfies 1
x + 1 = e

x2

2 . When λ = 0, Corollary 4 improves
the results in [6].

Remark 3. In [8], the difference equation

(46) xn+1 =
αxn

1 + βxn−k
, n = 0, 1, 2, · · ·,

was considered, where α > 1, β ∈ (0,+∞), we can reform (46) into

(47) ∆xn = xn
α− 1− βxn−k

1 + βxn−k
.

Let β
α−1xn = yn,we have

(48) ∆yn = (α− 1)yn
1− yn−kn

1 + (α− 1)yn−kn

.

By using Theorem 1,2, when α ∈ (0, 1), β ∈ (−∞, +∞), we get similar
results which improve the theorems in [8].

Remark 4. Theorem 2 is different from Theorem 5, condition (42) is
different from (20), by a simple computation from (20), (40), (42), we find
δ ≥ 1.

Remark 5. By the method similar to above discussion, we can establish
existence result for the positive solutions of the following equation [8]

∆xn = pnxn(1 + bxn−kn − cx2
n−kn

), n = 0, 1, 2, · · ·,

where {pn} is a sequence of positive real numbers, {kn} a sequence of non-
negative integers satisfying lim

n→∞(n − kn) = ∞, b ∈ R, c ∈ (0, +∞), and the
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global atrractivity result can also be established, we leave the details to the
readers.

Acknowledgements: We are grateful to the referee for careful review
and many useful suggestions.

References

[1] B.G. Zhang, C.J. Tian, Nonexistence and existence of positive solutions for
difference equations with unbounded delay, Computers Math.Applic., 1998,
36(1)(1998), 1–8.

[2] Y.J Liu, Global attractivity for population model, J. of Biomath.,
15(1)(2000), 65–69..

[3] B.G. Zhang, K. Gopalsamy, Global attractivity in a delay logistic equation
with variable parameters, Math.Proc.Camb.Phil.Soc., 107(1990), 579–590.

[4] M.P. Chen, J.S. Yu, Oscillation and global attractivity in a delay logistic
difference equation, Difference Equations And Its Applications, 1(1)(1995),
227-237.

[5] Ch.G. Philos, Oscillations in a non-autonomous delay logistic difference
equation, Proc. of the Edinburgh Math.Soc., 35(1992), 121–131.

[6] Zh. Zhou, Q.Q. Zhang, Global attractivity of a non-autonomous logi-
stic equation with delays, Computers and Mathematics with Applications,
38(1999), 57–64.

[7] L.H. Erbe, H. Xia, J.S. Yu, Global attractivity in nonlinear delay difference
equations, J. Diff. Eq. Appli., 1(1995), 151–161.

[8] V.L.J. Kocic, G. Ladas, Global behavior of nonlinear difference equations
of higher order with applications, Kluwer Academic, Boston, 1993, 75-80.

[9] Y. Liu, W. Ge, Existence and asymptotic behavior of positive solutions
of non-autonomous Food-Limitedmodel with unbounded delay, Zeitschrift fur
Analysis und Ihre Anwendungen, 21(4)(2002), 1015–1025.

[10] Y. Liu, W. Ge, Positive solutions of non-autonomous delay model of single
population, Fields Institute Communications, 42(2004), 253–271.

[11] Y Liu, W. Ge, On the positive solutions of non-autonomous Hyper-Logistic
delay difference equations, Computers and Mathematics with Applications,
47(2004), 1211–1224.

Yuji Liu
Department of Mathematics, Hunan Institute of Technology

Yueyang, Hunan 414000, P.R.China

e-mail: liuyuji888@sohu.com

Received on 08.04.2002 and, in revised from, on 12.12.2003


