F A S C I C U L I M A T H E M A T I C I
 Nr 35

Yuji Liu

GLOBAL ATTRACTIVITY IN A NON-AUTONOMOUS LOGISTIC TYPE MODEL WITH UNBOUNDED DELAY

Abstract: Consider the non-autonomous logistic model

$$
\Delta x_{n}=p_{n} x_{n} \frac{1-x_{n-k_{n}}}{1-\lambda x_{n-k_{n}}}, \quad n=0,1,2, \cdots
$$

where $\left\{p_{n}\right\}$ is a sequence of positive real numbers, $\left\{k_{n}\right\}$ a sequence of nonnegative integers satisfying $\lim _{n \rightarrow \infty}\left(n-k_{n}\right)=\infty, \lambda \in[0,1)$. We obtain new sufficient conditions for the attractivity of equilibrium $x=1$ of the model, which improve and generalize some recent results established by Chen and Yu [4], Zhou and Zhang [6].
KEY WORDS: global attractivity, difference equation, oscillation

1. Introduction

The asymptotic behavior of solutions of difference equations with unbounded delay was studied in $[1,5,6,9,10,11]$. In this paper, we consider the nonautonomous logistic model

$$
\begin{equation*}
\Delta x_{n}=p_{n} x_{n} \frac{1-x_{n-k_{n}}}{1-\lambda x_{n-k_{n}}}, \quad n=0,1,2, \cdots \tag{1}
\end{equation*}
$$

where $\left\{p_{n}\right\}$ is a sequence of positive real numbers, $\left\{k_{n}\right\}$ a sequence of nonnegative integers satisfying $\lim _{n \rightarrow \infty}\left(n-k_{n}\right)=\infty, \lambda \in[0,1), \Delta x_{n}=x_{n+1}-x_{n}$. Eq.(1) contains the special case

$$
\begin{equation*}
\Delta x_{n}=p_{n} x_{n}\left(1-x_{n-k_{n}}\right), \quad n=0,1,2, \cdots, \tag{2}
\end{equation*}
$$

Let $r=-\min \left\{n-k_{n}, n \geq 0\right\}$ be a nonnegative integer, $\sigma_{0}=\max \{n$: $\left.n-k_{n}<0\right\}+1, \sigma=\max \left\{n: n-k_{n}<\sigma_{0}\right\}+1$. By a solution of Eq.(1) we mean a sequence $\left\{x_{n}\right\}$ which is defined for $n \geq-r$, and satisfies (1) for $n \geq 0$. The initial condition of Eq.(1) is

$$
\begin{equation*}
x_{i}=a_{i}, \quad i=-r,-r+1, \cdots, 0, \tag{3}
\end{equation*}
$$

with $a_{i} \in(0,1 / \lambda)$, for $i=-r,-r+1, \cdots, 0$. The global attractivity of equilibrium $x=1$ of $E q$.(2) has been well studied by $[5,6]$. In most results of these papers, it is supposed that the solution $\left\{x_{n}\right\}$ satisfies $0<x_{n}<1 / \lambda$, but we find that this does not always succeed. One may see the examples in paper [10].

Two problems appear naturally, one is under what conditions every solution satisfies $0<x_{n}<1 / \lambda$. The other is under what conditions every solution satisfying $0<x_{n}<1 / \lambda$ converges to 1 . To answer these problems, in a recent paper [10], the authors studied the global attractivity of $\mathrm{Eq}(1)$, following result was proved:

Theorem LG1. Suppose that there are $\beta>0$ and $\theta>1$ such that

$$
\begin{gathered}
\sum_{j=n-k_{n}}^{n} p_{j} \leq \alpha, \quad n=\sigma_{0}, \sigma_{0}+1, \cdots ; \quad p_{n} \leq \beta, \quad n=0,1,2, \cdots, \sigma \\
\frac{\theta \alpha+1}{\theta \alpha+\lambda}(1+\beta)^{\sigma}<\frac{1+\alpha}{\lambda+\alpha}
\end{gathered}
$$

where α is real root of the transcendental equation

$$
e^{\alpha}\left(\frac{1-\lambda}{1-\lambda e^{-\alpha}}\right)^{\frac{1-\lambda}{\lambda}}=\frac{\alpha+1}{\alpha+\lambda}, \quad \lambda \in(0,1) ;
$$

or

$$
e^{\alpha-1+e^{-\alpha}}=1+\frac{1}{\alpha}, \quad \lambda=0 .
$$

Furthermore, the initial condition satisfies

$$
0<x_{i}<\frac{\theta \alpha+1}{\theta \alpha+\lambda}, \quad i=-r,-r+1, \cdots,-1,0 .
$$

Then every solution of $E q$.(1) with initial condition (9) satisfies

$$
0<x_{n} \leq \frac{\alpha+1}{\alpha+\lambda}, \quad n=1,2, \cdots
$$

Theorem LG2. Suppose that $\lambda \in(0,1)$ and there is a constant $\delta>0$ such that for sufficiently large n

$$
\sum_{s=n-k_{n}}^{n} p_{s} \leq \delta(1-\lambda)
$$

holds and

$$
\sum_{n=1}^{+\infty} p_{n}=+\infty
$$

$$
\begin{equation*}
1-\delta\left(\delta-\frac{1}{2}\right) e^{\left(\delta-\frac{1}{2}\right)(1-\lambda)} \geq 0 \tag{4}
\end{equation*}
$$

are valid. Then every solution that satisfies $0<x_{n}<1 / \lambda$ tends to 1 as $n \rightarrow+\infty$.

The purpose of this paper is to present a different answer to above problems. In section 2 , we answer the first problem, and in section 3 , the second problem is settled.

By the way, Eq.(1) is the discrete type of the following equation

$$
\begin{equation*}
N^{\prime}(t)=r(t) N(t) \frac{1-N(t-\tau)}{1-\lambda N(t-\tau)} \tag{5}
\end{equation*}
$$

which was studied by many authors, see $[2-4]$ and the references cited therein.

2. Every solution satisfies $0<x_{n}<1 / \lambda$

Theorem 1. Suppose that there are $\beta>0$ and $\theta>1$ such that

$$
\begin{gather*}
\sum_{j=n-k_{n}}^{n} p_{j} \leq \alpha, \quad n=\sigma_{0}, \sigma_{0}+1, \cdots ; \quad p_{n} \leq \beta, \quad n=0,1,2, \cdots, \sigma \tag{6}\\
\frac{\theta \alpha+1}{\theta \alpha+\lambda}(1+\beta)^{\sigma}<\frac{1+\alpha}{\lambda+\alpha}
\end{gather*}
$$

where α is real root of the transcendental equation

$$
\begin{equation*}
e^{\alpha}=\frac{\alpha+1}{\alpha+\lambda}, \quad \lambda \in(0,1) \tag{7}
\end{equation*}
$$

Furthermore, suppose that the initial condition satisfies

$$
\begin{equation*}
0<x_{i}<\frac{\theta \alpha+1}{\theta \alpha+\lambda}, \quad i=-r,-r+1, \cdots,-1,0 \tag{8}
\end{equation*}
$$

Then every solution of Eq.(1) with initial condition (8) satisfies

$$
\begin{equation*}
0<x_{n} \leq \frac{\alpha+1}{\alpha+\lambda}, \quad n=1,2, \cdots \tag{9}
\end{equation*}
$$

Proof. By (1), we get

$$
x_{n+1}=x_{n}\left(1+p_{n} \frac{1-x_{n-k_{n}}}{1-\lambda x_{n-k_{n}}}\right)
$$

Since $0<x_{-r}, x_{-r+1}, \cdots, x_{0}<\frac{\theta \alpha+1}{\theta \alpha+\lambda}<\frac{\alpha+1}{\alpha+\lambda}$, by (6), (7), we find

$$
\begin{gathered}
x_{1}=x_{0}\left(1+p_{0} \frac{1-x_{-k_{0}}}{1-\lambda x_{-k_{0}}}\right)>x_{0}\left(1+p_{0} \frac{1-\frac{\alpha+1}{\alpha+\lambda}}{1-\lambda \frac{\alpha+1}{\alpha+\lambda}}\right) \geq x_{0}\left(1+\alpha \frac{1-\frac{\alpha+1}{\alpha+\lambda}}{1-\lambda \frac{\alpha+1}{\alpha+\lambda}}\right)=0 . \\
x_{1}=x_{0}\left(1+p_{0} \frac{1-x_{-k_{0}}}{1-\lambda x_{-k_{0}}}\right) \leq \frac{\theta \alpha+1}{\theta \alpha+\lambda}(1+\beta)<\frac{\alpha+1}{\alpha+\lambda} .
\end{gathered}
$$

Similarly, one obtains

$$
\begin{gathered}
x_{2}=x_{1}\left(1+p_{1} \frac{1-x_{1-k_{1}}}{1-\lambda x_{1-k_{1}}}\right)>x_{1}\left(1+p_{1} \frac{1-\frac{\alpha+1}{\alpha+\lambda}}{1-\lambda \frac{\alpha+1}{\alpha+\lambda}}\right) \geq x_{1}\left(1+\alpha \frac{1-\frac{\alpha+1}{\alpha+\lambda}}{1-\lambda \frac{\alpha+1}{\alpha+\lambda}}\right)=0 . \\
x_{2}=x_{1}\left(1+p_{1} \frac{1-x_{1-k_{1}}}{1-\lambda x_{1-k_{1}}}\right) \leq \frac{\theta \alpha+1}{\theta \alpha+\lambda}(1+\beta)^{2}<\frac{\alpha+1}{\alpha+\lambda} .
\end{gathered}
$$

Finally, we get

$$
\begin{aligned}
x_{\sigma} & =x_{\sigma-1}\left(1+p_{\sigma-1} \frac{1-x_{\sigma-1-k_{\sigma-1}}}{1-\lambda x_{\sigma-1-k_{\sigma-1}}}\right)>x_{\sigma-1}\left(1+p_{\sigma-1} \frac{1-\frac{\alpha+1}{\alpha+\lambda}}{1-\lambda \frac{\alpha+1}{\alpha+\lambda}}\right) \\
& \geq x_{\sigma-1}\left(1+\alpha \frac{1-\frac{\alpha+1}{\alpha+\lambda}}{1-\lambda \frac{\alpha+1}{\alpha+\lambda}}\right)=0 . \\
x_{\sigma} & =x_{\sigma-1}\left(1+p_{\sigma-1} \frac{1-x_{\sigma-1-k_{\sigma-1}}}{1-\lambda x_{\sigma-1-k_{\sigma-1}}}\right) \leq \frac{\theta \alpha+1}{\theta \alpha+\lambda}(1+\beta)^{\sigma}<\frac{\alpha+1}{\alpha+\lambda} .
\end{aligned}
$$

Now, it suffices to prove the following results: if $n_{0} \geq \sigma$, and

$$
\begin{equation*}
0<x_{n} \leq \frac{\alpha+1}{\alpha+\lambda}, \quad 0 \leq n \leq n_{0} \tag{10}
\end{equation*}
$$

then

$$
\begin{equation*}
0<x_{n_{0}+1}<\frac{\alpha+1}{\alpha+\lambda} . \tag{11}
\end{equation*}
$$

By (6), (10), and $\lambda \in[0,1)$, since the function $f(x)=(x-1) /(1-\lambda x)$ is increasing on $(0,1 / \lambda)$, then

$$
p_{n_{0}} \frac{x_{n_{0}-k_{n_{0}}}-1}{1-\lambda x_{n_{0}-k_{n_{0}}}}<\alpha \frac{\frac{\alpha+1}{\alpha+\lambda}-1}{1-\lambda \frac{\alpha+1}{\alpha+\lambda}}=1,
$$

(1) implies

$$
x_{n_{0}+1}>0 .
$$

Next, we prove that

$$
\begin{equation*}
x_{n_{0}+1}<\frac{\alpha+1}{\alpha+\lambda} \tag{12}
\end{equation*}
$$

If $x_{n_{0}+1}<\frac{\alpha+1}{\alpha+\lambda}$, then (12) is obvious. If $x_{n_{0}+1} \geq \frac{\alpha+1}{\alpha+\lambda}$, let $p(t)=p_{n}$ for $t \in[n, n+1), n=0,1,2, \cdots, n_{0}$, and

$$
x(t)=\left\{\begin{array}{cc}
x_{n}, & t=n \tag{13}\\
x_{n}\left(\frac{x_{n+1}}{x_{n}}\right)^{t-n}, & n \leq t<n+1
\end{array}\right.
$$

then $x(t)$ is positive continuous function on internal $\left[0, n_{0}+1\right]$ and $x(n)=$ $x_{n}, n \geq 0, x(t)$ is monotone on $[n, n+1)$. Let [.] denote the maximum integer function, $x^{\prime}(t)$ stands for the left derivative of function $x(t)$, then

$$
\begin{equation*}
x^{\prime}(t)=x(t) \ln \left\{1+p(t) \frac{1-x\left(\left[t-k_{[t]}\right]\right)}{1-\lambda x\left(\left[t-k_{[t]}\right]\right)}\right\}, \quad 0 \leq t \leq n_{0}+1 \tag{14}
\end{equation*}
$$

Since $x\left(\left[t-k_{[t]}\right]\right)>0,0 \leq t \leq n_{0}+1$, by $(1-x) /(1-\lambda x) \leq 1, \frac{1}{\lambda}>x \geq 0$, we have

$$
\begin{equation*}
x^{\prime}(t) \leq x(t) \ln (1+p(t)) \leq p(t) x(t), \quad 0 \leq t<n_{0}+1, \quad \text { a.e. } \tag{15}
\end{equation*}
$$

Again by $\Delta x_{n_{0}}=x_{n_{0}+1}-x_{n_{0}}>0$ and (1), we have $x_{n_{0}-k_{n_{0}}}<1$. Then there exists $\xi \in\left[n_{0}-k_{n_{0}}, n_{0}+1\right)$ such that $x(\xi)=1$ and $x(t)>1$ for $t \in\left(\xi, n_{0}+1\right]$. It follows that

$$
\begin{equation*}
\ln x\left(n_{0}+1\right)<\int_{\xi}^{n_{0}+1} p(t) d t \tag{16}
\end{equation*}
$$

Since $\int_{\xi}^{n_{0}+1} p(t) d t \leq \sum_{j=n_{0}-k_{n_{0}}}^{n_{0}} p_{j} \leq \alpha$, we get

$$
\ln x\left(n_{0}+1\right)<\alpha
$$

and

$$
\begin{equation*}
x_{n_{0}+1}=x\left(n_{0}+1\right)<e^{\alpha}=\frac{\alpha+1}{\alpha+\lambda} \tag{17}
\end{equation*}
$$

which contradicts the assumption $x_{n_{0}+1} \geq \frac{\alpha+1}{\alpha+\lambda}$. This completes the proof. By a similar method, we can get the theorem in the case $\lambda=0$.

Remark 1. Since $1<\frac{\theta \alpha+1}{\theta \alpha+\lambda}<\frac{\alpha+1}{\alpha+\lambda}<\frac{1}{\lambda}$, theorem 1 gives the sufficient conditions which guarantee $0<x_{n}<\frac{1}{\lambda}$ for each solution $\left\{x_{n}\right\}$ of Eq.(1).

3. Global attractivity

In this section, we give the sufficient condition that guarantees every solution satisfying $0<x_{n}<\frac{1}{\lambda}$ to converge to 1 as $n \rightarrow \infty$.

Theorem 2. Suppose that $\lambda \in[0,1)$ and there is a constant $\delta>0$ such that $\delta(1-2 \lambda)+\lambda>0$ and for sufficiently large n

$$
\begin{equation*}
\sum_{s=n-k_{n}}^{n} p_{s} \leq \delta(1-\lambda) \tag{18}
\end{equation*}
$$

holds and

$$
\begin{equation*}
\sum_{n=1}^{+\infty} p_{n}=+\infty \tag{19}
\end{equation*}
$$

$$
\frac{\delta(1-2 \lambda)+1}{\delta(1-2 \lambda)+\lambda} \geq e^{\frac{\delta^{2}}{2}}
$$

are satisfied. Then every solution satisfying $0<x_{n}<1 / \lambda$ tends to 1 as $n \rightarrow+\infty$.

In order to prove theorem 2, we need the following lemmas.
Lemma 1. Suppose (19) holds, $\left\{x_{n}\right\}$ is a solution of Eq.(1) that satisfies $0<x_{n}<1 / \lambda$. Furthermore, if $\left\{x_{n}\right\}$ is eventually greater than 1 or eventually less than 1 , then $\left\{x_{n}\right\}$ tends to 1 as $n \rightarrow+\infty$.

The proof is similar to that of the result in [5] and is omitted.
Lemma 2. Suppose that (18), (20) hold and $\left\{x_{n}\right\}, 0<x_{n}<1 / \lambda$, is a solution of (1) oscillating about 1. Then there are $0<a<b<\frac{1}{\lambda}$ such that $\left\{x_{n}\right\}$ satisfies $a<x_{n}<b$ for every n.

Proof. Set $\ln x_{n}=y_{n}$, for $n \geq 0$, then $\left\{y_{n}\right\}$ is oscillatory. By (1), we find

$$
\begin{equation*}
\Delta y_{n}=\ln \left(1+p_{n} \frac{1-e^{y_{n-k_{n}}}}{1-\lambda e^{y_{n-k_{n}}}}\right), \quad n=0,1,2, \cdots \tag{21}
\end{equation*}
$$

Then

$$
\begin{equation*}
\Delta y_{n} \leq \ln \left(1+p_{n}\right), \quad n=0,1,2, \cdots \tag{22}
\end{equation*}
$$

Now, let $y_{n_{i}}$ be any left maximum term of $\left\{y_{n}\right\}$ with $n_{i}>\sigma, y_{n_{i}}>0$ and $y_{n_{i}} \geq y_{n_{i}-1}$, by (21) one gets $y_{n_{i}-1-k_{n_{i}-1}} \leq 0$ and then there is n_{i}^{*},
$n_{i}-1-k_{n_{i}-1} \leq n_{i}^{*} \leq n_{i}-1$ such that $y_{n_{i}^{*}} \leq 0, y_{n}>0$ for $n_{i}^{*}+1 \leq n \leq n_{i}$. Choose a number $\xi_{i} \in[0,1)$ such that

$$
\begin{equation*}
y_{n_{i}^{*}}+\xi_{i}\left(y_{n_{i}^{*}+1}-y_{n_{i}^{*}}\right)=0 . \tag{23}
\end{equation*}
$$

By the inequality

$$
\left(\prod_{i=1}^{m} a_{i}^{\alpha_{i}}\right)^{\frac{1}{\sum_{i=1}^{m} \alpha_{i}}} \leq \frac{\sum_{i=1}^{m} \alpha_{i} a_{i}}{\sum_{i=1}^{m} \alpha_{i}}
$$

we get

$$
\begin{aligned}
& -y_{j-k_{j}}=-y_{n_{i}^{*}}+\sum_{s=j-k_{j}}^{n_{i}^{*}-1}\left(y_{s+1}-y_{s}\right) \\
& \quad=\xi_{i}\left(y_{n_{i}^{*}+1}-y_{n_{i}^{*}}\right)+\sum_{s=j-k_{j}}^{n_{i}^{*-1}} \ln \left(1+p_{s} \frac{1-e^{y_{s-k_{s}}}}{1-\lambda e^{y_{s}-k_{s}}}\right) \\
& \quad \leq \xi_{i} \ln \left(1+\frac{p_{n_{i}^{*}}}{1-\lambda}\right)+\sum_{s=j-k_{j}}^{n_{i}^{*}-1} \ln \left(1+\frac{p_{s}}{1-\lambda}\right) \\
& \leq\left(n_{i}^{*}-j+k_{j}+\xi_{i}\right) \ln \left[1+\frac{1}{1-\lambda} \frac{1}{n_{i}^{*}-j+k_{j}+\xi_{i}}\left(\xi_{i} p_{n_{i}^{*}}+\sum_{s=j-k_{j}}^{n_{i}^{*-1}} p_{s}\right)\right] .
\end{aligned}
$$

Then

$$
e^{y_{j-k_{j}}} \geq\left[1+\frac{1}{1-\lambda} \frac{1}{n_{i}^{*}-j+k_{j}+\xi_{i}}\left(\xi_{i} p_{n_{i}^{*}}+\sum_{s=j-k_{j}}^{n_{i}^{*}-1} p_{s}\right)\right]^{-\left(n_{i}^{*}-j+k_{j}+\xi_{i}\right)} .
$$

By $\left(1+\frac{x}{n}\right)^{-n} \geq 1-x$, for $n>0, x \geq 0$, we have

$$
\begin{equation*}
e^{y_{j-k_{j}}} \geq 1-\frac{1}{1-\lambda}\left(\xi_{i} p_{n_{i}^{*}}+\sum_{s=j-k_{j}}^{n_{i}^{*}-1} p_{s}\right) \tag{24}
\end{equation*}
$$

Thus by (23) and (24), we get

$$
\begin{aligned}
y_{n_{i}} & =y_{n_{i}^{*}+1}+\sum_{s=n_{i}^{*}+1}^{n_{i}-1}\left(y_{s+1}-y_{s}\right) \\
& =\left(1-\xi_{i}\right)\left(y_{n_{i}^{*}+1}-y_{n_{i}^{*}}\right)+\sum_{n=n_{i}^{*}+1}^{n_{i}-1} \ln \left(1+p_{n} \frac{1-e^{y_{n-k_{n}}}}{1-\lambda e^{y_{n-k_{n}}}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left(1-\xi_{i}\right) \ln \left(1+\frac{p_{n_{i}^{*}}}{1-\lambda}\left(1-e^{y_{n_{i}^{*}-k_{n_{i}^{*}}}}\right)\right)+\sum_{n=n_{i}^{*}+1}^{n_{i}-1} \ln \left(1+\frac{p_{n}}{1-\lambda}\left(1-e^{y_{n-k_{n}}}\right)\right) \\
& \leq\left(1-\xi_{i}\right) \ln \left[1+\frac{p_{n_{i}^{*}}}{(1-\lambda)^{2}}\left(\xi_{i} p_{n_{i}^{*}}+\sum_{s=n_{i}^{*}-k_{n_{i}^{*}}}^{n_{i}^{*-1}} p_{s}\right)\right] \\
& \quad+\sum_{n=n_{i}^{*}+1}^{n_{i}-1} \ln \left[1+\frac{p_{n}}{(1-\lambda)^{2}}\left(\xi_{i} p_{n_{i}^{*}}+\sum_{s=n-k_{n}}^{n_{i}^{*}-1} p_{s}\right)\right] .
\end{aligned}
$$

By condition (18), we have

$$
\begin{aligned}
& y_{n_{i}} \leq\left(1-\xi_{i}\right) \ln \left[1+\frac{p_{n_{i}^{*}}}{(1-\lambda)^{2}}\left(\delta(1-\lambda)-\left(1-\xi_{i}\right) p_{n_{i}^{*}}\right)\right] \\
&+\sum_{n=n_{i}^{*}+1}^{n_{i}-1} \ln \left[1+\frac{p_{n}}{(1-\lambda)^{2}}\left(\delta(1-\lambda)-\sum_{s=n_{i}^{*}+1}^{n} p_{s}-\left(1-\xi_{i}\right) p_{n_{i}^{*}}\right)\right] \\
& \leq\left(n_{i}-n_{i}^{*}-\xi_{i}\right) \ln \left\{1+\frac{1}{\left.n_{i}-n_{i}^{*}-\xi_{i}\right)} \frac{1}{(1-\lambda)^{2}}\left[\left(1-\xi_{i}\right) p_{n_{i}^{*}}\left(\delta(1-\lambda)-\left(1-\xi_{i}\right) p_{n_{i}^{*}}\right)\right.\right. \\
&\left.\left.+\sum_{n=n_{i}^{*}+1}^{n_{i}-1} p_{n}\left(\delta(1-\lambda)-\sum_{s=n_{i}^{*}+1}^{n} p_{s}-\left(1-\xi_{i}\right) p_{n_{i}^{*}}\right)\right]\right\}
\end{aligned}
$$

Suppose $k_{n} \leq k$, since $n_{i}-n_{i}^{*}-\xi_{i} \leq k_{n_{i}-1}+1 \leq k+1$, it results in

$$
\begin{aligned}
y_{n_{i}} \leq & (k+1) \ln \left\{1+\frac{1}{k+1} \frac{1}{(1-\lambda)^{2}}\left[\left(1-\xi_{i}\right) p_{n_{i}^{*}}\left(\delta(1-\lambda)-\left(1-\xi_{i}\right) p_{n_{i}^{*}}\right)\right.\right. \\
& \left.\left.+\sum_{n=n_{i}^{*}+1}^{n_{i}-1} p_{n}\left(\delta(1-\lambda)-\sum_{s=n_{i}^{*}+1}^{n} p_{s}-\left(1-\xi_{i}\right) p_{n_{i}^{*}}\right)\right]\right\}
\end{aligned}
$$

Let $d_{i}=\sum_{n=n_{i}^{*}+1}^{n_{i}-1} p_{n}+\left(1-\xi_{i}\right) p_{n_{i}^{*}}$. Then by the inequality

$$
\sum_{i=1}^{m} x_{s}^{2} \geq \frac{1}{m}\left(\sum_{s=1}^{m} x_{s}\right)^{2}
$$

we get

$$
\begin{aligned}
y_{n_{i}} \leq & (k+1) \ln \left\{1+\frac{1}{k+1} \frac{\delta}{1-\lambda} d_{i}\right. \\
& \quad-\frac{1}{k+1} \frac{1}{(1-\lambda)^{2}}\left[\left(1-\xi_{i}\right)^{2} p_{n_{i}^{*}}^{2}+\left(1-\xi_{i}\right) p_{n_{i}^{*}} \sum_{n=n_{i}^{*}-1}^{n_{i}-1} p_{n}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+\sum_{n=n_{i}^{*}+1}^{n_{i}-1} p_{n} \sum_{s=n_{i}^{*}+1}^{n_{i}-1} p_{s}\right]\right\} \\
= & (k+1) \ln \left\{1+\frac{1}{k+1} \frac{\delta}{1-\lambda} d_{i}-\frac{1}{2(k+1)} \frac{1}{(1-\lambda)^{2}} d_{i}^{2}\right. \\
& \left.-\frac{1}{2(k+1)(1-\lambda)^{2}}\left[\sum_{n=n_{i}^{*}+1}^{n_{i}-1} p_{n}^{2}+\left(1-\xi_{i}\right)^{2} p_{n_{i}^{*}}^{2}\right]\right\} \\
\leq & (k+1) \ln \left\{1+\frac{\delta}{(k+1)(1-\lambda)} d_{i}-\frac{1}{2(k+1)(1-\lambda)^{2}} d_{i}^{2}\right. \\
& \left.-\frac{1}{2(k+1)(1-\lambda)^{2}} \frac{1}{n_{i}-n_{i}^{*}} d_{i}^{2}\right\} \\
\leq & (k+1) \ln \left\{1+\frac{\delta}{(k+1)(1-\lambda)} d_{i}-\frac{k+2}{2(k+1)^{2}(1-\lambda)^{2}} d_{i}^{2}\right\}
\end{aligned}
$$

Since function $\frac{\delta}{1-\lambda} x-\frac{k+2}{2(k+1)(1-\lambda)^{2}} x^{2}$ is increasing when $x \leq \frac{k+1}{k+2} \delta(1-\lambda)$, the maximum point of function is $x=\frac{k+1}{k+2} \delta(1-\lambda)$, we get

$$
\begin{equation*}
y_{n_{i}} \leq(k+1) \ln \left(1+\frac{\delta^{2}}{2(k+2)}\right) \tag{25}
\end{equation*}
$$

It is easy to see that function $x \ln \left(1+\frac{\delta^{2}}{2(x+1)}\right)$ is increasing on $(0,+\infty)$, hence

$$
\limsup _{n \rightarrow \infty} y_{n} \leq(k+1) \ln \left(1+\frac{\delta^{2}}{2(k+2)}\right) \rightarrow \frac{\delta^{2}}{2}, \quad k \rightarrow \infty
$$

it combines condition (20), we have

$$
y_{n_{i}} \leq \ln \frac{\delta(1-2 \lambda)+1}{\delta(1-2 \lambda)+\lambda}-\ln \frac{1}{\lambda}+\ln \frac{1}{\lambda}=\ln \frac{\delta(1-2 \lambda) \lambda+\lambda}{\delta(1-2 \lambda)+\lambda}+\ln \frac{1}{\lambda}<\ln \frac{1}{\lambda}
$$

So $\left\{x_{n}\right\}$ is bounded above away from $\frac{1}{\lambda}$. Now we prove that $\left\{y_{n}\right\}$ is bounded below. Suppose $y_{n} \leq M<\ln \frac{1}{\lambda}$, then from (21),

$$
e^{y_{n+1}-y_{n}} \geq 1+p_{n} \frac{1-e^{y_{n-k_{n}}}}{1-\lambda e^{y_{n-k_{n}}}}
$$

Let $y_{n^{*}}=\max \left\{1, x_{n}\right\}$. Suppose $y_{n_{i}}$ is a left minimum term of $\left\{y_{n}\right\}$, then from (1), $y_{n_{i}-1-k_{n_{i}-1}}>0$, we get

$$
e^{y_{n_{i}}} \geq \prod_{s=n_{i}-1-k_{n_{i}-1}}^{n_{i}-1}\left(1+p_{s} \frac{1-e^{y_{s-k_{s}}}}{1-\lambda e^{y_{s-k_{s}}}}\right)
$$

$$
\begin{aligned}
& \geq 1+\sum_{s=y_{s-k_{s}}}^{n_{i}-1} p_{s} \frac{1-e^{y_{\left(s-k_{s}\right)^{*}}}}{1-\lambda e^{y_{\left(s-k_{s}\right)^{*}}}} \\
& \geq 1+\delta(1-\lambda) \frac{1-e^{M}}{1-\lambda e^{M}}=a>0 .
\end{aligned}
$$

This shows that $\left\{y_{n}\right\}$ is bounded below. The proof is complete.
Proof of Theorem 2. By Lemma 1, it suffices to prove that every solution of Eq.(1) satisfying $0<x_{n}<\frac{1}{\lambda}$ converges to 1 as n tends to infinity. By Lemma $2,\left\{x_{n}\right\}$ is bounded above away from $\frac{1}{\lambda}$ and bounded below away from zero. We prove now that $\lim _{n \rightarrow+\infty} y_{n}=0$. Let

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} y_{n}=u, \quad \liminf _{n \rightarrow+\infty} y_{n}=v . \tag{26}
\end{equation*}
$$

Then

$$
-\infty<v \leq 0 \leq u<\ln \frac{1}{\lambda}
$$

and there are two subsequence of $\left\{y_{n}\right\}$, denoted by $\left\{y_{n_{i}}\right\}$ and $\left\{y_{m_{i}}\right\}$ such that

$$
\begin{gathered}
y_{n_{i}}>0, \quad y_{n_{i}} \geq y_{n_{i}-1}, \quad i=1,2, \cdots, \quad \lim _{i \rightarrow \infty} n_{i}=\infty, \quad \lim _{i \rightarrow \infty} y_{n_{i}}=u, \\
y_{m_{i}}<0, \quad y_{m_{i}} \geq y_{n_{i}-1}, \quad i=1,2, \cdots, \quad \lim _{i \rightarrow \infty} m_{i}=\infty, \quad \lim _{i \rightarrow \infty} y_{m_{i}}=v
\end{gathered}
$$

For any $\epsilon \in\left(0, \ln \frac{1}{\lambda}-u\right)$, there is N_{1} such that

$$
\begin{equation*}
v_{1}=v-\epsilon<y_{n-k_{n}}<u+\epsilon=u_{1}, \quad n=N_{1}, N_{1}+1, \cdots, \tag{27}
\end{equation*}
$$

Then by (21), we have

$$
\begin{equation*}
\Delta y_{n} \leq \ln \left(1+p_{n} \frac{1-e^{v_{1}}}{1-\lambda e^{v_{1}}}\right) \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
\Delta y_{n} \geq \ln \left(1+p_{n} \frac{1-e^{u_{1}}}{1-\lambda e^{u_{1}}}\right) . \tag{29}
\end{equation*}
$$

Again from (21), (28), by the same method using in the proof of Lemma 2, we obtain

$$
\begin{equation*}
y_{n_{i}} \leq \ln \left(1+\frac{\delta^{2}(1-\lambda)}{2(k+2)} \frac{1-e^{v_{1}}}{1-\lambda e^{v_{1}}}\right)^{k+1} \tag{30}
\end{equation*}
$$

Let

$$
y_{n_{*}}=\max \left\{1, y_{n}\right\} .
$$

Again since $\Delta y_{m_{i}-1} \leq 0$, by (21), $y_{m_{i}-1-k_{m_{i}-1}} \geq 0$, one sees

$$
\begin{aligned}
y_{m_{i}} & =y_{m_{i}-1-k_{m_{i}-1}}+\sum_{s=m_{i}-1-k_{m_{i}-1}}^{m_{i}-1} \ln \left(1+p_{s} \frac{1-e^{y_{s-k_{s}}}}{1-\lambda e^{y_{s-k_{s}}}}\right) \\
& \geq \sum_{s=m_{i}-1-k_{m_{i}-1}}^{m_{i}-1} \ln \left(1+p_{s} \frac{1-e^{y_{\left(s-k_{s}\right)_{*}}}}{1-\lambda e^{y_{\left(s-k_{s}\right)_{*}}}}\right) \\
& \geq \ln \left(1+\sum_{s=m_{i}-1-k_{m_{i}-1}}^{m_{i}-1} p_{s} \frac{1-e^{y_{\left(s-k_{s}\right) *}}}{1-\lambda e^{y_{\left(s-k_{s}\right)_{*}}}}\right) \\
& \geq \ln \left(1+\delta(1-\lambda) \frac{1-e^{u_{1}}}{1-\lambda e^{u_{1}}}\right)
\end{aligned}
$$

and hence

$$
\begin{equation*}
e^{y_{m_{i}}} \geq 1+\delta(1-\lambda) \frac{1-e^{u_{1}}}{1-\lambda e^{u_{1}}} \tag{31}
\end{equation*}
$$

Let $i \rightarrow+\infty, \epsilon \rightarrow 0$, one has

$$
\begin{equation*}
u \leq \ln \left(1+\frac{\delta^{2}(1-\lambda)}{2(k+2)} \frac{1-e^{v}}{1-\lambda e^{v}}\right)^{k+1} \tag{32}
\end{equation*}
$$

$$
\begin{equation*}
e^{v} \geq 1+\delta(1-\lambda) \frac{1-e^{u}}{1-\lambda e^{u}} \tag{33}
\end{equation*}
$$

If $u \neq 0$, then $u>0$. By (32), (33), we get

$$
\begin{equation*}
u \leq \ln \left(1+\frac{\delta^{3}(1-\lambda)}{2(k+2)} \frac{e^{u}-1}{1-\delta \lambda-\delta(1-\delta) e^{u}}\right)^{k+1} \tag{34}
\end{equation*}
$$

From (32),

$$
\begin{equation*}
u<\ln \left(1+\frac{\delta^{2}}{2(k+2)}\right)^{k+1}=u_{0} \tag{35}
\end{equation*}
$$

Let

$$
\begin{equation*}
f(u)=u-\ln \left(1+\frac{\delta^{3}(1-\lambda)}{2(k+2)} \frac{e^{u}-1}{1-\delta \lambda-\lambda(1-\delta) e^{u}}\right)^{k+1} \tag{36}
\end{equation*}
$$

Clearly,

$$
f(0)=0, \quad f^{\prime \prime}(u) \leq 0
$$

$f(u)$ has at most two zero points in $[0,+\infty)$ and

$$
f\left(u_{0}\right)=\ln \left(1+\frac{\delta^{2}}{2(k+2)}\right)^{k+1}-\ln \left(1+\frac{\delta^{3}(1-\lambda)}{2(k+2)} \frac{e^{u_{0}}-1}{1-\delta \lambda-\lambda(1-\delta) e^{u_{0}}}\right)^{k+1}
$$

By (35), $u_{0} \leq \frac{\delta^{2}}{2}$, hence $e^{u_{0}} \leq e^{\frac{\delta^{2}}{2}}$, using (20), we get

$$
e^{u_{0}} \leq \frac{\delta(1-2 \lambda)+1}{\delta(1-2 \lambda)+\lambda}
$$

So

$$
\begin{equation*}
\frac{\delta(1-\lambda)\left(e^{u_{0}}-1\right)}{1-\delta \lambda-\lambda(1-\delta) e^{u_{0}}} \leq 1 \tag{37}
\end{equation*}
$$

Thus $f\left(u_{0}\right) \geq 0$, we see $f(u)>0$ for $u \in\left(0, u_{0}\right)$, this contradicts (34), then $u=0$ and $v=0$, which implies $\lim _{n \rightarrow+\infty} y_{n}=0$, this completes the proof.

Corollary 1. Suppose that (19) holds and there is an integer n_{0} such that for sufficiently large n

$$
\begin{equation*}
\sum_{s=n-k_{n}}^{n} p_{s} \leq 1-\lambda, n=n_{0}, n_{0}+1, \cdots \tag{38}
\end{equation*}
$$

is valid. Then every solution of Eq.(1) satisfying $0<x_{n}<\frac{1}{\lambda}$ tends to 1 as n tends to infinity.

Corollary 2. Suppose that (19) holds and there is an integer $\delta>0$ such that for sufficiently large n

$$
\begin{equation*}
\sum_{s=n-k_{n}}^{n} p_{s} \leq \delta \tag{39}
\end{equation*}
$$

is valid, and

$$
\begin{equation*}
\left(1+\frac{\delta^{2}}{2(k+2)}\right)^{k+1} \leq 1+\frac{1}{\delta} \tag{40}
\end{equation*}
$$

Then every positive solution of Eq.(2) tends to 1 as n tends to infinity.
The proofs of corollary 3 and 4 come directly from Theorem 2.
Theorem 3. Assume that (19) holds and $k_{n} \leq k$ for all $n=0,1, \cdots$, furthermore, for sufficiently large n

$$
\begin{equation*}
\sum_{s=n-k_{n}}^{n} p_{s} \leq \delta(1-\lambda) \tag{41}
\end{equation*}
$$

is valid, and

$$
\begin{equation*}
1-\delta\left(\delta-\frac{k+2}{2(k+2)}\right) e^{\delta-\frac{k+2}{2(k+1)}} \geq 0 \tag{42}
\end{equation*}
$$

then every solution of Eq.(1) satisfying $0<x_{n}<\frac{1}{\lambda}$ tends to 1 as n tends to infinity.

Proof. Since

$$
\frac{1-e^{x}}{1-\lambda e^{x}} \leq-\frac{1}{1-\lambda} x, \quad \ln (1+x) \leq x
$$

by (21), we have

$$
\Delta y_{n} \leq-\frac{p_{n}}{1-\lambda} y_{n-k_{n}}
$$

Then (28) implies ,

$$
\Delta y_{n} \leq p_{n} \frac{1-e^{v_{1}}}{1-\lambda e^{v_{1}}}
$$

Using the method in [7], we have

$$
u \leq\left(\delta-\frac{k+2}{2(k+1)}\right)(1-\lambda) \frac{1-e^{v_{1}}}{1-\lambda e^{v_{1}}}
$$

By the same method in the proof of Theorem 2, we have (33). Hence we obtain

$$
u \leq-\delta\left(\delta-\frac{k+2}{2(k+1)}\right)(1-\lambda) \frac{1-e^{u}}{1-\lambda \delta-\lambda(1-\delta) e^{u}}
$$

We note $\delta \geq 1$, so

$$
u \leq-\delta\left(\delta-\frac{k+2}{2(k+1)}\right)\left(1-e^{u}\right)
$$

Let

$$
f(u)=u+\delta\left(\delta-\frac{k+2}{2(k+1)}\right)\left(1-e^{u}\right)
$$

then $f(0)=0$ and

$$
f^{\prime}(u)=1-\delta\left(\delta-\frac{k+2}{2(k+1)}\right) e^{u}
$$

From the condition (42) and $u \leq \delta-\frac{k+2}{2(k+1)}$, we have $f^{\prime}(u)>0$. Then $f(u)>0$, which is a contradiction. The proof is completed.

When $\left\{k_{n}\right\}$ is unbounded, condition (42) can be substituted

$$
\begin{equation*}
1-\delta\left(\delta-\frac{1}{2}\right) e^{\delta-\frac{1}{2}} \geq 0 \tag{43}
\end{equation*}
$$

Remark 2. Theorem 1 is new. Theorem 2 improves the known results. In [4], Chen and Yu proved that if

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} \sum_{s=n-k_{n}}^{n} p_{s}<\frac{1}{2}, \tag{44}
\end{equation*}
$$

and (19) hold then all positive solution of Eq.(2) tend to 1 as n tends to infinity.

In [6], Zhou and Zhang proved that if

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} \sum_{s=n-k_{n}}^{n} p_{s}<\alpha \tag{45}
\end{equation*}
$$

and (19) hold, then all positive solution of Eq.(2) tend to 1 as n tends to infinity, where α satisfies $\frac{1}{x}+1=e^{\frac{x^{2}}{2}}$. When $\lambda=0$, Corollary 4 improves the results in [6].

Remark 3. In [8], the difference equation

$$
\begin{equation*}
x_{n+1}=\frac{\alpha x_{n}}{1+\beta x_{n-k}}, \quad n=0,1,2, \cdots, \tag{46}
\end{equation*}
$$

was considered, where $\alpha>1, \beta \in(0,+\infty)$, we can reform (46) into

$$
\begin{equation*}
\Delta x_{n}=x_{n} \frac{\alpha-1-\beta x_{n-k}}{1+\beta x_{n-k}} . \tag{47}
\end{equation*}
$$

Let $\frac{\beta}{\alpha-1} x_{n}=y_{n}$, we have

$$
\begin{equation*}
\Delta y_{n}=(\alpha-1) y_{n} \frac{1-y_{n-k_{n}}}{1+(\alpha-1) y_{n-k_{n}}} . \tag{48}
\end{equation*}
$$

By using Theorem 1,2 , when $\alpha \in(0,1), \beta \in(-\infty,+\infty)$, we get similar results which improve the theorems in [8].

Remark 4. Theorem 2 is different from Theorem 5, condition (42) is different from (20), by a simple computation from (20), (40), (42), we find $\delta \geq 1$.

Remark 5. By the method similar to above discussion, we can establish existence result for the positive solutions of the following equation [8]

$$
\Delta x_{n}=p_{n} x_{n}\left(1+b x_{n-k_{n}}-c x_{n-k_{n}}^{2}\right), \quad n=0,1,2, \cdots,
$$

where $\left\{p_{n}\right\}$ is a sequence of positive real numbers, $\left\{k_{n}\right\}$ a sequence of nonnegative integers satisfying $\lim _{n \rightarrow \infty}\left(n-k_{n}\right)=\infty, b \in R, c \in(0,+\infty)$, and the
global atrractivity result can also be established, we leave the details to the readers.

Acknowledgements: We are grateful to the referee for careful review and many useful suggestions.

References

[1] B.G. Zhang, C.J. Tian, Nonexistence and existence of positive solutions for difference equations with unbounded delay, Computers Math.Applic., 1998, $36(1)(1998), 1-8$.
[2] Y.J Liu, Global attractivity for population model, J. of Biomath., 15(1)(2000), 65-69..
[3] B.G. Zhang, K. Gopalsamy, Global attractivity in a delay logistic equation with variable parameters, Math.Proc.Camb.Phil.Soc., 107(1990), 579-590.
[4] M.P. Chen, J.S. Yu, Oscillation and global attractivity in a delay logistic difference equation, Difference Equations And Its Applications, 1(1)(1995), 227-237.
[5] Ch.G. Philos, Oscillations in a non-autonomous delay logistic difference equation, Proc. of the Edinburgh Math.Soc., 35(1992), 121-131.
[6] Zh. Zhou, Q.Q. Zhang, Global attractivity of a non-autonomous logistic equation with delays, Computers and Mathematics with Applications, 38(1999), 57-64.
[7] L.H. Erbe, H. Xia, J.S. Yu, Global attractivity in nonlinear delay difference equations, J. Diff. Eq. Appli., 1(1995), 151-161.
[8] V.L.J. Kocic, G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Kluwer Academic, Boston, 1993, 75-80.
[9] Y. Liu, W. Ge, Existence and asymptotic behavior of positive solutions of non-autonomous Food-Limitedmodel with unbounded delay, Zeitschrift fur Analysis und Ihre Anwendungen, 21(4)(2002), 1015-1025.
[10] Y. Liu, W. Ge, Positive solutions of non-autonomous delay model of single population, Fields Institute Communications, 42(2004), 253-271.
[11] Y Liu, W. Ge, On the positive solutions of non-autonomous Hyper-Logistic delay difference equations, Computers and Mathematics with Applications, $47(2004), 1211-1224$.

Yuji Liu
Department of Mathematics, Hunan Institute of Technology Yueyang, Hunan 414000, P.R.China
e-mail: liuyuji888@sohu.com

Received on 08.04.2002 and, in revised from, on 12.12.2003

