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NECESSARY AND SUFFICIENT CONDITIONS

FOR OSCILLATION OF SOLUTIONS OF A FIRST

ORDER FORCED NONLINEAR DIFFERENCE

EQUATION WITH SEVERAL DELAYS

Abstract: In this paper necessary and sufficient conditions have
been obtained so that every solution of the Neutral Delay Differ-
ence Equation (NDDE)

∆


yn +

k∑

j=1

pj yn−mj


 + qn G (yn−r) = fn

oscillates or tends to zero as n →∞ for different ranges of
k∑

j=1

pj .

This paper improves and generalizes some recent work [2, 6, 8].
The results of this paper hold for linear, sublinear and superlinear
equations and also for homogeneous equations, i.e. when fn ≡ 0.

Key words: oscillation, non-oscillation, asymptotic behaviour,
neutral difference equations.

1. Introduction

In this paper, the authors have obtained necessary and sufficient conditions
so that every solution y = {yn} of the first order difference equation

(E) ∆


yn +

k∑

j=1

pj yn−mj


 + qn G (yn−r) = fn

oscillates or tends to zero as n → ∞ for various ranges of
k∑

j=1
Pj , where

each pj is a scalar, ∆ is the forward difference operator ∆xn = xn+1 − xn,
G ∈ C(R,R), G is non-decreasing and x G(x) > 0 for x 6= 0, qn ≥ 0, fn are
real numbers (n = 0, 1, 2, ...), mj for j = 1, 2, ..., k and r are non negative
integers. We further assume the following conditions for its use in the sequel.
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(H1) There exists a sequence {Fn} such that and lim
n→∞Fn = 0

and ∆Fn = fn.
(H2) Let G satisfy Lipschitz condition in the intervals of the type

[a, b], 0 < a < b.

(H3)
∞∑

n=0
qn = ∞.

The following ranges for pj (j = 1, 2, ... k) are considered in this work.

(A1) −1 <
k∑

j=1
pj ≤ 0, where each pj ≤ 0

(A2) 0 ≤
k∑

j=1
pj < 1, where each pj ≥ 0

(A3)
k∑

j=1
pj > 1, where each pj > 0 and pi > 1 +

∑
j 6=1

pj for some

i ∈ {1, 2, 3, ..., k}
(A4)

k∑
j=1

pj < −1, where each pj < 0 and pi < −1 +
∑
j 6=1

pj for some

i ∈ {1, 2, 3, ..., k}

Our results also hold for the equation

(1) ∆


yn +

k∑

j=1

pj yn−mj


 +

s∑

j=1

qj
n G

(
yn−rj

)
= fn

under the assumption

(2)
∞∑

n=0




k∑

j=1

qj
n


 = ∞

in place of (H3), where rj are nonnegative integers for j = 1, 2, ..., s, {qj
n}

are infinite sequences of positive real numbers for each j and other symbols
are as defined in (E).

In recent years many authors (see [6], [8], [9]) have taken active interest in
studying oscillatory behaviour of solutions of NDDEs. But in the literature
few results are available regarding the oscillation criteria for solutions of
neutral difference equations with several delays. In a recent paper [6] the
authors have obtained the oscillation criteria for the solutions of

(3) ∆ (yn + p yn−m) + qn G (yn−r) = fn.
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One may easily verify that, the technique used in [6] also works if we attempt
to study the same problem for the equation

(4) ∆ (yn + p yn−m) +
s∑

j=1

qj
n G

(
yn−rj

)
= fn,

under primary assumptions (2) in place of (H3). But interestingly, the tech-
nique adopted in [6], fails, when one attempts to study the same problem for
(E). Thus the bottom line is if the several delay terms are taken under the
difference operator, then one may face the real difficulty. This motivated
the author for the present work. Further Lemma 2.1 was repeatedly used to
get the results in [6], which is the discrete analogue of Lemma 1.5.1 in [3].
The notes 1.8 given in [3, p.31] suggests to extend the Lemma 1.5.1 for
application to neutral equations with several delays. But it seems difficult
to extend the Lemmas as suggested in [3]. Hence the author became more
interested to study the present problem for (E).

We may view (E) as the discrete analogue of the neutral delay differential
equation

(F)


y(t) +

k∑

j=1

pj y (t− τj)



′

+ q(t) G(y(t− σ)) = f(t)

about which not much is found in the literature. It is well known that osci-
llation behaviour of delay differential equation and their discrete analogues
can be quite different ([11]). In [10] Yu and Wang have discussed oscillation
of solutions of first order neutral difference equation

(5) ∆ (yn − p yn−m) + qn yn−k = 0, n = 0, 1, 2, ...

for p = 1 and p = −1. In [2], Georgiou et al have studied the oscillatory
and asymptotic behaviour of solutions of Eq.(5).

The results of this paper generalizes many work done for delay difference
equations and NDDEs because our G can be linear, sublinear or superlinear
and fn could be zero (see Corollary 2.3 and Remark 2).

Let ` = max (r,m1,m2, ...,mk). By a solution of Eq.(E) on [0,∞) we
mean a sequence {yn} of real numbers which is defined for n ≥ −` and
which satisfies (E) (for n = 0, 1, 2, ...). A solution {yn} of (E) on [0,∞) is
said to be oscillatory if for every positive integer N > 0 there exists n ≥ N
such that yn yn+1 ≤ 0, otherwise, {yn} is said to be nonoscillatory.
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2. Main results

In all our results in this section though we do not mention exclusively, we
assume G ∈ C(R, R), G is nondecreasing and xG(x) > 0 for x 6= 0.

Theorem 2.1. Suppose that (H1) holds and that
k∑

j=1
pj be in the range

(A1). Then every solution of (E) is oscillatory or tends to zero as n → ∞
if and only if (H3) holds.

Proof. Let us first prove that (H3) is sufficient. Suppose that (H3) holds
and {yn} be a non-oscillatory solution of (E) for n ≥ N0. Setting

(6) zn = yn +
k∑

j=1

pj yn−mj

and

(7) wn = zn − Fn

we obtain from (E)

(8) ∆wn = −qn G (yn−r) .

If yn > 0 for n ≥ N0 then ∆wn ≤ 0, which implies wn > 0 or wn < 0 for
n > N1 ≥ N0 + `. In both the cases we claim that {yn} is bounded. If not
then there exists a subsequence {yni} such that ni → ∞ and yni → ∞ as
i →∞ and yni = max{yn : N1 ≤ n ≤ ni}. We may choose ni large enough
such that ni − ` > N1. Hence

wni = yni +
k∑

j=1

pj yni−mj − Fni ≥

1 +

k∑

j=1

pj


 yni − Fni

implies that wni → ∞ as i → ∞ by (H1), a contradiction because {wn}
is non increasing. Hence our claim holds and as a consequence lim inf

n→∞ yn,
lim sup

n→∞
yn and lim

n→∞wn and exists. If lim inf
n→∞ yn > 0, then yn > β > 0 for

n > N2 > N1. Hence

(9)
∞∑

n=N2+r

qn G (yn−r) > G(β)
∞∑

n=N2+r

qn = ∞

and from (8) we obtain

M−1∑

n=N2+r

qn G (yn−r) = −
M−1∑

n=N2+r

∆wn = wN2+r − wM .
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If we take limit M →∞, it follows that

(10)
∞∑

n=N2+r

qn G (yn−r) < ∞ ,

a contradiction to (9). Thus lim inf
n→∞ yn = 0. Since lim

n→∞wn exists then from

(H1) and (7) it follows that there exists δ ∈ R such that lim
n→∞ zn = δ. If

δ > 0, then

0 < δ = lim
n→∞ zn = lim inf

n→∞


yn +

k∑

j=1

pj yn−mj




≤ lim inf
n→∞ yn + lim sup

n→∞




k∑

j=1

pj yn−mj




≤
k∑

j=1

lim sup
n→∞

pj yn−mj =
k∑

j=1

pj lim inf
n→∞ yn−mj = 0,

a contradiction. If δ ≤ 0 then

0 ≥ δ = lim
n→∞ zn = lim sup

n→∞


yn +

k∑

j=1

pj yn−mj




≥ lim sup
n→∞

yn + lim inf
n→∞




k∑

j=1

pj yn−mj




≥ lim sup
n→∞

yn +
k∑

j=1

lim inf
n→∞ pj yn−mj

≥
(

lim sup
n→∞

yn

) 
1 +

k∑

j=1

pj


 .

Hence lim sup
n→∞

yn ≤ 0 by (A1), which gives lim
n→∞ yn = 0 . If yn < 0 for large

n, then we proceed as above and prove lim
n→∞ yn = 0. Thus the sufficiency

part of the theorem is proved.
In order to prove that the condition (H3) is necessary we assume that

(11)
∞∑

n=0

qn < ∞ ,
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and show that (E) admits a positive solution which does not tend to zero
as n → ∞, when the limit exists. It is possible to choose an integer N > 0
such that for n ≥ N ,

(12) G(1)
∞∑

j=n

qj <
1
10


1 +

k∑

j=1

pj


 for |Fn| < 1

10


1 +

k∑

j=1

pj


 .

Let X = `N∞, the set of all real bounded sequences x = {xn}, n ≥ N . For
x ∈ X, we define ‖x‖ = sup{|xn| : n ≥ N}. Clearly X is a Banach space
with respect to the above norm. Let K = {x ∈ X : xn ≥ 0 forn ≥ N}. For
x, y ∈ X, we define x ≤ y if and only if y − x ∈ K. Thus X is a partially
ordered Banach space.
Let

W =



x ∈ X :

1
10


1 +

k∑

j=1

pj


 ≤ xn ≤ 1, n ≥ N



 .

If x0 = {x0
n} where x0

n = 1
10

(
1 +

∑k
j=1 pj

)
for n ≥ N , then x0 ∈ W and

x0 = inf W . Further, let φ ⊂ W ∗ ⊂ W . Then

W ∗ =



x ∈ X : α ≤ xn ≤ β, n ≥ N, α ≥ 1

10


1 +

k∑

j=1

pj


 and β ≤ 1



 .

If x∗ = {x∗n}, where x∗n = 1 for n ≥ N , then x∗ = sup W ∗ and x∗ ∈ W . For
y ∈ W , define

(Ty)n =





(Ty)N+` , N ≤ n ≤ N + ` ,

−
k∑

j=1
pj yn−mj +

∞∑
j=n

qj G (yj−r)

+Fn + 1
5

(
1 +

k∑
j=1

pj

)
, n ≥ N + ` .

Hence for n ≥ N ,

(Ty)n ≤ −
k∑

j=1

pj +
1
5


1 +

k∑

j=1

pj


 +

1
5


1 +

k∑

j=1

pj




=
1
5


2− 3

k∑

j=1

pj


 < 1

and

(Ty)n ≤ − 1
10


1 +

k∑

j=1

pj


 +

1
5


1 +

k∑

j=1

pj


 =

1
10


1 +

k∑

j=1

pj



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by (12). Hence T : W → W . Further, for x, y ∈ W with x ≤ y, we have
Tx ≤ Ty. Hence T has a fixed point in W by Knaster-Tarski fixed point
theorem (see [3, p.30]), which is the required positive solution of (E). Hence
the theorem is completely proved. ¥

Remark 1. (H1) ⇐⇒
∣∣∣∣
∞∑

n=0
fn

∣∣∣∣ < ∞ .

Example 1. From Theorem 1. it follows that every non-oscillatory so-
lutions of

∆
(

yn − 1
2
yn−1 − 1

3
yn−2

)
+ (yn−1)

3 = e−3n+3 +
1

en+1

(
1 +

e3

3
+

e2

6
− 3e

2

)

tends to zero as n → ∞. In particular y = {e−n} is such a solution of this
equation.

Example 2. The equation

∆


yn +

3∑

j=1

2−j yn−3j


 +

1
n2

G (yn−2) =
G(1)
n2

has a positive solution y = {yn} where yn = 1 for every n. Here qn = 1
n2

and fn = G(1)
n2 satisfies the conditions of the theorem. This illustrates the

necessary part of Theorem 1.

Theorem 2.2. Let
k∑

j=1
pj be in the range (A2). Suppose that (H1) holds.

Then (i). (H3) holds implies every solution of (E) oscillates or tends to zero
as n →∞. (ii). Every solution of (E) oscillates or tends to zero as n →∞
such that (H2) holds, implies (H3) holds.

Proof. Let us prove (i). Suppose (H3) holds and {yn} be an ultimately
positive solution of (E) for large n. Then setting zn and wn as in (6) and (7)
we get (8), which implies wn > 0 or wn < 0 for n ≥ N1. We prove {yn} is
bounded and lim inf

n→∞ as in the proof of Theorem 1. If wn > 0 then lim
n→∞wn

exists. Hence from (H1) and (7) it follows that lim
n→∞ zn = δ ∈ R. As zn ≥ 0,

so δ ≥ 0. We claim δ = 0, if not then δ > 0, which implies

δ = lim
n→∞ zn = lim inf

n→∞


yn +

k∑

j=1

pj yn−mj




≤ lim inf
n→∞ yn + lim sup

n→∞

k∑

j=1

(
pj yn−mj

)
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≤
k∑

j=1

pj lim sup
n→∞

yn−mj =




k∑

j=1

pj


 α ,

where α = lim sup
n→∞

yn. Hence we get

(13) α ≥ δ
k∑

j=1
pj

> δ.

Again

δ = lim sup
n→∞

zn = lim sup
n→∞


yn +

k∑

j=1

pj yn−mj




≥ lim sup
n→∞

yn + lim inf
n→∞




k∑

j=1

pj yn−mj




≥ α +
k∑

j=1

pj lim inf
n→∞

(
pj yn−mj

) ≥ α +
k∑

j=1

pj

(
lim inf
n→∞ yn−mj

)
= α ,

a contradiction due to the inequality (13). Hence we conclude δ = 0 and
from zn > yn, it follows that lim supn→∞ yn ≤ 0. Hence lim

n→∞ yn = 0.
Further if wn < 0 then either lim

n→∞wn = −∞ or lim
n→∞wn = δ < 0. But in

both the cases lim
n→∞ zn = δ < 0, which is a contradiction because zn > 0 for

large n. The proof for the case yn < 0 for large n is similar. Hence (i) is
proved.

Next let us prove (ii). Suppose to the contrary that (11) holds. From
this and (H1), we can find a large positive integer N such that for n ≥ N

L

∞∑

j=n

qj <
1
5


1−

k∑

j=1

pj


 and |Fn| < 1

10


1−

k∑

j=1

pj




where L = max{G(1), L1}, L1 is the Lipschitz constant of G in 1
10 [(1 −

k∑
j=1

pj), 1]. Let X = `N∞ and S = {x ∈ X : 1
10(1−

k∑
j=1

pj) ≤ xn ≤ 1, n ≥ N},
S is a complete metric space, where the metric is induced by the norm in
X. For y ∈ S, define

(Ty)n =





(Ty)N+` , N ≤ n ≤ N + ` ,

−
k∑

j=1
pjyn−mj +

∞∑
j=n

qj G (yj−r)

+Fn + 1
5

(
1 + 4

k∑
j=1

pj

)
, n ≥ N + ` .
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Hence for n ≥ N ,

(Ty)n ≤ 1
5


1−

k∑

j=1

pj


 +

1
10


1−

k∑

j=1

pj


 +

1
5


1 + 4

k∑

j=1

pj




=
1
2


1 +

k∑

j=1

pj


 < 1.

(Ty)n ≥ −
k∑

j=1

pj +
1
10


1−

k∑

j=1

pj


 +

1
5


1 + 4

k∑

j=1

pj




=
1
10


1−

k∑

j=1

pj


 .

Hence T : S → S. Further for u, ν ∈ S

‖T u− T ν‖ = sup {|(Tu)n − (Tν)n| : n ≥ N}

≤



k∑

j=1

pj +
1
5


1−

k∑

j=1

pj





 ‖u− v‖

This shows T is a contraction. Hence T has a unique fixed point y = {yn}
in S, which is the required positive solution of (E) on [N + `,∞) by Banach
contraction principle. Hence the theorem is completely proved. ¥

Corollary 2.3. Theorem 2.1 and 2.2 are true when pj = 0 for every
j. Hence if (H1) and (H3) holds then every solution of the delay difference
equation

(D) ∆yn + qn G (yn−r) = fn

oscillates or tends to zero as n →∞.

Theorem 2.4. Let
k∑

j=1
pj be in the range (A3). Suppose that (H1) holds.

Then

(i) (H3) holds implies that every solution of (E) oscillates or tends to
zero as n →∞,

(ii) Every solution of (E) oscillates or tends to zero as n →∞ such that
(H2) holds implies (H3) holds.
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Proof. Let us prove (i) Suppose that (H3) holds and y = {yn} be an
ultimately positive solution of (E). Then setting zn and wn as in (6) and
(7), we obtain (8), which implies wn > 0 or wn < 0 for n ≥ N1. Suppose
wn > 0 for n ≥ N1 which implies lim

n→∞wn = δ ∈ R. Using (H1), we obtain

lim
n→∞ zn = δ ≥ 0. We prove {yn} is bounded and lim inf

n→∞ yn = 0 as in the
proof of Theorem 1. Then

δ = lim
n→∞ zn = lim inf

n→∞


yn +

k∑

j=1

pj yn−mj


(14)

≤ lim sup
n→∞


yn +

∑

j 6=1

pj yn−mj


 + lim inf

n→∞ pi yn−mi

=


1 +

∑

j 6=1

pj


 lim sup

n→∞
yn

and

δ = lim
n→∞ zn = lim sup

n→∞


yn +

k∑

j 6=1

pj yn−mj


(15)

≥ lim inf
n→∞ yn + lim sup

n→∞




k∑

j=1

pj yn−mj




≥ lim sup
n→∞

pi yn−mi + lim inf
n→∞

∑

j 6=i

pj yn−mj

≥ pi lim sup
n→∞

yn +
∑

j 6=i

lim inf
n→∞ pj yn−mj

≥ pi lim sup
n→∞

yn.

From (14) and (15) we obtain

1 +

∑

j 6=i

pj


 lim sup

n→∞
yn ≥ pi lim sup

n→∞
yn

which implies 



1 +

∑

j 6=i

pj


− pi


 lim sup

n→∞
yn ≥ 0 .

Hence by (A3), we obtain lim
n→∞ yn ≤ 0. Thus we have lim

n→∞ yn = 0. If wn < 0
then lim

n→∞wn = −∞ or lim
n→∞wn = ` < 0 exists. In both the cases zn < 0 for
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large n, a contradiction. We can hold similar arguments for the case yn < 0
for large n. Hence (i) is proved.

Next let us prove (ii) and choose

0 < a < pi − 1−
∑

j 6=i

pj

and

λ >

a

(
1 +

k∑
j=1

pj

)

(
pi − 1− ∑

j 6=i

pj

) > 0 .

Set

H =
(λ + a)

pi
and h =

1
p2

i


−(λ + a)


1 +

∑

j 6=i

pj


− pi(a− λ)




we claim h > 0, otherwise

−(λ + a)


1 +

∑

j 6=i

pj


 ≤ pi(a− λ) ⇔ λ ≤

a

(
1 +

k∑
j=1

pj

)

(
pi − 1− ∑

j 6=i

pj

)

a contradiction. Hence h > 0. Further if H ≤ h then

(λ + a)
pi

≤ 1
p2

i



−(λ + a)


1 +

∑

j 6=i

pj


− pi(a− λ)





⇔ 2pi a ≤ −(λ + a)


1 +

∑

j 6=i

pj


 ,

a contradiction. Hence H > h > 0. We may complete the proof by procee-
ding as in the proof of Theorem 2. and with the following changes

L
∞∑

j=n

qj <
a

2
and |Fn| < a

2
for n ≥ N,

where L = max{L1, G(H)}, L1 is the Lipschitz constant of G in [h,H].
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Let X = `N∞ and S = {x ∈ X : h ≤ xn ≤ H}. For y ∈ S, we define

(Ty)n =





− 1
pi

yn+mi − 1
pi

∑
j 6=i

pj yn−mj+mi + 1
pi

∞∑
j=n+mi

qj G (yj−r)×

× λ
pi

+ 1
pi

Fn+mi for n ≥ N + ` ,

(Ty)N+` , N ≤ n ≤ N + ` .

For y ∈ S,

(Ty)n ≤

(
L

∞∑
j+n+mj

qj

)

pi + (λ/pi) + (a/2pi)
≤ (a + λ)

pi
= H ,

and

(Ty)n ≥ −H

pi
−




H
∑
j 6=i

pj

pi


 +

λ

pi
− a

2
pi

=
1
p2

i



−(λ + a)


1 +

∑

j 6=i

pj


 + pi(λ− a)



 = h .

Hence T : S → S and for u, ν ∈ S

‖Tu− Tν‖ ≤ µ ‖u− ν‖ , where 0 < µ =
1
pi


1 +

a

2
+

∑

j 6=i

pj


 < 1 .

Hence by Banach contraction principle T has a fixed point, which is the
required positive solution. ¥

Example 3. We may note that yn = en + e−n is an unbounded solution
of the equation

∆ (yn − (1 + e)yn−1) + (e− 1)yn−1 =
(
2e2 + e−1 − 2− e

)
e−n, n ≥ 0 .

Here p = −(1 + e) < −1 and
∑

fn < ∞.

The above example is a source of motivation for the next theorem.

Theorem 5. Let
k∑

j=1
pj be in the range (A4) and suppose that (H1) holds.

Then (i) (H3) holds implies every bounded solution of (E) oscillates or tends
to zero as n →∞ and (ii) every bounded solution of (E) oscillates or tends
to zero as n →∞ such that (H2) holds implies (H3) holds.
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Proof. Let if possible y = {yn} be an ultimately positive bounded
solution of (E) for n ≥ N1. Then setting zn and wn as in (6) and (7) we
obtain (8), which implies wn > 0 or wn < 0 for n ≥ N2 ≥ N1. Then
lim

n→∞wn = δ ∈ R and by (H1) lim
n→∞ zn = δ. We prove lim inf

n→∞ yn = 0 as in
Theorem 2.1. Let lim sup

n→∞
yn = β. If δ ≥ 0 then

0 ≤ δ = lim inf
n→∞


yn +

k∑

j=1

pj yn−mj




≤ lim sup
n→∞

yn + lim inf
n→∞




k∑

j=i

pj yn−mj




≤ β + lim inf
n→∞ pi yn−mi + lim sup

n→∞

∑

j 6=i

pj yn−mj

≤ β + pi lim sup
n→∞

yn−mi +
∑

j 6=i

lim sup
n→∞

pj yn−mj ≤ (1 + pi) β.

Hence β = 0 as pi < 1, which implies lim
n→∞ yn = 0. If δ < 0 then we get

δ = lim
n→∞ zn = lim inf

n→∞


yn +

k∑

j=1

pj yn−mj


(16)

≤ lim sup
n→∞

yn + lim inf
n→∞




k∑

j=i

pj yn−mj




≤ (1 + pi) β +
∑

j 6=i

pj lim inf
n→∞ yn−mj = (1 + pi) β

and

δ = lim sup
n→∞

zn ≥ lim inf
n→∞ y + lim sup

n→∞

k∑

j=1

pj yn−mj(17)

≥ lim sup
n→∞

pi yn−mi + lim inf
n→∞

∑

j 6=i

pj yn−mj ≥

∑

j 6=i

pj


 β.

From (16) and (17) we obtain


(1 + pi)−

∑

j 6=i

pi


 β ≥ 0 .
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Hence from (A4) we conclude β ≤ 0. Then limn→∞ yn = 0. Thus (i) is
proved. The proof of (ii) is similar to that of Theorem 2.4 (ii), hence is
omitted. ¥

Remark 2. In view of Remark 1 all the results in [6] follow as particular
cases of our results. It may be noted that the technique used in our results
is different from that of [6]. Also the work of this paper generalize some of
the results of [2], [8].

Remark 3. The condition imposed on pi in (A3) and (A4) are required for
both the necessary and sufficient part of the Theorem 2.4 and Theorem 2.5.

Note. One may easily find example to illustrate all other theorems as we
have done for Theorem 2.1.

3. Conclusion

In this section we mainly discuss some of the questions un answered in this
paper. If we assume that {yn} is unbounded in Theorem 2.5., then it appears
very hard to prove: either all solutions of (E) oscillate or tend to ±∞. Again

for the range where
k∑

j=1
pj = ±1, we do not have any result. We dont find

any such result in literature as well. It would also be interesting, if one drops
(H2) and still find a positive solution as in Theorems 2.2, 2.4, 2.5. One may
easily find that our results can be extended to neutral difference equations
with variable coefficients

∆


yn +

k∑

j=1

pj
n yn−mj


 +

s∑

j=1

qj
n G

(
yn−rj

)
= fn

under the primary assumption (2), to generalize the work in [9].
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