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Abstract: The space of entire functions represented by Dirichlet
series of several complex variables has been studied by S. Dauod
[1]. M.D. Patwardhan [6] studied the bornological properties of
the space of entire functions represented by power series. In this
work we study the bornological aspect of the space Γ of entire
functions represented by Dirichlet series of several complex vari-
ables. By Γ we denote the space of all analytic functions

α(s1, s2) =
∞∑

m,n=1
am,n exp(λms1 + µns2), having finite abscissa of

convergence. We introduce bornologies onΓ and Γ, and prove that
Γis a convex bornological vector space which is the completion of
the convex bornological vector space Γ.
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1. Introduction

Let C be the ordinary complex plane equipped with its usual topology and
Γ be the space of entire functions represented by Dirichlet series of two
complex variables (s1, s2). (We consider the case of two variables for the
sake of simplicity, though our results can be easily extended to any finite
number of variables). Let

(1.1) α(s1, s2) =
∞∑

m,n=1

am,n exp(λms1 + µns2)

where am,n ∈ C, s1, s2 ∈ C2, sω = σω+itω, ω = 1, 2, 0 < λ1 < ... < λm →∞
with m, 0 < µ1 < ... < µn →∞ with n and further (see [1])

(1.2) lim sup
m+n→∞

m + n

λm + µn
= D < +∞.
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Such a series is called a Dirichlet series of two complex variables. If λm =
log m,µn = log n, then α(s1, s2)is a power series in (s1, s2). F.I. Geche
[2] considered the general case when (λm)m≥1, (µn)n≥1 are two increasing
sequences of real numbers whose limits are infinity, he determined the nature
of the region of convergence of the series (1.1) and the formula for the
system of associated abscissas of convergence which depends substantially on
whether A < ∞ or A = ∞, whereA =

∑
i,j
| ai,j |. For example, V.P. Gromov

[3] proved that if lim sup
m+n→∞

m+n
λm+µn

= 0 , then the formulae for the system of

associated abscissa of convergence depend on | am,n |.
It is well known that the function α(s1, s2) is an analytic function in the

hyperplane σω < τ(−∞ < τ < ∞) where

(1.3) τ = lim sup
m,n→∞

log | amn |−1

λm + µn
.

For each entire function α ε Γ we associate a real number ‖ α ‖ defined by

‖ α ‖= sup{| am,n |
1

(λm+µn) , m, n ≥ 1},
satisfying for all α, β ε Γ
(a) ‖ 0 ‖ = 0;
(b) ‖ α ‖ ≥ 0;
(c) ‖ α ‖ = 0 ⇐⇒ α ≡ 0;
(d) ‖ −α ‖ = ‖ α ‖;
(e) ‖ α + β ‖ ≤ ‖ α ‖+ ‖ β ‖.
Thus‖ α ‖ is a total paranorm on Γ.

2. Definitions

In this section we give some definitions. We have

2.1
A bornology on a set X is a family B of subsets of X satisfying the following
axioms:
(i) B is a covering of X , i.e. X =

⋃
B ε BB;

(ii) B is hereditary under inclusion, i.e. if A ∈ B and B is a subset of X
contained in A, then B ∈ B;
(iii) B is stable under finite union.

A pair (X,B) consisting of a set X and a bornology B on X is called a
bornological space, and the elements of B are called the bounded subsets of
X .
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2.2
A base of a bornology B on X is any subfamily B0 of B such that every
element of B is contained in an element of B0. A family B0 of subsets of X is
a base for a bornology on X if and only if B0 covers X and every finite union
of elements of B0 is contained in a member of B0. The collection of those
subsets of X which are contained in an element of B0 defines a bornology
B on X having B0 as a base. A bornology is said to be a bornology with
a countable base if it possesses a base consisting of a sequence of bounded
sets. Such a sequence can always be assumed to be increasing. For further
definitions and notations, we shall refer to [4] and [5].

2.3
Let E be a vector space over the complex field C. A bornology B on E is
said to be a vector bornology on E, if B is stable under vector addition,
homothetic transformations and the formation of circled hulls or, in other
words, if the sets A+B, λA,

⋃
|η|≤1 ηA belong to B, whenever A and B

belong to B and λ ∈ C. Any pair (E,B) consisting of vector space E and a
vector bornology B on E is called a bornological vector space.

2.4
A vector bornology on a vector space E is called a convex vector bornology
if it is stable under the formation of convex hulls. Such a bornology is
also stable under the formation of disked hulls, since the convex hull of a
circled set is circled.A bornological vector space (E,B) whose bornology B
is convex is called a convex bornological vector space.

2.5
A separated bornological vector space (E,B) (or a separated bornology B)
is the one in which {0} is the only bounded vector subspace of E.

2.6
A set P is said to be bornivorous if for every bounded set B there exists a
t ∈ C, t 6= 0 such that µB ⊂ P for all µ ∈ C for which | µ | ≤ | t |.
2.7
Let E be a bornological vector space. A sequence {xn} in E is said to be
Mackey-convergent to a point x ∈ E if there exists a decreasing sequence
{tn} of positive real number tending to zero such that the sequence {xn−x

tn
}

is bounded.

2.8
Let E be a vector space and let B be a disk in E not necessarily absorbent
in E. We denote by EB the vector space spanned by B, i.e. the space⋃

λ>0 λB =
⋃

λ∈K λB, where K be the real field R or the complex field C.
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2.9
Let E be a separated convex bornological space . A sequence{xn} in E is
said to be a bornologcal Cauchy sequence (or a Mackey-Cauchy sequence) in
E if there exists a bounded disk B ⊂ E such that {xn} is a Cauchy sequence
in EB.

3. The Space Γ

Let C denote the complex plane, and I be the set of positive integers. We
write for n ∈ I,

Cn = {(z1, z2, ..., zn); zi ∈ C, 1 ≤ i ≤ n}.

We are concerned here with the space of entire functions from Cn to C under
the usual pointwise addition and scalar multiplication. We shall denote by
Γ the space of all entire functions α : C2 → C, where

α(s1, s2) =
∞∑

m,n=1
am,n exp(λms1 + µns2).

We define a bornology on Γ with the help of || . || defined in sec-
tion 1. We denote by Bk the set {α ε Γ :‖ α ‖≤ k}. Then the family
B0 = {Bk : k = 1, 2, ...} forms a base for a bornology B on Γ. We now
prove

Theorem 3.1. (Γ,B) is a separated convex bornological vector space
with a countable base.

Proof. Since the vector bornology B on the vector space Γ is stable under
the formation of the convex hulls, it is a convex vector bornology. Since the
convex hull of a circled set is circled, B is stable under the formation of
disked hulls, and hence the bornological vector space (Γ,B) is a convex
bornological vector space. Now to show that{0} is the only bounded vector
subspaces of Γ, we must show that contains no bounded open set. Let U(ε)
denote the set of all α ε Γ such that ‖ α ‖ < ε . To prove the result
stated, it is enough to show that no U(ε) is bounded. That is, given U(ε),
we have to show that there exists U(η) for which there is no c > 0 such
that U(ε) ⊂ cU(η). For this purpose, take η = ε

4 . Given c, we can find

sufficiently large positive numbers λm and µn such that | c | 1
(λm+µn) < 2.

Let α = ( ε
2)(λm+µn) exp(λms1 + µns2). Then ‖ α ‖ = ε

2 ; so α ε U(ε) and

‖ α
c ‖= supm,n≥1(

ε
2 | c |

−1
(λm+µn) ) > ε

4 = η, so that c−1α does not belong to
U(η) i.e. α does not belong to cU(η). This shows that U(ε) is not bounded.
Thus {0} is the only bounded vector subspace of Γ, and hence (Γ,B) is
separated. Since B possesses a base consisting of increasing sequence of
bounded sets, B is a bornology with a countable base. Thus (Γ,B) is a



A study of bornological properties of the space . . . 139

separated convex bornological vector space with countable base. This proves
Theorem 3.1. ¥

Theorem 3.2. B contains no bornivorous set.

Proof. Suppose B contains a bornivorous set A. Then there exists a set
Bi ∈ B such that A ⊂ Bi and consequently Bi is also bornivorous. We now
assert that if i1 > i, then tBi1 * Bi for any t ∈ C which leads to a contradic-
tion. If i1 > i, it is easy to see that tBi1 * Bi for any t ∈ C such that | t | ≥ 1.
Now we prove that tBi1 * Bi for any t ∈ C such that | t | < 1 also. Let | t | <
1. Since i1/i > 1, we can choose m,n such that 1 < 1/| t | < (i1/i)λm+µn .
Now let amn ∈ C be such that iλm+µn/| t | < | amn | ≤ i1

λm+µn and let
α = am,n exp(λms1 + µns2). Then ‖ α ‖= | amn |1/(λm+µn) ≤ i1 and hence
α ∈ Bi1 . Now ‖ tα ‖=‖ tam,n exp(λms1 + µns2) ‖ = | tamn |1/(λm+µn) > i
and hence tα does not belong to Bi. Thus tBi1 * Bi for any t ∈ C. This
proves Theorem 3.2. ¥

4. The bornological dual of Γ

In this section we consider the properties of linear functionals defined on the
space Γ We prove:

Theorem 4.1. Every continuous linear functional f defined on Γ is

of the form f(α) =
∞∑

m,n=1
cmnamn, where α = am,n exp(λms1 + µns2), and

{| cmn |1/(λm+µn)} is a bounded sequence.
To prove the above result, we require the following

Lemma 4.1. A necessary and sufficient condition that f(α) =
∞∑

m,n=1
cmnamn

should be convergent for every sequence {amn} satisfying

(4.1) | amn |1/(λm+µn) → 0 as m, n →∞

is that{| cmn |1/(λm+µn), m, n ≥ 1} should be bounded.

Proof. Suppose that {| cmn |1/(λm+µn), m, n ≥ 1} is bounded. Then we
can find M > 0 such that | cmn |1/(λm+µn) ≤ M for m,n ≥ 1. By (4.1), we
can find m0, n0 such that

| amn |1/(λm+µn) ≤ 1/2M for m ≥ m0 , n ≥ n0.

Hence

| amncmn | ≤ 1/2(λm+µn) for m ≥ m0 , n ≥ n0.
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Thus we have

|
∞∑

m0+1

∞∑

n0+1

amncmn | ≤
∞∑

m0+1

∞∑

n0+1

| amncmn |

<
∞∑

m0+1

∞∑

n0+1

2−(λm+µn) ≤
∞∑

1

∞∑

1

2−(λm+µn).

In view of (1.2) −λm − µn < −m−n
D+ ε , m > m0 , n > n0

There fore
∞∑

m,n=1

2(−λm−µn) <
∞∑

m,n=1

2
−m−n
D+ ε < ∞.

Hence
∞∑

m,n=1
cmnamn converges.

To prove the converse, suppose that the sequence {| cmn |1/(λm+µn)} is un-
bounded and let p, q > 0 be sufficiently large. Then we can find an increasing
sequence of integers {mp} and {nq} such that

| Cmpnq | ≥ (p + q)(λmp+µnq ), p, q = 1, 2, ...

Take

amn =

{
0, if m 6= mp and n 6= nq

1/(p + q)(λm+µn). if m = mp and n = nq, p, q = 1, 2, ...

Then

| amn |1/(λm+µn) =

{
0, if m 6= mp and n 6= nq

1/(p + q). if m = mp and n = nq, p, q = 1, 2, ...

so that
∞∑

m,n=1
cmnamn diverges. This proves Lemma 4.1. ¥

Proof. of Theorem 4.1. Let α =
∞∑

m,n=1
am,n exp(λms1 + µns2) and f

be a continuous linear functional on Γ. Let αm,n = exp(λms1 + µns2) and
f(αm,n) = cmn. Then

f(α) = lim
m,n →∞ f(

m∑

1

n∑

1

aijαij)

= lim
m,n →∞

m∑

1

n∑

1

cijaij
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Hence for every α ∈ Γ,
∞∑

m,n=1
cmnamn converges and f(α) =

∞∑
m,n=1

cmnamn.

Hence by Lemma 4.1 {| cmn |1/(λm+µn)} is bounded. Conversely, suppose
that {cmn} is a sequence of complex numbers such that {| cmn |1/(λm+µn)}
is bounded. For any entire function α =

∞∑
m,n=1

am,n exp(λms1 + µns2),

| amn |1/(λm+µn) → 0 as m,n → ∞ and hence by Lemma 4.1, the series
∞∑

m,n=1
cmnamn is convergent. We define the functional f : Γ → C by f(α) =

∞∑
m,n=1

cmnamn, α ∈ Γ. Then f is obviously linear on Γ. We shall show that it

is continuous. For this purpose it is enough to show that if for any sequence
of entire functions | αp | → 0, as p →∞, then f(αp) → 0. Thus, let

αp =
∞∑

m,n=1

ap
m,n exp(λms1 + µns2) p = 1, 2, ...

Since {| cmn |1/(λm+µn)} is bounded, we can find M such that | cmn | ≤
M (λm+µn), m,n ≥ 1. Given ε, choose η so that 0 < η < 1/M and
λM(1 + 1

1−λM ) < ε. Since | αp | → 0, we can find a positive integer p0 such
that| αp | ≤ η for p ≥ p0. Hence

| f(αp) |≤ ηM +
∞∑

1

(λM)λn = ηM(1 +
1

1− ηM
) < ε for p ≥ p0.

Thus f(αp) → 0 as p →∞. This completes the proof of Theorem 4.1. ¥

The following result was given by Hogbe-Nlend [4]:

Lemma 4.2. A linear functional f : Γ → C is bounded if and only if
f maps every Mackey-convergent sequence to a bounded sequence in C. For
the proof of above, we refer to [4, p.10].

Next we prove

Lemma 4.3. A linear functional f on Γ defined by f(α) =
∞∑

m,n=1
cmnamn.

is bounded if and only if lim
m,n→∞ | cmn |1/(λm+µn) = 0.

Proof. Suppose | cmn |1/(λm+µn) → 0. Let {αq} be a sequence in Γ
such that αq −→ 0. Then there exists a positive constant J and a decreas-
ing sequence tq of scalars converging to zero such that ‖ αq/tq ‖ ≤ J , i.e.
| aq

mn | ≤ | tq |J (λm+µn) m,n ≥ 1. Since | cmn |1/(λm+µn) → 0, there exists
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N such that | cmn |1/(λm+µn) ≤ 1
2J for all m, n and m + n > N . Hence

| cmn | ≤ 1
(2J)(λm+µn) , m + n > N . Now

| f(αq) | = |
∞∑

m,n=1

cmnaq
mn | ≤

∞∑

m,n=1

| cmn || aq
mn | ≤

∞∑

m,n=1

| cmn || tq |J (λm+µn)

≤
∑

m+n≤N

| cmn || tq |J (λm+µn) +
∑

m+n>N

| cmn || tq |J (λm+µn)

< O(1) + | tq |
∑

m+n>N

2−(λm+µn)

≤ O(1) + | tq |
∑

m+n≥0

2−(λm+µn)

≤ O(1) + | tq |A < ∞,

where A(< ∞) is independent of q. Since tq → 0 as q →∞, we get | f(αq) | <
∞ for all q sufficiently large. Thus the sequence {f(αq)} is bounded. Hence
f is bounded on every sequence which Mackey-converges to zero and conse-
quently by Lemma 4.2, f is bounded. ¥

Conversely, let f be such that lim sup
m+n→∞

| cmn |1/(λm+µn) = ρ > 0. Then

given η > 0 such that η < ρ, there exist divergent increasing sequences
{mq} and {nt} of positive integers such that | cmn | > η(λm+µn) for all m =
mq, n = nt. Choose π ∈ R such that π > 1 and πη > 1. Consider
the sequence {αmn} where αmn = πm+nexp (λms1 + µns2) ∈ Γ and define
tmn ∈ C as tmn = 1

π(λm+µn) . Then tmn → 0 as m,n →∞ and ‖ αmn/tmn ‖ =
‖ π2(λm+µn)exp(λms1 + µns2) ‖ = | π |2 < ∞. Consequently αmn → 0. But
f(αmn) = cmnπ(λm+µn) and

| f(αmq ,nt) | = | cmq ,nt || π |λmq +µnt > ηλmq +µnt | π |λmq +µnt

which is not bounded. Hence again by Lemma 4.2, f is not bounded. This
proves sufficiency part and the proof of Lemma 4.3 is complete.

5. (σ1, σ2) - norms on Γ

We define, for each σ1, σ2 < ∞ and α ∈ Γ, the expression ‖ α : σ1, σ2 ‖ by
the equation

(1) ‖ α : σ1, σ2 ‖ =
∞∑

m,n=1

| am,n | exp(λmσ1 + µnσ2).
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It is easily seen that, for each pair σ1, σ2 (5.1) defines a norm on the class
of entire functions represented by multiple Dirichlet series. We shall denote
by Γ(σ1, σ2) the space Γ endowed with this norm. We denote by Bσ1,σ2

the bornology on Γ consisting of the sets bounded in the sense of the norm
‖ α : σ1, σ2 ‖. We now prove

Theorem 5.1. B =
⋃

0<σ1,σ2<∞
Bσ1,σ2

Proof. Let B ∈ B. Then there exists a constant J such that ‖ α ‖ < J

for all α ∈ B. Let now α =
∞∑

m,n=1
am,n exp(λms1 + µns2) ∈ B.

Then | am,n || exp(λms1 + µns2) | ≤ J (λm+µn)| exp(λms1 + µns2) |, m,n ≥
1. Thus if eσ1 < 1/2J , eσ2 < 1/2J , we have,

∞∑

m,n=1

| am,n | | exp(λms1 + µns2) | ≤
∞∑

m,n=1

J (λm+µn) | es1 |λm | es2 |µn

≤
∞∑

m,n=1

2−(λm+µn) < ∞.

Hence if 0 < eσ1 , eσ2 < 1/2J , then B ∈ Bσ1,σ2 and so B ⊂ ⋃
0<σ1,σ2<∞

Bσ1,σ2 .

For the reverse inclusion let B ∈ Bσ1,σ2 , then there exists a constant k such
that for all

α ∈ B, ‖ α : σ1, σ2 ‖ ≤ k,

i.e.
∞∑

m,n=1
| am,n |exp(σ1λm + σ2µn) ≤ k, for all m, n

i.e.

| am,n |1/(λm+µn) ≤ k1/(λm+µn)e
−σ1( λm

(λm+µn)
)
e
−σ2( µn

(λm+µn)
)
,

≤ k1/(λm+µn), since σ1, σ2 > 0.

As λm, µn →∞ as m,n →∞, we get

sup
m,n

{| am,n |1/(λm+µn)} ≤ k
′
< ∞.

Hence α ∈ B. Thus B ∈ B and hence
⋃

0<σ1,σ2<∞
Bσ1,σ2 ⊂ B. This completes

the proof of Theorem 5.1. ¥

Now we prove

Lemma 5.1. For a given sequence {αq} of entire functions, the following
are equivalent in (Γ,B).
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(i) αq → 0.
(ii) There exists a sequence {tq} of positive real numbers tending

to zero such that {αq/tq} is bounded.

Proof. (i) ⇒ (ii) is obviously true. To prove (ii) ⇒ (i), let {αq} be a
sequence in Γ for which there exists a sequence {tq} of positive real numbers
tending to zero and a constant J such that ‖ αq/tq ‖ ≤ J for all q. Now
there exists a positive number M such that tq ≤ M for all q. Further, we
can choose for each i = 1, 2, 3, ... a qi such that tq < 1/i for all q ≥ qi. Let
us define a sequence {tq ′} as

tq
′
=

{
M, for all q < qi

1/i. for all qi ≤ q < qi+1, i = 1, 2, ....

Then {tq ′} is a decreasing sequence of positive real numbers tending to zero
and further tq

′ ≥ tq for all q. Hence

‖ αq/tq
′ ‖ = ‖ αqtq/tqtq

′ ‖
< A(tq/tq

′
)‖ αq/tq ‖ ≤ J, where A(t) = max(1, | t |), t ∈ C

Therefore αq → 0. Hence (ii) ⇒ (i) and the proof of Lemma 5.1 is com-
plete. ¥

Let {αq} be a sequence of entire function in Γ. Then we have:

Theorem 5.2. αq → 0 in Γ if and only if αq(s1, s2) → 0 uniformly in
some finite hyper plane.

Proof. Suppose αq → 0 and

αq =
∞∑

m,n=1

aq
m,n exp(λms1 + µns2), q = 1, 2, 3....

Then there exists a constant k and a sequence {tq} in C, tending to zero
such that

‖ αq/tq ‖ ≤ k for all q,

i.e.
| aq

m,n/tq | ≤ k(λm+µn), m, n ≥ 1.

If sω ∈ C, ω = 1, 2 such that eσ1 , eσ2 < 1/2k, then

| αq | = |
∞∑

m,n=1

aq
m,nexp (λms1 + µns2) | ≤

∞∑

m,n=1

| aq
m,n || es1 |λm | es2 |µn
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≤
∞∑

m,n=1

| tq |k(λm+µn)| es1 |λm | es2 |µn ≤ | tq |

Hence ‖ αq(s) ‖ → 0 uniformly for all s1, s2 such that eσ1 , eσ2 < 1/2k. Con-
versely, suppose there exists σ0 < τ such that αq(s1, s2) → 0 uniformly for
all sω = σω + itω, ω = 1, 2 such that σ1, σ2 < σ0. Then

sup | αq | → 0 as q → ∞.

Now | αq(s1, s2) | ≤ sup | αq(s1, s2) | for all s1, s2 such that σ1, σ2 < σ0.
Hence | aq

m,n |exp(λmσ1 + µnσ2) ≤ sup | αq(s1, s2) | i.e.
[ | aq

m,n |
sup | αq(s1, s2) |

]
≤ exp(λmσ1 + µnσ2).

Let tq = sup | αq(s1 + s2) |. Then

‖ αq/tq ‖ = sup
m,n≥1

{
| aq

m,n |1/(λm+µn)

| λq |

}

≤ max{1, exp (σ1 + σ2)} = A(exp (σ1 + σ2)),

and hence in view of Lemma 5.1, αq → 0. This proves Theorem 5.2. ¥

We now obtain some properties of linear functionals on Γ. We prove

Lemma 5.2. In the topological dual Γo of Γ, every functional is of

the form f(α) =
∞∑

m,n=1
cmnamn, α =

∞∑
m,n=1

am,ne(λms1+µns2), if and only if the

sequence {| cmn | e−(λmσ1+µnσ2)} is bounded.

Proof. Suppose that f(α) is continuous linear functional on Γ. Then
there exists k > 0 such that | f(α) | ≤ k ‖ α : σ1, σ2 ‖ for every α. Let
δmn = exp (λms1 + µns2) and f(δmn) = cmn(m,n ≥ 1). In Γ,

α =
∞∑

m,n=1

am,nexp (λms1 + µns2) = lim
m,n →∞

m∑

i=1

n∑

j=1

aijδij .

Since f is continuous, we have

f(α) = f( lim
m,n →∞

m∑

i=1

n∑

j=1

aij exp (λms1 + µns2)) = lim
m,n →∞

m∑

i=1

n∑

j=1

aijf(δij)

= lim
m,n →∞

m∑

i=1

n∑

j=1

aijcij =
∞∑

m=1

∞∑

n=1

amncmn
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Also | cmn | ≤ k ‖ δmn : σ1, σ2 ‖ = ke(λmσ1+µnσ2). Hence {| cmn |e−(λmσ1+µnσ2)}
is bounded.

Conversely let {| cmn |e−(λmσ1+µnσ2)} be bounded for all m,n = 1, 2, .....
Let f be defined by

f(α) =
∞∑

m,n=1

cmnamn, α =
∞∑

m,n=1

amnexp (λms1 + µns2).

Then f is a linear functional and | f(α) | ≤
∞∑

m,n=1
| cmn || amn |<

∞∑
m,n=1

k

× exp(λmσ1 + µnσ2) | amn |= k ‖ α : σ1, σ2 ‖ ∀α for some k > 0.
Hence f(α) is continuous on Γ. This proves Lemma 5.2. ¥

Theorem 5.3. The bornologocal dual Γ∗ of Γ is the same as its topolog-
ical dual Γo.

Proof. The proof follows immediately from the fact that a linear fun-
ctional on a normed linear space is continuous if and only if it is bounded.
On Γo we now define a map:

‖ . :
1

2σ1σ2
‖ : Γo → R,

α =
∞∑

m,n=1

amn exp(λms1 + µns2) →‖ α :
1

2σ1σ2
‖

=
∞∑

m,n=1

| amn | (2 eσ
1 )−λm(2 eσ2)−µn .

By Lemma 5.2 it follows that α =
∞∑

m,n=1
amne(λms1+µns2) ∈ Γo if and only if

{| amn |e−(λmσ1+µnσ2)} is bounded. Consequently the function ‖ . : 1
2σ1σ2

‖
is well defined and Γo becomes a normed linear space relative to ‖ . : 1

2σ1σ2
‖.

Denote by Bσ1,σ2 the canonical bornology of Γo with this norm which we
call the ( 1

2σ1σ2
)-norm. ¥

6. The space Γ

In this section we consider the set

Γ = {β =
∞∑

m,n=1

bmn exp(λms1 + µns2) : bmn ∈ C

and {| bmn |1/(λm+µn)} is bounded.}
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A convex bornology B can be defined on Γ with the help of a function
‖ . ‖ : Γ → R defined in a similar fashion to that on Γ. We note that B
when restricted to Γ gives B. Moreover,Γ =

⋃
σ1,σ2<∞

Γ(σ1, σ2), and as in the

proof of Theorem 5.1, we have.

B =
⋃

σ1,σ2<τ

Bσ1,σ2

We now prove

Theorem 6.1. (Γ,B) is Mackey-complete.

Proof. We first observe that Lemma 5.1 holds for Γ also. Let thus {αk}
be a Mackey-Cauchy sequence in Γ. Then there exists a sequence {zkp} of
positive real numbers tending to zero, such that ‖ αk−αp

zkp
‖ ≤ ω, where ω

is some fixed positive number. Now we choose a sequence {tkp}of positive
numbers such that tkp ≥ zkp for all k,p and further such that tk1p1 < tk2p2

whenever k1 ≥ k2 and p1 ≥ p2. For this, since zkp → 0, without loss of
generality we can assume that zkp < 1 for all k,p. Now we set k1 = 1, p1 = 1
and choose (ki, pi) inductively such that ki > ki−1, pi > pi−1 and zkp < 1/i
for k ≥ ki, p ≥ pi. Define {tkp} as

tkp =
1

min(i, j)
if ki ≤ k < ki+1 and pj ≤ p < pj+1.

It is easily seen that {tkp} is the required sequence. Moreover tkp → 0,and

‖ αk − αp

tkp
‖ ≤ ‖ αk − αp

zkp
‖ ≤ ω.

Hence there exists a positive integer N such that

| ak
mn − ap

mn

tkp
| ≤ ω for all m ≥ 1 and n ≥ 1, k, p > N

i.e. for each fixed m,n ≥ 1, {ak
mn} is a Cauchy sequences and hence there

exist, amn m, n ≥ 1 in C ×C such that ak
mn → amn as k →∞ for all m ≥ 1

and n ≥ 1.

Now |ak
mn−amn|1/(λm+µn)

|tk,k+1| ≤ ω for all m ≥ 1 and n ≥ 1 i.e. ‖ αk−α
tk,k+1

‖ ≤ ω,

where α =
∞∑

m,n=1
amnexp (λms1 + µns2) and tk,k+1 → 0. Hence αk → α.

Now for k sufficiently large,

| amn |1/(λm+µn) = | ak
mn − amn − ak

mn |
1/(λm+µn)

< | ak
mn − amn |1/(λm+µn)
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+ | ak
mn |

1/(λm+µn) ≤ | tk,k+1 |ω + | ak
mn |

1/(λm+µn)
.

Hence

lim sup
m,n→∞

{| amn |1/(λm+µn)} ≤ lim sup
m,n→∞

| tk,k+1 | ω + lim sup
m,n→∞

| ak
mn |1/(λm+µn)

+ lim sup
m,n→∞

| ak
mn |1/(λm+µn)≤ M ω+ ‖ αk ‖< ∞,

where M = supk| tk,k+1 | < ∞. Hence α ∈ Γ and therefore Γ is Mackey-complete. ¥

Corollary 6.1. Γ is complete.

Proof. In view of Theorem 1 in [4, p.33] it is enough to show that B is
l1 -disced. For this we show that BJ ∈ B is l1-disced. Let {ti} be a sequence

of scalars such that
∞∑
i=1
| ti | ≤ 1, and {αi} be a sequence in BJ . Then

‖ α =
∞∑

i=1

tiαi ‖ = sup {|
∞∑

i=1

tia
i
mn |

1/(λm+µn)

}

≤ sup {(
∞∑

i=1

| ti || ai
mn |)1/(λm+µn)}

≤ sup{J(
∞∑

i=1

| ti |)1/(λm+µn)} ≤ J m, n ≥ 1.

Hence BJ is l1 -disced and Corollary 6.1, follows. ¥

Theorem 6.2. (Γ,B) is not complete.

Proof. Consider the sequence αmn =
m∑

i=1

n∑
j=1

2−(i+j)eis1+js2 , m,n ≥ 1.

Then {αmn−αxy

(1/2)xy ,mn ≥ xy} is bounded in Γ. In other words,{αmn} is a
Mackey-Cauchy sequence in Γ and hence in Γ. As (Γ,B) is Mackey-complete,
the Mackey-limit of {αmn} exists in Γ. In fact the Mackey-limit of {αmn} in

Γ is α =
∞∑
i=1

∞∑
j=1

(1/2)i+jeis1+js2 as {(αmn − α)/2−mn} is bounded in Γ, and

α does not belong to Γ.

We now claim that the Mackey-limit of the sequence {αmn} does not
exist in Γ. For otherwise, let αmn → β ∈ Γ. Then αmn → β ∈ Γ. Hence
β = α as Γ is a separated bornological vector space. This contradicts the
fact that α does not belong to Γ. Hence (Γ,B) is not Mackey-complete.
This proves Theorem 6.2. ¥
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Lastly we have

Theorem 6.3. (Γ,B) is the Mackey-completion of (Γ,B).

Proof. Let α =
∞∑

m,n=1
cmnexp (λms1 + µns2) ∈ Γ.Then there exists a

number h such that | cmn |1/(λm+µn) < h for all m,n ≥ 1. Now we consider

the sequence αqt =
q∑

m=1

t∑
n=1

cmnexp (λms1 + µns2), q, t = 1, 2, ... in Γ. Then

‖ α− αqt

(1/2)qt
‖ =

= ‖ (
∞∑

m,n=1

cmnexp (λms1 + µns2)−
q∑

m=1

t∑

n=1

cmnexp (λms1 + µns2))2−(q+t) ‖

=‖ {
q∑

m=1

∞∑

n=1

cmnexp (λms1 + µns2) +
∞∑

m=q+1

∞∑

n=1

cmnexp (λms1 + µns2)}2(q+t)

−{
q∑

m=1

t∑

n=1

cmnexp (λms1 + µns2)}2(q+t) ‖

=‖ {
q∑

m=1

t∑

n=1

cmnexp (λms1 + µns2) +
q∑

m=1

∞∑

n=t+1

cmnexp (λms1 + µns2)}2(q+t)

+{
∞∑

m=q+1

t∑

n=1

cmnexp (λms1 + µns2)+
∞∑

m=q+1

∞∑

n=t+1

cmnexp (λms1 + µns2)}2(q+t)

−{
q∑

m=1

t∑

n=1

cmnexp (λms1 + µns2)}2(q+t) ‖

=‖
q∑

m=1

∞∑

n=t+1

cmnexp (λms1 + µns2)
(1/2)q+t

+
∞∑

m=q+1

t∑

n=1

cmnexp (λms1 + µns2)
(1/2)q+t

+
∞∑

m=q+1

∞∑

n=t+1

cmnexp (λms1 + µns2)
(1/2)q+t

‖< 3h2(D+1) < ∞.

Hence {αqt} → α in Γ.Thus every α ∈ Γ can be written as the Mackey-limit
of sequence {αqt} in Γ. This proves Theorem 6.3. ¥

The following corollary is immediate from Theorems 6.1 and 6.3.

Corollary 6.2. (Γ,B) is the completion of (Γ,B).
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