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1. Introduction

In the development of the theory of differential and integral equations, in-
tegral inequalities which provide explict bounds on unknown functions take
very important place. In view to widen the scope of such inequalities, in
the past few decades many such new inequalities have been discovered to
achieve a diversity of desired goals, see [1, 3-8] and the references cited
therein. However, in certain situations the available inequalities do not
apply directly and it is desirable to find some new inequalities which would
be equally important in certain applications. In the present paper, we offer
some fundamental integral inequalities which can be used as tools in the
study of various classes of differential and integral equations involving sev-
eral retarded arguments. We also present some basic applications of one of
our results to convey the importance of the results to the literate. We believe
that, the inequalities given here will have a frofound and eduring influence in
the development of the theory of differential and integral equations involving
retarded arguments.

2. Statement of results

In what follows, R denote the set of real numbers, R+ = [0,∞) , I =
[t0, T ) , I1 = [x0, X) and I2 = [y0, Y ) are the given subsets of R , ∆ = I1×I2

and ′ denote the derivative. The first order partial derivatives of a function
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z(x, y) ,x, y ∈ R with respect to x and y are denoted by D1z (x, y) and
D2z (x, y) respectively and D2D1z (x, y) = D1D2z (x, y) .

Our main results are given in the following theorems.

Theorem 1. Let u, a, bi ∈ C (I, R+) and αi ∈ C1 (I, I) be nondecreasing
with αi (t) ≤ t on I for i = 1, ..., n and k ≥ 0 be a constant.

(A1) If

(2.1) u (t) ≤ k +
n∑

i=1

αi(t)∫

αi(t0)

bi (s) u (s) ds,

for t ∈ I, then

(2.2) u (t) ≤ k exp (A (t)) ,

for t ∈ I, where

(2.3) A (t) =
n∑

i=1

αi(t)∫

αi(t0)

bi (σ)dσ,

for t ∈ I.

(A2) If a(t) is nondecreasing for t ∈ I and

(2.4) u (t) ≤ a (t) +
n∑

i=1

αi(t)∫

αi(t0)

bi (s) u (s) ds,

for t ∈ I, then

(2.5) u (t) ≤ a (t) exp (A (t)) ,

for t ∈ I, where A (t) is given by (2.3).

Theorem 2. Let u, bi, αi be as in Theorem 1. Let k ≥ 0, p > 1 be
constants . Let g ∈ C (R+, R+) be nondecreasing function with g (u) > 0 for
u > 0.

(B1) If for t ∈ I,

(2.6) u (t) ≤ k +
n∑

i=1

αi(t)∫

αi(t0)

bi (s) g (u (s)) ds,
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then for t0 ≤ t ≤ t1,

(2.7) u (t) ≤ G−1 [G (k) + A (t)] ,

where A(t) is given by (2.3) and G−1 is the inverse function of

(2.8) G (r) =

r∫

r0

ds

g (s)
, r > 0,

r0 > 0 is arbitrary and t1 ∈ I is chosen so that

G (k) + A (t) ∈ Dom
(
G−1

)
,

for all t lying in the interval [t0, t1] .

(B2) If for t ∈ I,

(2.9) up (t) ≤ k +
n∑

i=1

αi(t)∫

αi(t0)

bi (s) g (u (s)) ds,

then for t0 ≤ t ≤ t2,

(2.10) u (t) ≤ {
H−1 [H (k) + A (t)]

} 1
p ,

where A(t) is given by (2.3) and H−1 is the inverse function of

(2.11) H (r) =

r∫

r0

ds

g
(
s

1
p

) , r > 0,

r0 > 0 is arbitrary and t2 ∈ I is chosen so that

H (k) + A (t) ∈ Dom
(
H−1

)
,

for all t lying in the interval [t0, t2] .

In the following theorems we establish two independent variable versions
of Theorems 1 and 2 which can be used as tools in the study of certain
hyperbolic partial differential equations.

Theorem 3. Let u, a, bi ∈ C (∆, R+) and αi ∈ C1 (I1, I1) , βi ∈ C1 (I2, I2)
be nondecreasing with αi (x) ≤ x on I1 , βi (y) ≤ y on I2 , for i = 1, ..., n
and k ≥ 0 be a constant.
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(C1) If

(2.12) u (x, y) ≤ k +
n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

bi (s, t) u (s, t) dtds,

for (x, y) ∈ ∆, then

(2.13) u (x, y) ≤ k exp (B (x, y)) ,

for (x, y) ∈ ∆, where

(2.14) B (x, y) =
n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

bi (s, t) dtds,

for (x, y) ∈ ∆.

(C2) If a(x, y) is nondecreasing for (x, y) ∈ ∆ and

(2.15) u (x, y) ≤ a (x, y) +
n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

bi (s, t)u (s, t) dtds,

for (x, y) ∈ ∆, then

(2.16) u (x, y) ≤ a (x, y) exp (B (x, y)) ,

for (x, y) ∈ ∆, where B(x, y) is given by (2.14).

Theorem 4. Let u, bi, αi, βi be as in Theorem 3 and k, p, g be as in
Theorem 2.

(D1) If for (x, y) ∈ ∆,

(2.17) u (x, y) ≤ k +
n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

bi (s, t) g (u (s, t)) dtds,

then for x0 ≤ x ≤ x1, y0 ≤ y ≤ y1; x, x1 ∈ I1, y, y1 ∈ I2,

(2.18) u (x, y) ≤ G−1 [G (k) + B (x, y)] ,

where G, G−1 are as in part (B1) of Theorem 2, B (x, y) is given by (2.14)
and x1 ∈ I1 , y1 ∈ I2 are chosen so that

G (k) + B (x, y) ∈ Dom
(
G−1

)
,
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for all x and y lying in [x0, x1] and [y0, y1] respectively.

(D2) If for (x, y) ∈ ∆,

(2.19) up (x, y) ≤ k +
n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

bi (s, t) g (u (s, t)) dtds,

then for x0 ≤ x ≤ x2, y0 ≤ y ≤ y2,

(2.20) u (x, y) ≤ {
H−1 [H (k) + B (x, y)]

} 1
p ,

where H, H−1 are as in part (B2) of Theorem 2 , B(x, y) is given by (2.14)
and x2 ∈ I1, y2 ∈ I2 are chosen so that

H (k) + B (x, y) ∈ Dom
(
H−1

)
,

for all x and y lying in [x0, x2] and [y0, y2] respectively.

3. Proofs of Theorems 1-4

In the proofs, we make use of the following elementary fact.

Lemma. Let a, b ∈ R and a + b ≥ 0. If a > 0, then a + b > 0.

Proof. Suppose that the conclusion is not true, then a+ b ≤ 0. The case
a + b = 0 is trivial. If a + b < 0, i.e. a < −b, then 0 ≤ a + b < −b + b = 0, a
contradidication. Hence the conclusion is true.

Since the proofs of Theorems 1-4 resemble one another, we give the details
for (A1) , (A2) , (C1) only, the proofs of the remaining inequalities can be
completed by following the proofs of the above mentioned inequalities and
closely looking at the proofs of the similar inequalities given in [6,7].

From the hypotheses on αi, βi we observe that α′i (t) ≥ 0 for t ∈ I,
α′i (x) ≥ 0 for x ∈ I1, β′i (y) ≥ 0 for y ∈ I2.

(A1) Let k > 0 and define a function z(t) by the right hand side of (2.1).
Then z (t0) = k, u (t) ≤ z (t), z(t) > 0 by Lemma and

z′ (t) =
n∑

i=1

bi (αi (t))u (αi (t))α′i (t)

≤
n∑

i=1

bi (αi (t)) z (αi (t))α′i (t)
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≤
n∑

i=1

bi (αi (t)) z (t) α′i (t)

i.e.

(3.1)
z′ (t)
z (t)

≤
n∑

i=1

bi (αi (t))α′i (t) .

Integrating (3.1) from t0 to t, t ∈ I and then the change of variables yield

(3.2) z (t) ≤ k exp (A (t)) ,

for t ∈ I. Using (3.2) in u (t) ≤ z (t) we get the inequality in (2.2). If k ≥ 0
we carry out the above procedure with k + ε instead of k, where ε > 0 is an
arbitrary small constant, and subsequently pass the limit ε → 0 to obtain
(2.2).

(A2) First we assume that a(t) > 0 for t ∈ I. From the hypotheses we
observe that for s ≤ αi (t) ≤ t, a (s) ≤ a (αi (t)) ≤ a (t) . In view of this, from
(2.4) we observe that

(3.3)
u (t)
a (t)

≤ 1 +
n∑

i=1

αi(t)∫

αi(t0)

bi (s)
u (s)
a (s)

ds.

Now an application of the inequality in part (A1) to (3.3) yields the required
inequality in (2.5). If a(t) = 0, then from (2.4) we observe that

u (t) ≤ ε +
n∑

i=1

αi(t)∫

αi(t0)

bi (s) u (s) ds,

where ε > 0 is an arbitrary small constant. An application of the inequality
in part (A1) yields

(3.4) u (t) ≤ ε exp (A (t)) .

Now by letting ε → 0 in (3.4) we have u(t) = 0 and hence (2.5) holds.

(C1) Let k > 0 and define a function z(x, y) by the right hand side of
(2.12). Then z (x0, y) = z (x, y0) = k, u (x, y) ≤ z (x, y), z (x, y) > 0 by
Lemma and

D1z (x, y) =
n∑

i=1




βi(y)∫

βi(y0)

bi (αi (x) , t) u (αi (x) , t) dt


α′i (x)
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≤
n∑

i=1




βi(y)∫

βi(y0)

bi (αi (x) , t) z (αi (x) , t) dt


α′i (x)

≤ z (x, y)
n∑

i=1




βi(y)∫

βi(y0)

bi (αi (x) , t) dt


α′i (x)

i.e.

(3.5)
D1z (x, y)
z (x, y)

≤
n∑

i=1




βi(y)∫

βi(y0)

bi (αi (x) , t) dt


α′i (x) .

Keeping y fixed in (3.5), setting x = σ, and integrating it with respect to σ
from x0 to x, x ∈ I1, and making the change of variables we get

(3.6) z (x, y) ≤ k exp (B (x, y)) ,

for (x, y) ∈ ∆. Using (3.6) in u (x, y) ≤ z (x, y) we get the required inequality
in (2.13). The case k ≥ 0 follows as mentioned in the proof of (A1) . ¥

4. Further inequalities

In this section we present the useful variants of the inequalities in Theo-
rem 2.1, part (a1) and Theorem 2.2, part (b1) given in [6] which can be used
as convenient tools in some applications .

Theorem 5. Let u, a, b ∈ C (I, R+) and α ∈ C1 (I, I) be nondecreasing
with α (t) ≤ t on I and k ≥ 0 be a constant. If

(4.1) u (t) ≤ k +

α(t)∫

α(t0)

a (s)


u (s) +

s∫

α(t0)

b (σ) u (σ)dσ


ds,

for t ∈ I, then

(4.2) u (t) ≤ k


1 +

α(t)∫

α(t0)

a (s) exp




s∫

α(t0)

[a (σ) + b (σ)]dσ


ds


 ,

for t ∈ I.
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Theorem 6. Let u, a, b ∈ C (∆, R+) α (x) ∈ C1 (I1, I1), β (y) ∈ C1 (I2, I2)
be nondecreasing with α (x) ≤ x on I1, β (y) ≤ y on I2 and k ≥ 0 be a
constant. If

(4.3) u (x, y) ≤ k +

α(x)∫

α(x0)

β(y)∫

β(y0)


u (s, t) +

s∫

α(x0)

t∫

β(y0)

b (σ, η) u (σ, η) dηdσ


 dtds,

for (x, y) ∈ ∆, then

(4.4) u (x, y) ≤ k


1 +

α(x)∫

α(x0)

β(y)∫

β(y0)

a (m,n)

× exp




m∫

α(x0)

n∫

β(y0)

[a (σ, η) + b (σ, η)] dηdσ


 dndm


 ,

for (x, y) ∈ ∆.

Proof. Here we give the details of Theorem 6 only, the proof of Theo-
rem 5 can be completed similarly, see also [6,7].

From the hypotheses we observe that α′ (x) ≥ 0 for x ∈ I1, β′ (y) ≥ 0
for y ∈ I2. Let k > 0 and define a function z(x, y) by the right hand side
of (4.3). Then z (x0, y) = z (x, y0) = k, u (x, y) ≤ z (x, y) , z(x, y) > 0 by
Lemma and

D1D2z (x, y) = a (α (x) , β (y))

×


u (α (x) , β (y))+

α(x)∫

α(x0)

β(y)∫

β(y0)

b (σ, η) u (σ, η)dηdσ




× β′ (y) α′ (x) ≤ a (α (x) , β (y))

×


z (α (x) , β (y)) +

α(x)∫

α(x0)

β(y)∫

β(y0)

b (σ, η) z (σ, η)dηdσ


β′ (y) α′ (x)

≤ a (α (x) , β (y))


z (x, y) +

α(x)∫

α(x0)

β(y)∫

β(y0)

b (σ, η) z (σ, η)dηdσ


β′ (y) α′ (x) .
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Define a function v(x, y) by

(4.5) v (x, y) = z (x, y) +

α(x)∫

α(x0)

β(y)∫

β(y0)

b (σ, η) z (σ, η)dηdσ.

Then v (x0, y) = z (x0, y) = k, v (x, y0) = z (x, y0) = k, z (x, y) ≤ v (x, y),
z (x, y) > 0 by Lemma,

(4.6) D1D2z (x, y) ≤ a (α (x) , β (y)) v (x, y) β′ (y)α′ (x) ,

and

(4.7) D1D2v (x, y) = D1D2z (x, y)

+b (α (x) , β (y)) z (α (x) , β (y))β′ (y) α′ (x)

≤ a (α (x) , β (y)) v (x, y) β′ (y) α′ (x)

+b (α (x) , β (y)) v (α (x) , β (y))β′ (y) α′ (x)

≤ [a (α (x) , β (y)) + b (α (x) , β (y))] v (x, y) β′ (y)α′ (x) .

Now by following the proof of Theorem 4.2.1 given in [4] with suitable
changes, from (4.7) we obtain

(4.8) v (x, y) ≤ k

× exp




x∫

x0

y∫

y0

[a (α (s) , β (t)) + b (α (s) , β (t))]β′ (t) α′ (s) dtds


 .

By making the change of variables on the right hand side of (4.8) yields

(4.9) v (x, y) ≤ k exp




α(x)∫

α(x0)

β(y)∫

β(y0)

[a (σ, η) + b (σ, η)] dηdσ


 .

Using (4.9) in (4.6) we have

(4.10) D1D2z (x, y) ≤ ka (α (x) , β (y))

× exp




α(x)∫

α(x0)

β(y)∫

β(y0)

[a (σ, η) + b (σ, η)] dηdσ


β′ (y)α′ (x) .
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Keeping x fixed in (4.10), set y = t and integrate with respect to t from y0

to y, y ∈ I2, then keeping y fixed in the resulting inequality, set x = s and
integrate with respect to s from x0 to x, x ∈ I1 to obtain the estimate

(4.11) z (x, y) ≤ k


1 +

x∫

x0

y∫

y0

a (α (s) , β (t))

× exp




α(x)∫

α(x0)

β(y)∫

β(y0)

[a (σ, η) + b (σ, η)] dηdσ


β′ (t)α′ (s) dtds


 .

By making the change of variables on the right hand side of (4.11) and
using the fact that u (x, y) ≤ z (x, y) we obtain the desired bound in (4.4).
The case k ≥ 0 follows as mentioned in the proof of (A1) . The proof is
complete. ¥

5. Some applications

In this section, we present some model applications which display the impor-
tance of our results in the analysis of various classes of differential equations.
Consider the following differential equation involving several retarded argu-
ments (see [2])

(5.1) x′ (t) = f (t, x (t− h1 (t)) , ..., x (t− hn (t))) ,

with the given initial condition

(5.2) x (t0) = x0,

where f ∈ C (I ×Rn, R) , x0 is a real constant and hi ∈ C1 (I, I) be nonin-
creasing with t− hi (t) ≥ 0, h′i (t) < 1, for i = 1, ..., n and hi (t0) = 0.

The following theorem deals with the estimate on the solution of (5.1)-(5.2).

Theorem 7. Suppose that

(5.3) |f (t, u1, ..., un)| ≤
n∑

i=1

bi (t) |ui| ,

where bi (t) are as in Theorem 1, and let

(5.4) Mi = max
t∈I

1
1− h′i (t)

, i = 1, ..., n.
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If x(t) is any solution of (5.1)-(5.2), then

(5.5) |x (t)| ≤ |x0| exp




n∑

i=1

t−hi(t)∫

t0

b̄i (σ)dσ


 ,

for t ∈ I, where b̄i (σ) = Mibi (σ + hi (s)), σ, s ∈ I.

Proof. The solution x(t) of (5.1)-(5.2) can be written as

(5.6) x (t) = x0 +

t∫

t0

f (s, x (s− h1 (s)) , ..., x (s− hn (s))) ds.

Using (5.3) in (5.6) and making the change of variables, then using (5.4) we
have

(5.7) |x (t)| ≤ |x0|+
n∑

i=1

t∫

t0

bi (s) |x (s− hi (s))| ds

≤ |x0|+
n∑

i=1

t−hi(t)∫

t0

b̄i (σ) |x (σ)| dσ,

for t ∈ I. Now a suitable application of the inequality (A1) given in Theo-
rem 1 to (5.7) yields the required estimate in (5.5). ¥

The next theorem deals with the uniqueness of solutions of (5.1)-(5.2).

Theorem 8. Suppose that the function f in (3.5) satisfies the condition

(5.8) |f (t, u1, ..., un)− f (t, v1, ..., vn)| ≤
n∑

i=1

bi (t) |ui − vi| ,

where bi (t) are as in Theorem 1. Let Mi and b̄i (σ) be as in Theorem 7.
Then (5.1)-(5.2) has at most one solution on I.

Proof. Let x(t) and y(t) be two solutions of (5.1)-(5.2) on I, then we
have

(5.9) x (t)− y (t) =

t∫

t0

{f (s, x (s− h1 (s)) , ..., x (s− hn (s)))

−f (s, y (s− h1 (s)) , ..., y (s− hn (s)))} ds.
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Using (5.8) in (5.9) and making the change of variables and using (5.4) we
have

(5.10) |x (t)− y (t)| ≤
n∑

i=1

t∫

t0

bi (s) |x (s− hi (s))− y (s− hi (s))|ds

≤
n∑

i=1

t−hi(t)∫

t0

b̄i (σ) |x (σ)− y (σ)|dσ,

for t ∈ I. A suitable application of the inequality (A1) given in Theorem 1
yields |x (t)− y (t)| ≤ 0. Therefore x(t) = y(t) i.e. there is at most one
solution of (5.1)-(5.2). ¥

The following theorem shows the dependency of solutions of (5.1)-(5.2)
on initial values.

Theorem 9. Let x(t) and y(t) be the solutions of (5.1) with the given
initial conditions

(5.11) x (t0) = x0

and

(5.12) y (t0) = y0

respectively, where x0, y0 are real constants. Suppose that the function f
satisfies the condition (5.8) in Theorem 8. Let Mi, b̄i (σ) be as in Theorem 7.
Then the solutions of (5.1)-(5.2) depends continuously on the initial values
and

(5.13) |x (t)− y (t)| ≤ |x0 − y0| exp




n∑

i=1

t−hi(t)∫

t0

b̄i (σ)dσ


 ,

for t ∈ I.

Proof. Since x(t) and y(t) are the solutions of (5.1)-(5.11) and (5.1)-(5.12)
respectively, we have

(5.14) x (t)− y (t) = x0 − y0 +

t∫

t0

{f (s, x (s− h1 (s)) , ..., x (s− hn (s)))

−f (s, y (s− h1 (s)) , ..., y (s− hn (s)))} ds.
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Using (5.8) in (5.14) and by making the change of variables and using (5.4)
we have

(5.15) |x (t)− y (t)| ≤ |x0 − y0|

+
n∑

i=1

t∫

t0

bi (s) |x (s− hi (s))− y (s− hi (s))| ds

≤ |x0 − y0|+
n∑

i=1

t−hi(t)∫

t0

b̄i (σ) |x (σ)− y (σ)| dσ

for t ∈ I. Now a suitable application of the inequality (A1) given in The-
orem 1 to (5.15) yields the required estimate in (5.13) which shows the
dependency of solutions of (5.1)-(5.2) on initial values.

We note that the inequality in (C1) given in Theorem 3 can be used
to study the similar properties as in Theorems 7-9 for the solutions of hy-
perbolic partial differential equation with many retarded arguments of the
form

(5.16) D1D2z (x, y) = f (x, y, z (x− h1 (x) , y − g1 (y)) , ...,

z (x− hn (x) , y − gn (y))) ,

with the given initial boundary conditions

(5.17) z (x0, y) = a1 (x) , z (x, y0) = a2 (y) , a1 (x0) = a2 (y0) ,

under some suitable conditions on the functions involved in (5.16)-(5.17).
Various other applications of the inequalities given here is left to another
work. ¥

In conclusion, we note that the results given in Theorems 3, 4 and 6 can
be extended very easily to functions involving many indepensent variables.
Here we omit the details.
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