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KIGURADZE’S LEMMA

Abstract:The Kiguaradze’s lemma for quasi-differences of a real
sequence is presented. Some examples illustrating the result are
included.
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In the last few years there has been increasing interest in the study of
qualitative behaviour of solutions of difference equations. In many papers
(see for example [2-4], [6-11]) the following Kiguradze’s Lemma is used to
prove the main results.

Let N = {0, 1, . . . }, N(a) = {a, a + 1, . . . }, where a ∈ N.

Lemma 1. (see [1, Th.1.8.11]) Let x be defined on N(a), and x(n) > 0
with ∆mx(n) on constant sign on N(a) and not identically zero. Then, there
exists an integer l, 0 ≤ l ≤ m with m + l odd for ∆mx(n) ≤ 0 or m + l even
for ∆mx(n) ≥ 0 and such that

∆ix(n) > 0 for all large n ∈ N(a), 1 ≤ i ≤ l − 1,

(−1)l+i∆ix(n) > 0 for all n ∈ N(a), l ≤ i ≤ m− 1.

Let ri (i = 1, 2, . . . , m) be positive real sequences. For any real sequence
x we denote

L0x(n) = x(n),

Lix(n) = ri(n)∆Li−1x(n), i = 1, 2, . . . , m, n ∈ N.

The sequences Lix are called quasi-differences of x.
For quasi-differences we can prove similar result, which we formulate as

Lemma 2. Suppose that

(1)
∞∑

n=1

1
ri(n)

= ∞ for all i = 1, 2, . . . , m.
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Let x : N −→ R \ {0} be a sequence of constant sign. If Lmx is of constant
sign and not identically zero for n > n0 and for some j ∈ {1, 2}

(−1)jx(n)Lmx(n) ≥ 0 for n ≥ n0,

then there exists an integer l ∈ {0, 1, . . . , m} with m + l + j even such that

x(n)Lix(n) > 0 for large n and i = 0, 1, . . . , l

(−1)l+ix(n)Lix(n) > 0 for all n ≥ n0 i = l + 1, l + 2, . . . , m.
(2)

To prove this lemma we will need following.

Lemma 3. (see [5])Let (1) holds. If Lm−1x(n) > 0 and Lmx(n) > 0 for
all n ≥ n0, then

lim
n−→∞Lix(n) = ∞ for all i = 0, 1, ..., m− 2.

If Lm−1x(n) < 0 and Lmx(n) < 0 for all n ≥ n0, then

lim
n→∞Lix(n) = −∞ for all i = 0, 1, . . . , m− 2.

Proof of Lemma 2. We proof Lemma for a positive sequence x. (For
negative sequence the proof is similar). We consider two cases with respect
to the sign of Lmx.
Case 1. Lmx(n) ≤ 0 for n ≥ n0.
First we shall prove that Lm−1x(n) > 0 for every n ≥ n0. Suppose that there
exists some n1 ≥ n0 such that Lm−1x(n1) ≤ 0. Since Lm−1x is nonincreasing
and not identically constant for n ≥ n0, there exists n2 ≥ n1 such that

Lm−1x(n) ≤ Lm−1x(n2) < Lm−1x(n1) ≤ 0 for all n ≥ n2.

From Lemma 3 we have lim
n−→∞x(n) = −∞ which is a contradiction to x(n) >

0. Thus Lm−1x(n) > 0 for all n ≥ n0 and there exists a smallest integer
l ∈ {0, 1, ..., m− 1} with m + l odd and

(3) (−1)l+iLix(n) > 0 for every n ≥ n0, i = l, l + 1, ...,m− 1.

Let l > 1. Now suppose

(4) Ll−1x(n) < 0 for n ≥ n0,

then once again from Lemma 3 we get

(5) Ll−2x(n) > 0 for n ≥ n0.
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We remark that (3), (4) and (5) can be unified to

(−1)(l−2)+iLix(n) > 0 for n ≥ n0, i = l − 2, l − 1, ..., m− 1

which is a contradiction to the definition of l.
So, (4) fails and Ll−1x(n) > 0 for all n ≥ n0. From (3) we have Llx(n) > 0.
Therefore and from Lemma 3 we get lim

n−→∞Lix(n) = ∞ for i = 0, 1, ..., l−2.

Thus Lix(n) > 0 for all large n and i = 0, 1, ..., l.

Case 2. Lmx(n) ≥ 0 for n ≥ n0. We consider two subcases.
10 Let n3 ≥ n0 be such that Lm−1x(n) ≥ 0. Since Lm−1x is nondecreasing
and not identically constant for n ≥ n0 then there exist some n4 ≥ n3 such
that Lm−1x(n) > 0 for all n ≥ n4. Therefore, by Lemma 3 we have

lim
n−→∞Lix(n) = ∞ for i = 0, 1, ..., m− 2.

So, Lix(n) > 0 for large n and i = 0, 1, ..., m − 1. This proves the theorem
for l = m.
20 If Lm−1x(n) < 0 for all n ≥ n0 then we find from Lemma 3 that
Lm−2x(n) > 0 for all n ≥ n0. The rest of the proof is the same as in
the Case 1. ¥

Remark 1. If the assumption (1) is not satiesfied then Lemma 2 cannot
be true, as the following example shows.

Example 1. Let x(n) = n and r1(n) = 1
n , r2(n) = 1, r3(n) = (n + 3)(4),

r4(n) = 1
n , r5(n) = 1. Then

L1x(n) =
1
n

> 0

L2x(n) = − 1
n(n + 1)

< 0

L3x(n) = n + 3 > 0

L4x(n) =
1
n

> 0

L5x(n) = − 1
n(n + 1)

< 0.

The divergence of the series
∞∑

n=1

1
ri(n) , i = 1, 2, . . . ,m plays an important

role in study of nonoscillation of difference equation of the form

(E) Lmx(n)± a(n)f(x(n + k)) = 0,

where rm ≡ 1, a is a sequence of positive integers, k is an integer and
f : R −→ R with uf(u) > 0 for u 6= 0. For example if (1) is satisfied, it
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is possible to classify the nonoscillatory solutions of equation (E) in a very
simple way.

Example 2. Consider the difference equation

(E1) ∆((n + 1)∆((n + 1)∆x(n))) =
n + 2

n(n + 1)2
x(n + 2), n ≥ 1

Here we have r1(n) = r2(n) = n + 1, r3(n) ≡ 1, hence (1) is satisfied. For
x(n) > 0 we get L3x(n) = ∆((n + 1)∆((n + 1)∆x(n)))) > 0. So, by Lemma
2 every eventually positive solution of equation (E1) is one of the types:

(I) x(n) > 0, ∆x(n) > 0, ∆((n + 1)∆x(n)) > 0,

(II) x(n) > 0, ∆x(n) > 0, ∆((n + 1)∆x(n)) < 0,

for large n.

Example 3. Consider the difference equation

(E2) ∆((n + 2)2∆(n2∆x(n))) =
1

n(n + 1)(n + 2)
1

x(n)
, n ≥ 1.

Here L3x(n) > 0 for x(n) > 0 too, but condition (1) is not satisfied. Any
eventually positive solution of equation (E2) is one of the following types:

(I) x(n) > 0, ∆x(n) > 0, ∆(n2∆x(n)) > 0,

(II) x(n) > 0, ∆x(n) > 0, ∆(n2∆x(n)) < 0,

(III) x(n) > 0, ∆x(n) < 0, ∆(n2∆x(n)) > 0,

(IV) x(n) > 0, ∆x(n) < 0, ∆(n2∆x(n)) < 0,

for large n.
The sequence xn = 1

n is a solution of equation (E2) for which L0x(n) = 1
n <

0, L1x(n) = − n
n+1 < 0, L2x(n) = −n+2

n+1 < 0, so it is of type (IV).

For k ∈ N we use the usual factorial notation

n(k) = n(n− 1) . . . (n− k + 1) with n(0) = 1.

From Lemma 2 we get following

Lemma 4. Let x : N → R+. Suppose Lmx(n) ≤ 0 and not identically
zero and the sequences ri (i = 1, 2, . . . , m) are nonincreasing. Then, there
exists a large n0 such that

(6) x(n) ≥ M

(m− 1)!
Lm−1x(2m−l−1n)(n− n0)(m−1) for all, ; n ≥ n0,

where M =
m−1∏
i=1

1
ri(n0) .
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Proof. Since the sequences ri (i = 1, . . . , m) are positive and nonin-
creasing, so the condition (1) is satisfied. Then, from Lemma 2 there exists
an integer l such that (2) holds. Therefore, Lm−1x(n) > 0 for all n ∈ N .
Summing from n to 2n− 1 the equality

Lm−1x(n) = rm−1(n)∆Lm−2x(n)

we get

2n−1∑

k=n

Lm−1x(k) ≤ rm−1(n)
2n−1∑

k=n

∆Lm−2x(k)

≤ rm−1(n)Lm−2(2n)− rm−1(n)Lm−2x(n)
≤ −rm−1(n)Lm−2x(n).

Hence

(7) −Lm−2x(n) ≥ 1
rm−1(n)

2n−1∑

k=n

Lm−1x(k) ≥ 1
rm−1(n)

Lm−1x(2n)n.

Now, since Lm−2x(n) < 0 and ∆Lm−3x(n) > 0 for all n ∈ N we have

2n−1∑

k=n

Lm−2x(k) ≥ rm−2(n)
2n−1∑

k=n

∆Lm−3x(k)

≥ rm−2(n)Lm−3x(2n)− rm−2(n)Lm−3x(n)
≥ −rm−2(n)Lm−3x(n).

Therefore, by (7) we get

Lm−3x(n) ≥ −1
rm−2

(n)
2n−1∑

k=n

Lm−2x(k)

≥ 1
rm−2(n)

2n−1∑

k=n

1
rm−1(k)

Lm−1x(2k)k(1)

≥
2∏

i=1

1
rm−i(n)

Lm−1x(22n)
2n−1∑

k=n

(k − n)(1)

≥
2∏

i=1

1
rm−i(n)

Lm−1x(22n)
n(2)

2!
.

After (m− l − 1) steps we obtain

(8) Llx(n) ≥ 1
(m− l − 1)!

m−l−1∏

i=1

1
rm−i(n)

Lm−1x(2m−l−1n)n(m−l−1).
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Next, from (2) we have Llx(n) > 0 for n ≥ n0.
Summing the equality

Llx(n) = rl(n)∆Ll−1x(n)

from n0 to n− 1 we get

n−1∑

k=n0

Llx(k) ≤ rl(n0)
n−1∑

k=n0

∆Ll−1x(k) = rl(n0)Ll−1x(n)− rl(n0)Ll−1x(n)

≤ rl(n0)Ll−1x(n) for n ≥ n0.

Hence, and by (8)

Ll−1x(n) ≥ 1
rl(n0)

n−1∑

k=n0

Llx(k)

≥ 1
rl(n0)

1
(m− l − 1)!

n−1∑

k=n0

m−l−1∏

i=1

1
rm−i(k)

Lm−1x(2m−l−1k)k(m−l−1)

≥ 1
(m− l − 1)!

m−l∏

i=1

1
rm−i(n0)

Lm−1x(2m−l−1n)
n−1∑

k=n0

k(m−l−1)

≥ 1
(m− l)!

m−l∏

i=1

1
rm−i(n0)

Lm−1x(2m−l−1n)(n− n0)(m−l).

Summing again the above inequality we get

Ll−2x(n) ≥ 1
(m− l)!

m−l+1∏

i=1

1
rm−i(n0)

n−1∑

k=n0

Lm−1x(2m−l−1k)(k − n0)(m−l)

≥ 1
(m− l + 1)!

m−l+1∏

i=1

1
rm−i(n0)

Lm−1x(2m−l−1n)(n− n0)(m−l+1)

and after (l − 1) summations, we obtain (6). The proof is complete. ¥

References

[1] R.P. Agarwal, S.R. Grace, Oscillation of certain functional differential
equations, Computers Math. Applic., 38(1999), 143–153.

[2] R.P. Agarwal, Difference equations and inequalities, Second Edition, Re-
vised and Expanded, Marcel Dekker, New York, 2000.



On the discrete version of generalized . . . 83

[3] J.R. Graef, A. Miciano-Carino, C. Qian, A Sturm type comparison
theorem for higher order difference equations, Proc. Second Inter. Conference,
(1995), 263–270.

[4] G. Grzegorczyk, J. Werbowski, Oscillation of high-order linear difference
equation, Comp. Math. Appl., 42(2001), 711–717.

[5] W.T. Li, S.S. Cheng, Classification and existence of positive solutions of a
higher order nonlinear difference equations, Colloq. Math., 83(2000), 137–153.

[6] M. Migda, Nonoscillatory solutions of some higher order difference equa-
tions, Folia Facultatis Scientiarium Naturalium Universitatis Masarykianae
Brunensis Mathematica, 13(2003), 177–185.

[7] M. Migda, On the existence of nonoscillatory solutions of some higher order
difference equations, Applied Mathematics E-Notes, 4(2004), 33–39.

[8] B. Szmanda, Note on the oscillation of certain difference equations, Glasnik
Math., 31(1996), 115–121.

[9] E. Thandapani, P. Sundaram, J.R. Graef, A. Miciano, P.W. Spikes,
Classification of nonoscillatory solutions of higher order neutral type difference
equations, Archivum Math., 31(1995), 263–277.

[10] A. Zafer, R.S. Dahiya, Oscillation of a neutral difference equations, Appl.
Math. Lett., 6(1993), 71–74.

[11] X. Zhou, J. Yan, Oscillatory and asymptotic properties of higher order
nonlinear difference equations, Nonlinear Analysis, Theory, Methods, Applic.,
31(1998), 493–502.

[12] Y. Zhou, Oscillations of higher-order linear difference equations, Computers
Math. Applic., 42(2001), 323–331.

MaÃlgorzata Migda
Institute of Mathematics, Poznań University of Technology
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