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Abstract: We investigate certain class of linear operators in
polynomial weighted spaces of differentiable functions of one and
two variables. We introduce strong differences of functions and
operators and we give approximation theorems for them.
The present theorems show that strong approximation is more
general than normal approximation.
Section I is devoted strong approximation of functions of one vari-
able and Section II of functions of two variables.
This note is motivated by resultus on strong approximation con-
nected with Fourier series ([5], [8])
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I. Strong approximation of functions of one variable

1. Introduction

1.1. Analogously as in [1] let p ∈ N0 := {0, 1, 2, ...},

(1) w0(x) := 1, wp(x) := (1 + xp)−1 if p ≥ 1,

for x ∈ R0 := [0,∞), and let Cp be the polynomial weighted space of all
real-valued functions f continuous on R0 for which wpf is bounded in R0

and the norm is defined by the formula

(2) ‖f‖p ≡ ‖f(·)‖p := sup {wp(x) |f(x)| : x ∈ R0} .

It is obvious that Cp ⊂ Cq for p < q and ‖f‖q ≤ ‖f‖p for f ∈ Cp.
Let r ∈ N0 be a fixed number. Denote by Cr the set of all r-times

differentiable functions f ∈ Cr for which derivatives f (m) ∈ Cr−m for all
0 ≤ m ≤ r. Clearly C0 ≡ C0.
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In this paper we shall apply the modulus of continuity of f ∈ C0, i.e.

(3) ω(f ; t) := sup {|f(x)− f(y)| : x, y ∈ R0, |x− y| ≤ t} , t ≥ 0.

It is well known ([9]) that if f ∈ C0, then

(4) ω(f ;λt) ≤ (λ + 1) ω(f ; t) for λ, t ∈ R0.

If f ∈ C0 is uniformly continuous function, then lim
t→0+

ω(f ; t) = 0.

We shall apply the following inequalities obtained from (1) for p, q, r ∈ N0

and p < q:

(5)
wq(x)
wp(x)

≤ 2, (wp(x))r ≤ wpr(x),
(
wp(x))−r ≤ 2r(wpr(x)

)−1
,

for x ∈ R0. Moreover, if p ∈ N , then

(6)
1

wp(t)
≤ 2p

(
1

wp(x)
+ |t− x|p

)
for all t, x ∈ R0.

We shall denote by Mk(a, b), k ∈ N , suitable positive constants depending
only on indicated parameters a, b.

1.2. In [1] were proved direct and inverse approximation theorems for
Szász-Mirakyan operators

Sn(f ;x) := e−nx
∞∑

k=0

(nx)k

k!
f

(
k

n

)
and Baskakov operators

Vn(f ;x) :=
∞∑

k=0

(
n− 1 + k

k

)
xk (1 + x)−n−k f

(
k

n

)
,

x ∈ R0, n ∈ N = {1, 2, ...}, of functions f ∈ Cp, p ∈ N0.
In [6] was proved that the following modified Baskakov operators

Vn;r(f ;x) :=
∞∑

k=0

(
n− 1 + k

k

)
xk (1 + x)−n−k

r∑
j=0

f (j)
(

k
n

)
j!

(
x− k

n

)j

,

(x ∈ R0, n ∈ N) of r-times differentiable functions f have better approxi-
mation properties than Vn(f).

1.3. In §2 of this section we shall introduce the class of linear operators
of Baskakov and Kantrovich type ([3]) in the space Cr and we shall examine
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strong differences of these operators and f ∈ Cr. The main theorems will
be given in §3.

The problem of strong approximation with the power q > 0 is well known
for 2π-periodic functions and their Fourier series ([5], [8]).

In [7] is investigated the strong approximation of functions f ∈ C0 by
some linear operators. In this paper we shall examine this problem for
functions f ∈ Cr and introduced operators.

2. Definitions and lemmas

2.1. Analogously to [7] we denote by Ω the set of all infinite matrices
A = [ank(·)], n ∈ N , k ∈ N0, of functions ank ∈ C0 and having properties:

(i) ank(x) ≥ 0 for x ∈ R0, n ∈ N, k ∈ N0,

(ii)
∞∑

k=0

ank(x) = 1 for x ∈ R0, n ∈ N,

(iii) the series
∞∑

k=0

krank(x) is uniformly convergent onR0 for all n, r ∈ N

and its sum is a function belonging to Cr,

(iv) for every r ∈ N there exists positive constantM1(r, A) independent on
x ∈ R0 andn ∈ N such that for the functions

(7) Tn,r(x;A) :=
∞∑

k=0

ank(x)
(

k

n
− x

)r

, x ∈ R0, n ∈ N,

(belonging to Cr) there holds the inequality

(8) ‖Tn,2r( · ;A)‖2r ≤ M1(r, A) n−r, n ∈ N.

2.2. Let A ∈ Ω and let r ∈ N0. For f ∈ Cr we define operators

(9) Ln;r(f ;A;x) :=
∞∑

k=0

ank(x) n

∫
Ink

Fr(t, x)dt, x ∈ R0, n ∈ N,

where Ink :=
[

k
n , k+1

n

]
and

(10) Fr(t, x) :=
r∑

j=0

f (j)(t)
j!

(x− t)j .
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If r = 0 and f ∈ C0, then

(11) Ln;0(f ;A;x) :=
∞∑

k=0

ank(x) n

∫
Ink

f(t)dt, x ∈ R0, n ∈ N.

The properties (i)-(iv) of A imply that Ln;r(f ;A), n ∈ N , is well defined
for every f(x) = xp, p ∈ N0, and

(12) Ln;r(1;A;x) = 1 for x ∈ R0, n ∈ N.

In Lemma 6 we shall prove that Ln;r(f ;A) are well defined for every f ∈ Cr.
In Lemma 7 we shall show that for f ∈ Cr and Ln;r(f ;A) there exist the
following strong differences with the power q > 0:
(13)

Hq
n;r(f ;A;x) :=

( ∞∑
k=0

ank(x)
∣∣∣∣n ∫

Ink

Fr(t, x)dt

∣∣∣∣q
) 1

q

, x ∈ R0, n ∈ N.

In particular for f ∈ C0 we have

(14) Hq
n;0(f ;A;x) :=

( ∞∑
k=0

ank(x)
∣∣∣∣n ∫

Ink

f(t)dt− f(x)
∣∣∣∣q
) 1

q

.

By (9)-(12) we get

(15) Ln;r(f ;A;x)− f(x) :=
∞∑

k=0

ank(x) n

∫
Ink

(Fr(t, x)− f(x)) dt,

for every f ∈ Cr, r ∈ N0, and x ∈ R0 and n ∈ N .
From (13)-(15) and properties (i) and (ii) of A we deduce that

(16) |Ln;r(f ;A;x)− f(x)| ≤ H1
n;r(f ;A;x)

and

(17) Hp
n;r(f ;A;x) ≤ Hq

n;r(f ;A;x) if 0 < p < q < ∞,

for every f ∈ Cr, x ∈ R0 and n ∈ N .

2.3. First we shall prove some inequalities.

Lemma 1. For every A ∈ Ω and s ∈ N there exists M2(s,A) = const.
> 0 such that

(18) ws(x)Ln;0 (|t− x|s;A;x) ≤ M2(s,A) n−
s
2 , x ∈ R0, n ∈ N.
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Proof. From (11), (12) and (i) and by the Hölder inequality and (7) we
get

Ln;0 (|t− x|s;A;x) ≤
∞∑

k=0

ank(x)
(∣∣∣∣k + 1

n
− x

∣∣∣∣s +
∣∣∣∣kn − x

∣∣∣∣s) n

∫
Ink

dt

≤ (2s + 1)
∞∑

k=0

ank(x)
∣∣∣∣kn − x

∣∣∣∣s +
2s

ns

≤ (2s + 1)

( ∞∑
k=0

ank(x)
(

k

n
− x

)2s
) 1

2
( ∞∑

k=0

ank(x)

) 1
2

+
2s

ns

= (2s + 1) (Tn;2s(x;A))
1
2 + 2s n−s, x ∈ R0, n ∈ N.

Next, by (1), (5) and (8) we obtain (18). �

Lemma 2. For every A ∈ Ω, p ∈ N0 and s ∈ N0 there exists M3 =
M3(p, s, A) = const. > 0 such that

(19) wp+s(x) Ln;0

(
|t− x|s

wp(t)
;A;x

)
≤ M3(s,A) n−

s
2

for all x ∈ R0 and n ∈ N .

Proof. If p = s = 0, then (19) follows from (18). If p ∈ N and s ∈ N0,
then by (11) and (6) we have

Ln;0

(
|t− x|s

wp(t)
;A;x

)
≤ 2p

wp(x)
Ln;0 (|t− x|s ;A;x) +

+2p Ln;0

(
|t− x|p+s;A;x

)
, x ∈ R0, n ∈ N,

which by (1) and Lemma 1 imply (19). �

Applying (5), (6) and Lemma 2, we easily obtain

Lemma 3. For every A ∈ Ω, p ∈ N0, q ∈ N and s ∈ N0 there exists
M4 = M4(p, q, s, A) = const. > 0 such that

w(p+s)q(x) Ln;0

((
|t− x|s

wp(t)

)q

;A;x
)
≤ M4 n−

sq
2 ,

for x ∈ R0 and n ∈ N.

Applying the Hölder inequality, we immediately obtain
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Lemma 4. Let k ∈ N0 and n ∈ N be fixed numbers. Then for every
function h continuous on Ink =

[
k
n , k+1

n

]
and q > 1 we have∣∣∣∣n ∫

Ink

h(t)dt

∣∣∣∣q ≤ n

∫
Ink

|h(t)|qdt.

2.4. Now we shall give main lemmas.

Lemma 5. For every A ∈ Ω and p ∈ N0 there exists M5(p, A) = const.
> 0 such that

(20)
∥∥∥∥Ln;0

(
1

wp(t)
;A; ·

)∥∥∥∥
p

≤ M5(p, A), n ∈ N,

and

(21) ‖Ln;0 (f ;A; ·)‖p ≤ M5(p, A) ‖f‖p, n ∈ N,

for every f ∈ Cp.
The formula (11) and (21) and the property (i) of A show that Ln;0(f ;A),

n ∈ N , is a positive linear operator from the space Cp into Cp.

Proof. The inequality (20) follows from (19) with s = 0 and p ∈ N0.
By (11), (1) and (2) we have

‖Ln;0(f ;A; ·)‖p ≤ ‖f‖p

∥∥∥∥Ln;0

(
1

wp(t)
;A; ·

)∥∥∥∥
p

,

for every f ∈ Cp, p ∈ N0, and n ∈ N . Using (20), we obtain (21). �

Lemma 6. Let A ∈ Ω and r ∈ N . Then there exists M6(r, A) = const.
> 0 such that for every f ∈ Cr and n ∈ N we have

(22) ‖Ln;r(f ;A; ·)‖r ≤ M6(r, A)
r∑

j=0

∥∥∥f (j)
∥∥∥

r−j
.

The formulas (9) and (10) and the inequality (22) show that Ln;r(f ;A) is a
linear operator from the space Cr into Cr.

Proof. From (9), (10), (1) and (2) we deduce that

|Ln;r(f ;A;x)| ≤
∞∑

k=0

ank(x)
r∑

j=0

n

j!

∫
Ink

∣∣∣f (j)(t)
∣∣∣ |x− t|jdt

≤
r∑

j=0

1
j!

∥∥∥f (j)
∥∥∥

r−j
Ln;0

(
|t− x|j

wr−j(t)
;A;x

)
,
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for every f ∈ Cr, x ∈ R0 and n ∈ N . Now applying Lemma 2, we easily
obtain (22). �

Lemma 7. Let A ∈ Ω, r ∈ N0 and q > 0. Then there exists M7 ≡
M7(q, r, A) = const. > 0 such that

(23)
∥∥Hq

n;r(f ;A; ·)
∥∥

r
≤ M7

r∑
j=0

∥∥∥f (j)
∥∥∥

r−j

for every f ∈ Cr and n ∈ N .
The formula (13) and (23) show that Hq

n;r(f ;A; ·) ∈ Cr for every f ∈ Cr

and q > 0.

Proof. First let q ∈ N . If r = 0, then by (1), (2), (14) and properties
(i) and (ii) of A we get

∥∥∥Hq
n;0(f ;A; ·)

∥∥∥
0
≤ 2‖f‖0

( ∞∑
k=0

ank(x)

) 1
q

= 2‖f‖0, n ∈ N.

If r ∈ N , then by (10), (1) and (2) we have∣∣∣∣n ∫
Ink

Fr(t, x)dt− f(x)
∣∣∣∣ ≤ n

r∑
j=0

1
j!

∥∥∥f (j)
∥∥∥

r−j

∫
Ink

|x− t|j

wr−j(t)
dt(24)

+
‖f‖r

wr(x)
, x ∈ R0, n ∈ N.

Using (24) to (13) and by the Minkowski inequality and properties (i), (ii)
of A, we get

Hq
n;r(f ;A;x) ≤

r∑
j=0

∥∥∥f (j)
∥∥∥

r−j

( ∞∑
k=0

ank(x)
(

n

∫
Ink

|x− j|j

wr−j(t)
dt

)q
) 1

q

+ ‖f‖r
1

wr(x)
, x ∈ R0, n ∈ N.

Further, by (5) and Lemma 4 we have

wr(x)Hq
n;r(f ;A;x) ≤ 4

r∑
j=0

∥∥∥f (j)
∥∥∥

r−j

(
wrq(x) Ln;0

(
|x− j|jq

w(r−j)q(t)
;A;x

)) 1
q

+ ‖f‖r, x ∈ R0, n ∈ N,

which by Lemma 3 and (2) yields (23) for q ∈ N .
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If 0 < q 6∈ N , then [q] + 1 belongs to N and q < [q] + 1 ([q] denotes the
integral part of q ). This fact and (17) imply that∥∥Hq

n;r(f ;A; ·)
∥∥

r
≤
∥∥∥H [q]+1

n;r (f ;A; ·)
∥∥∥

r
n ∈ N,

and by (23) with the power [q] + 1 we obtain (23) for 0 < q 6∈ N .
Thus the proof is completed. �

3. Theorem and corollaries

3.1. Now we shall prove the main theorem.

Theorem 1. Let be given A ∈ Ω, r ∈ N0 and q > 0. Then there exists
M8 = M8(q, r, A) = const. > 0 such that for every f ∈ Cr and n ∈ N we
have

(25)
∥∥Hq

n;r(f ;A; ·)
∥∥

r+1
≤ M8 n−

r
2 ω
(
f (r);n−

1
2

)
.

Proof. a) First let r = 0 and q ∈ N . For f ∈ C0 we get from (14)

Hq
n;0(f ;A;x) ≤

( ∞∑
k=0

ank(x)
(

n

∫
Ink

|f(t)− f(x)|dt

)q
) 1

q

and by (3) and (4) we have

|f(t)− f(x)| ≤ ω(f ; |t− x|) ≤
(√

n |t− x|+ 1
)

ω

(
f ;

1√
n

)
,

for t, x ∈ R0 and n ∈ N . Consequently,

Hq
n;0(f ;A;x) ≤ ω

(
f ;

1√
n

)( ∞∑
k=0

ank(x)
(

n
3
2

∫
Ink

|t− x|dt + 1
)q
) 1

q

.

Applying the Minkowski inequality for sum and (12) and Lemma 4, we get

Hq
n;0(f ;A;x) ≤ ω

(
f ;

1√
n

)
( ∞∑

k=0

ank(x)
(

n
3
2

∫
Ink

|t− x|dt

)q
) 1

q

+ 1


≤ ω

(
f ;

1√
n

){√
n (Ln;0 (|t− x|q ;A;x))

1
q + 1

}
and further by (1), (5) and Lemma 1 we obtain

w1(x) Hq
n;0(f ;A;x) ≤ ω

(
f ;

1√
n

){√
n (wq(x)Ln;0 (|t− x|q ;A;x))

1
q + 1

}
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≤ M9(q, A) ω

(
f ;

1√
n

)
for x ∈ R0, n ∈ N.

From this and (2) follows (25) for n ∈ N , r = 0 and q ∈ N .

b) Let r ∈ N and q ∈ N . Similarly as in [3] and [4] we use the following
modified Taylor formula for f ∈ Cr at a point t ∈ R0:

(26) f(x) =
r∑

j=0

f (j)(t)
j!

(x− t)j +
(x− t)r

(r − 1)!
Zr(x, t), x ∈ R0,

where

Zr(x, t) :=
∫ 1

0
(1− u)r−1

(
f (r)(t + u(x− t))− f (r)(t)

)
du.

The formulas (13), (10) and (26) imply that

(27) Hq
n;r(f ;A;x) =

( ∞∑
k=0

ank(x)
∣∣∣∣n ∫

Ink

(x− t)r

(r − 1)!
Zr(x, t)dt

∣∣∣∣q
) 1

q

,

for every f ∈ Cr, x ∈ R0 and n ∈ N . Since f (r) ∈ C0, we have by (3)
and (4)

|Zr(x, t)| ≤
∫ 1

0
(1− u)r−1 ω

(
f (r);u|x− t|

)
du(28)

≤ ω
(
f (r); |x− t|

)∫ 1

0
(1− u)r−1du

≤ 1
r

(√
n |t− x|+ 1

)
ω

(
f (r);

1√
n

)
.

From (27) and (28) and by the Minkowski inequality and Lemma 4 we
deduce that

Hq
n;r(f ;A;x) ≤ 1

r!
ω

(
f (r);

1√
n

)

×

( ∞∑
k=0

ank(x)
(

n

∫
Ink

|t− x|r
(
1 +

√
n |t− x|

)
dt

)q
) 1

q

≤ 1
r!

ω

(
f (r);

1√
n

)
( ∞∑

k=0

ank(x)
(

n

∫
Ink

|t− x|rdt

)q
) 1

q

+
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+

( ∞∑
k=0

ank(x)
(

n
3
2

∫
Ink

|t− x|r+1dt

)q
) 1

q


≤ 1

r!
ω

(
f (r);

1√
n

){
(Ln;0 (|t− x|rq;A;x))

1
q +

+
√

n
(
Ln;0

(
|t− x|(r+1)q;A;x

)) 1
q

}
.

By (1), (5) and Lemma 1 we have

wr+1(x) (Ln;0 (|t− x|rq;A;x))
1
q

≤ (wrq(x) Ln;0 (|t− x|rq;A;x))
1
q ≤ M10(q, r, A, ) n−

r
2

and analogously

wr+1(x)
(
Ln;0

(
|t− x|(r+1)q;A;x

)) 1
q ≤ M11(q, r, A) n−

r+1
2 ,

for x ∈ R0 and n ∈ N . Combining the above, we easily derive (25) for
n ∈ N and q ∈ N .

c) Let r ∈ N0 and 0 < q <6∈ N . Similarly as in the proof of Lemma 7 we
have q < [q] + 1 and by (17), (2) and (25) we can write∥∥Hq

n;r(f ;A; ·)
∥∥

r+1
≤
∥∥∥H [q]+1

n;r (f ;A; ·)
∥∥∥

r+1
≤ M8 n−

r
2 ω

(
f (r);

1√
n

)
,

for every f ∈ Cr and n ∈ N .
Now the proof is completed. �

3.2. From Theorem 1 and (16) we can derive the following corollaries.

Corollary 1. Suppose that A, r, q satisfy assumptions of Theorem 1. If
f ∈ Cr and f (r) is uniformly continuous on R0, then

lim
n→∞

n
r
2

∥∥Hq
n;r(f ;A; ·)

∥∥
r+1

= 0

which implies that

lim
n→∞

n
r
2 Hq

n;r(f ;A;x) = 0 at every x ∈ R0.

Corollary 2. Let A ∈ Ω and r ∈ N0. Then there exists M12(r, A) =
const. > 0 such that for every f ∈ Cr and n ∈ N we have

‖Ln;r(f ;A; ·)− f(·)‖r+1 ≤
∥∥H1

n;r(;A; ·)
∥∥

r+1
≤ M12(r, A) n−

r
2 ω

(
f (r);

1√
n

)
.
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Moreover if f (r) is uniformly continuous on R0, then

lim
n→∞

n
r
2 ‖Ln;r(f ;A; ·)− f(·)‖r+1 = 0.

From this follows

lim
n→∞

n
r
2 (Ln;r(f ;A;x)− f(x)) = 0

at every x ∈ R0.

Corollary 3. The order of strong approximation of f ∈ Cr by Ln;r(f ;A; ·)
is independent on q > 0 and is dependent on r ∈ N0. This order improves
if r increases.

3.3. Finaly we observe that the definition (9) contains the Szász-Mirakjan-
Kantorovich operators

S̃n;r(f ;x) := e−nx
∞∑

k=0

(nx)k

k!
n

∫
Ink

Fr(t, x)dt,

and the Baskakov-Kantorovich operators

Ṽn;r(f ;x) :=
∞∑

k=0

(
n− 1 + k

k

)
xk(1− x)−n−kn

∫
Ink

Fr(t, x)dt,

of functions f ∈ Cr, r ∈ N0 ([6]). Hence the above Theorem 1 and corollaries
concern also these operators.

II. Strong approximation of functions of two variables

In this section we shall introduce analogues of operators Ln;r(f ;A) for
differentiable functions of two variables and we shall prove an analogue of
Theorem 1. We shall use notation given in Section I.

4. Definitions and preliminary results

4.1. Let p, q ∈ N0 and let

(29) wp,q(x, y) := wp(x) wq(y), (x, y) ∈ R2
0 = R0 ×R0,

where wp(·) is defined by (1). Similarly as in Section I we denote by Cp,q

the set of all real-valued functions f continuous on R2
0 for which wp,qf is

bounded on R2
0 and the norm is defined by

(30) ‖f‖p,q := sup
{
|f(x, y)|wp,q(x, y) : (x, y) ∈ R2

0

}
.
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We have Cp,q ⊆ Cr,s if p, q, r, s ∈ N0 and p ≤ r and q ≤ s. Moreover for
f ∈ Cp,q we have ‖f‖r,s ≤ ‖f‖p,q.

For every fixed r ∈ N0 we define the class Cr
(
R2

0

)
of all functions f ∈ Cr,r

r-times differentiable on R2
0 which partial derivatives f

(m)

xm−iyi ∈ Cr−m,r−m,
for all 0 ≤ i ≤ m ≤ r. Clearly C0

(
R2

0

)
≡ C0,0.

Similarly to Section I we shall use the modulus of continuity ω(f ; ·, ·) of
function f ∈ C0,0, i.e.

ω(f ; s; t) := sup
{
|f(x, y)− f(u, v)| : (x, y), (u, v) ∈ R2

0,(31)
|x− u| ≤ s, |y − v| ≤ t} , t, s ∈ R0.

It is known ([9]) that for every f ∈ C0,0, there holas the inequality

ω(f ;λ1s;λ2t) ≤ (λ1 + 1) ω(f ; s, 0) + (λ2 + 1) ω(f ; 0, t)(32)
≤ (λ1 + λ2 + 2) ω(f ; s, t), λ1, λ2, s, t ∈ R0.

Moreover lim
s,t→0+

ω(f ; s, t) = 0 if f ∈ C0,0 is uniformly continuous on R2
0.

4.2. Let A,B ∈ Ω be fixed matrices, A = [ank(·)], B = [bnk(·)], and let
r ∈ N0 be fixed number. For f ∈ Cr

(
R2

0

)
we define operators

Ln;r(f ;x, y) ≡ Ln;r(f ;A,B;x, y)(33)

:=
∞∑

j=0

∞∑
k=0

pnjk(x, y) n2

∫∫
Dnjk

r∑
s=0

dsf(t, z)
s!

dtdz,

for (x, y) ∈ R2
0 and n ∈ N , where

(34) pnjk(x, y) := anj(x) bnk(y),

(35) Dnjk :=
{

(t, z) :
j

n
≤ t ≤ j + 1

n
,

k

n
≤ z ≤ k + 1

n

}
and dsf is the s-th differential of f , i.e.

(36) dsf(t, z) =
s∑

i=0

(
s
i

)
f

(s)

xs−iyi(t, z)(x− t)s−i(y − z)i,

d0f(t, z) ≡ f(t, z). If r = 0, then

Ln;0(f ;x, y) ≡ Ln;0(f ;A,B;x, y)(37)

=
∞∑

j=0

∞∑
k=0

pnjk(x, y) n2

∫∫
Dnjk

f(t, z)dtdz,

for f ∈ C0,0, (x, y) ∈ R2
0 and n ∈ N .
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Obviously we can set B ≡ A to (33) and (37).

From (33) and properties of A,B ∈ Ω we deduce that

(38) Ln;r(1;A,B;x, y) ≡
∞∑

j=0

∞∑
k=0

anj(x) bnk(y) = 1,

for all (x, y) ∈ R2
0, n ∈ N and r ∈ N0.

Similarly to Section I we shall prove that Ln;r(f ;A,B) is a linear operator
from the space Cr(R2

0) into Cr,r and for f ∈ Cr(R2
0) there exist strong

differences with the power q > 0:

Hq
n;0(f ;x, y) = Hq

n;r(f ;A,B;x, y) :=(39)

:=

 ∞∑
j=0

∞∑
k=0

pnjk(x, y)

∣∣∣∣∣n2

∫∫
Dnjk

r∑
s=0

dsf(t, z)
s!

dtdz − f(x, y)

∣∣∣∣∣
q
 1

q

for (x, y) ∈ R2
0 and n ∈ N . In particular for f ∈ C0,0 we have

Hq
n;0(f ;x, y) =(40)

=

 ∞∑
j=0

∞∑
k=0

pnjk(x, y)

∣∣∣∣∣n2

∫∫
Dnjk

f(t, z)dtdz − f(x, y)

∣∣∣∣∣
q
 1

q

.

4.3. From (33) - (37) and by (11) we deduce that if f ∈ C0,0 and
f(x, y) = f1(x) f2(y) for (x, y) ∈ R2

0, then

(41) Ln;0(f ;A,B;x, y) = Ln;0(f1;A;x) Ln;0(f2;B; y)

for (x, y) ∈ R2
0 and n ∈ N .

Analogusly to (16) and (17) we have

(42) |Ln;r(f ;A,B;x, y)− f(x, y)| ≤ H1
n;r(f ;A,B;x, y),

(43) Hp
n;r(f ;A,B;x, y) ≤ Hq

n;r(f ;A,B;x, y) if q > p > 0,

for f ∈ Cr
(
R2

0

)
, (x, y) ∈ R2

0, n ∈ N and r ∈ N0.
Applying (29), (41), Lemma 1 and Lemma 2, we immediately obtain the

following

Lemma 8. Let A,B ∈ Ω and p1, p2, s1, s2 ∈ N0 and q ∈ N . Then there
exists positive constant M13 = M13(p1, p2, s1, s2, q, A, B) such that

w(p1+s1)q,(p2+s2)q(x, y)Ln;0

((
|t− x|s1 |z − y|s2

wp1,p2(t, z)

)q

;x, y

)
≤ M13 n−

(s1+s2)q
2

for all (x, y) ∈ R2
0 and n ∈ N .
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Using the Hölder inequality, we obtain

Lemma 9. Let h be a function continuous on Dnjk defined by (35).
Then for every q ∈ N we have∣∣∣∣∣n2

∫∫
Dnjk

h(t, z)dtdz

∣∣∣∣∣
q

≤ n2

∫∫
Dnjk

|h(t, z)|qdtdz.

Lemma 10. Suppose that A,B ∈ Ω and r ∈ N0. Then there exists
M14 ≡ M14(r, A,B) = const. > 0 such that for every f ∈ Cr

(
R2

0

)
and

n ∈ N we have

(44) ‖Ln;0(f ; ·, ·)‖0,0 ≤ ‖f‖0,0 if r = 0,

(45) ‖Ln;r(f ; ·, ·)‖r,r ≤ M14

r∑
s=0

s∑
i=0

∥∥∥f (s)

xs−iyi

∥∥∥
r−s,r−s

The formulas (33) and (37) and inequalities (44) and (45) show that Ln;r(f ;
A,B), n ∈ N , are linear operators from the space Cr

(
R2

0

)
into Cr,r.

Proof. If r = 0, then by (37), (38), (29) and (30) we immediately obtain
(44). If r ∈ N , then f

(s)

xs−iyi ∈ Cr−s,r−s and by (30) and (33) - (37) we get

|Ln;r(f ;x, y)| ≤
r∑

s=0

1
s!

s∑
i=0

(
s
i

)∥∥∥f (s)

xs−iyi

∥∥∥
r−s,r−s

×Ln;0

(
|t− x|s−i|z − y|i

wr−s,r−s(t, z)
;x, y

)
.

Further by (29), (1), (5) and Lemma 8 we get

wr,r(x, y) |Ln;r(f ;x, y)|

≤ M15

r∑
s=0

s∑
i=0

∥∥∥f (s)

xs−iyi

∥∥∥
r−s,r−s

wr,r(x, y)
wr−i,r−s+i(x, y)

n−
s
2

≤ 2M15

r∑
s=0

s∑
i=0

∥∥∥f (s)

xs−iyi

∥∥∥
r−s,r−s

,

for all (x, y) ∈ R2
0 and n ∈ N , where M15 ≡ M15(r, A,B) = const. > 0.

From the above and (30) follows (45). �

Similarly we can prove the following
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Lemma 11. Let A,B ∈ Ω, r ∈ N0 and q > 0. Then for every f ∈
Cr
(
R2

0

)
and n ∈ N we have Hq

n;r(f ;A,B) ∈ Cr,r.

5. Theorems and corollaries

5.1. First we shall prove analogue of Theorem 1 for r = 0.

Theorem 2. Suppose that A,B ∈ Ω and q > 0. Then there exists
M16 ≡ M16(q, A,B) = const. > 0 such that for every f ∈ C0,0 we have

(46)
∥∥∥Hq

n;0(f ;A,B)
∥∥∥

1,1
≤ M16 ω

(
f ;

1√
n

,
1√
n

)
, n ∈ N.

Proof. a) Let q ∈ N . By Lemma 11 we have Hq
n;0(f ;A,B) ∈ C0,0 for

every f ∈ C0,0 and n ∈ N . By (31), (32) and (35) we have∣∣∣∣∣n2

∫∫
Dnjk

f(t, z)dtdz − f(x, y)

∣∣∣∣∣ ≤ n2

∫∫
Dnjk

|f(t, z)− f(x, y)|dtdz

≤ n2

∫∫
Dnjk

ω (f ; |t− x|, |z − y|) dtdz

≤ n2 ω

(
f ;

1√
n

,
1√
n

)∫∫
Dnjk

(√
n |t− x|+

√
n |z − y|+ 2

)
dtdz.

Using this inequality to (40) and by the Minkowski inequality, Lemma 9 and
(38), (41), (11) and (12) we get

Hq
n;0(f ;A,B; , x, y) ≤ ω

(
f ;

1√
n

,
1√
n

)

×

 ∞∑
j=0

∞∑
k=0

pnjk(x, y)

∣∣∣∣∣n2

∫∫
Dnjk

(√
n |t− x|+

√
n |z − y|+ 2

)
dtdz

∣∣∣∣∣
q
 1

q

≤ ω

(
f ;

1√
n

,
1√
n

){
n

1
2 (Ln;0 (|t− x|q;A,B;x, y))

1
q

+n
1
2 (Ln;0 (|z − y|q;A,B;x, y))

1
q + 2

}
= ω

(
f ;

1√
n

,
1√
n

){
n

1
2 (Ln;0 (|t− x|q;A;x))

1
q

+n
1
2 (Ln;0 (|z − y|q;B; y))

1
q + 2

}
,

which by (29), (5) and Lemma 1 implies that

w1,1(x, y)Hq
n;0(f ;A,B;x, y) ≤ M16(q, A,B) ω

(
f ;

1√
n

,
1√
n

)
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for (x, y) ∈ R2
0 and n ∈ N . From this and (30) follows (46) for q ∈ N .

b) If 0 < q 6∈ N , then arguing as in the proof of Theorem 1 and applying
(43) and (46) for the power [q] + 1, we obtain (46) for 0 < q 6∈ N and we
complete the proof. �

Theorem 3. Suppose that A,B ∈ Ω, r ∈ N and q > 0. Then there
exists M17 ≡ M17(q, r, A,B) = const. > 0 such that for every f ∈ Cr

(
R2

0

)
and n ∈ N we have

(47)
∥∥Hq

n;r(f ;A,B)
∥∥

r+1,r+1
≤ M17 n−

r
2

r∑
j=0

ω

(
f

(r)

xr−iyi ;
1√
n

,
1√
n

)
.

Proof. First we consider q ∈ N . For f ∈ Cr
(
R2

0

)
we use the following

modified Taylor formula at a point (t, z) ∈ R2
0:

f(x, y) =
r∑

s=0

dsf(t, z)
s!

(48)

+
1

(r − 1)!

∫ 1

0
(1− u)r−1 (drf(x̃, ỹ)− drf(t, z)) du,

(x, y) ∈ R2
0, where (x̃, ỹ) := (t + u(x − t), z + u(y − z)) and drf(x̃, ỹ) and

drf(t, z) are the r-th differentials of f with ∆x = x− t and ∆y = y−z ([2]).
By (48) and (35) we can write∣∣∣∣∣n2

∫∫
Dnjk

r∑
s=0

dsf(t, z)
s!

dtdz − f(x, y)

∣∣∣∣∣(49)

≤ n2

∫∫
Dnjk

∣∣∣∣∣
r∑

s=0

dsf(t, z)
s!

dtdz − f(x, y)

∣∣∣∣∣ dtdz

≤ n2

(r − 1)!

∫∫
Dnjk

(∫ 1

0
(1− u)r−1 |drf(x̃, ỹ)− drf(t, z)| du

)
dtdz.

Next, by (36), (31) and (32), we have

|drf(x̃, ỹ)− drf(t, z)|(50)

≤
r∑

i=0

(
r
i

) ∣∣∣f (r)

xr−iyi(x̃, ỹ)− f (r)(t, z)
∣∣∣ |x− t|r−i|y − z|i

≤
r∑

i=0

(
r
i

)
ω
(
f

(r)

xr−iyi ;u|x− t|, |y − z|
)
|x− t|r−i|y − z|i

≤
r∑

i=0

(
r
i

)
ω

(
f

(r)

xr−iyi ;
1√
n

,
1√
n

)(√
n |t− x|+

√
n |z − y|+ 2

)
× |t− x|r−i|z − y|i,
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for 0 ≤ u ≤ 1, (x, y) ∈ R2
0, (t, z) ∈ Dnjk and n ∈ N . Using (49) and (50) to

(39) and by the Minkowski inequality for sum and by (37) we get

Hq
n;r(f ;A,B;x, y) ≤ 1

r!

r∑
i=0

(
r
i

)
ω

(
f

(r)

xr−iyi ;
1√
n

,
1√
n

)
(51)

×
{√

n
(
Ln;0

(
|t− x|(r−i+1)q|z − y|iq;A,B;x, y

)) 1
q

+
√

n
(
Ln;0

(
|t− x|(r−i)q|z − y|(i+1)q;A,B;x, y

)) 1
q

+2
(
Ln;0

(
|t− x|(r−i)q|z − y|iq;A,B;x, y

)) 1
q

}
:=

1
r!

r∑
i=0

(
r
i

)
ω

(
f

(r)

xr−iyi ;
1√
n

,
1√
n

) 3∑
p=1

Zn,p(x, y)

for (x, y) ∈ R2
0 and n ∈ N . Applying (5) and Lemma 8 with s1 = s2 = 0,

we can write

wr+1,r+1(x, y)Zn,1(x, y)(52)

≤ wr+1(x)
wr−i+1(x)

wr+1(y)
wi(y)

n
1
2

(
M13n

− (r+1)q
2

) 1
q ≤ 4M

1
2
13 n−

r
2 ,

for (x, y) ∈ R2
0, n ∈ N and 0 ≤ i ≤ r. Analogously we obtain

(53) wr+1,r+1(x, y)Zn,p(x, y) ≤ M18 n−
r
2 , p = 2, 3,

for (x, y) ∈ R2
0, n ∈ N and 0 ≤ i ≤ r, where M18 ≡ M18(i, q, r, A,B) =

const. > 0.
From (51) - (53) and (30) we immediately obtain the desired inequality

(47) for q ∈ N .
If q 6∈ N , then reasoning as in the proof of Theorem 1 and applying (43)

and (47) for [q] + 1, we obtain (47) for 0 < q 6∈ N .
Now the proof is completed. �

5.2. Theorem 2, Theorem 3 and (42) imply the following analogues of
Corollaries 1-3.

Corollary 4. Suppose that A,B ∈ Ω, r ∈ N0 and q > 0. Then for
every f ∈ Cr

(
R2

0

)
having partial derivatives f

(r)

xr−iyi, 0 ≤ i ≤ r, uniformly
continuous on R2

0 we have

lim
n→∞

n
r
2

∥∥Hq
n;r(f ;A,B)

∥∥
r+1,r+1

= 0.
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Consequently,
lim

n→∞
n

r
2 Hq

n;r(f ;A,B;x, y) = 0.

at every (x, y) ∈ R2
0.

Corollary 5. Let A,B, r and f satisfy assumptions of Corollary 4. Then

lim
n→∞

n
r
2 ‖Ln;r(f ;A,B)− f‖r+1,r+1 = 0,

which implies that

lim
n→∞

n
r
2 (Ln;r(f ;A,B;x, y)− f(x, y)) = 0

at every (x, y) ∈ R2
0.

Corollary 6. The order of strong approximation of f ∈ Cr
(
R2

0

)
by

operators Ln;r(f ;A,B) is independent on q > 0 and is dependent on r ∈ N0.
This order of strong approximation improves if r increases.

Remarks. 1. Analogously to Section I (3.3) can be defined define ana-
logues of Szász-Mirakyan and Baskakov operators of functions f ∈ Cr

(
R2

0

)
.

We can easily verify that Theorem 2, Theorem 3 and Corollaries 4-6 concern
also these operators.

2. By inequalilies (16) and (42) we deduce that results given in above
theorems on strong approximation are more general than suitable results on
normal approximation.
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