```
F A S C I C U L I M A T H E M A T I C I

\section*{Aleksander Waszak}

\section*{SOME REMARKS ON STRONG CONVERGENCE IN MODULAR SPACES OF SEQUENCES}

\begin{abstract}
In this paper we study some connections between strong \((A, \varphi)\)-summability of sequences and lacunary statistical convergence or lacunary strong convergence with respect to a modulus functions.
\end{abstract}

Key words: sequence spaces, modular spaces.

\section*{1. Introduction}

In papers of J. Musielak [9], J. Musielak and W. Orlicz [11], W. Orlicz [13] and moreover [16] and [18] some modular spaces connected with strong \((A, \varphi)\)-summability of sequences are considered and investigated.

In paper of A. Freedman, J. Somberg and M. Raphel [4] the spaces of lacunary strong convergence of sequences are introduced as the sets
\[
N_{\Theta}=\left\{x=\left(t_{\nu}\right): \lim _{r \rightarrow \infty} \frac{1}{h_{r}} \sum_{\nu \in I_{r}}\left|t_{\nu}-s\right| \text { for some } s\right\}
\]
where \(\Theta=\left(k_{r}\right)\) is a given lacunary sequence. The relation between \(I_{r}\) and \(k_{r}\) is mentioned in the part 2.

If \(F=\left(f_{n}\right)\) is a given sequence of modulus functions (the notation of modulus function was introduced by H. Nakano [12]) and \(A=\left(a_{n \nu}\right)\) is a given matrix, then we may define the following sequence sets
\[
\begin{gathered}
N_{\Theta}(A, F)=\left\{x=\left(t_{\nu}\right): \lim _{r \rightarrow \infty} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\left|\sum_{\nu=1}^{\infty} a_{n \nu} t_{\nu}-s\right|\right)=0 \text { for some } s\right\}, \\
N_{\Theta}^{0}(A, F)=\left\{x=\left(t_{\nu}\right): \lim _{r \rightarrow \infty} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\left|\sum_{\nu=1}^{\infty} a_{n \nu} t_{\nu}\right|\right)=0\right\}
\end{gathered}
\]

Sequences \(x\), which belong to \(N_{\Theta}^{0}(A, F)\) are called lacunary strongly convergent to zero witch respect a modulus \(F\), (for definition see [1], compare also [2], [3], [8] or [17]).

Throughout this paper it will be supposed that \(s=0\) and that we take the sequence \(\left(\sigma_{n}^{\varphi}\right)\), where \(\sigma_{n}^{\varphi}(x)=\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\) instead of the sequence \(\left(\sum_{\nu=1}^{\infty} a_{n \nu} t_{\nu}\right)\).

Finally, the space \(T_{\Theta}^{0}((A, \varphi), F)\) of lacunary strongly convergent to zero sequences is defined by the formula
\[
T_{\Theta}^{0}((A, \varphi), F)=\left\{x=\left(t_{\nu}\right): \lim _{r \rightarrow \infty} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\left|\sigma_{n}^{\varphi}(x)\right|\right)=0\right\}
\]

\section*{2. Preliminaries}

Let \(A=\left(a_{n \nu}\right)\) be an infinite matrix. The following assumptions on the matrix \(A\) will be used in some of our further considerations:
(a) is nonnegative i.e. \(a_{n \nu} \geq 0\) for \(n, \nu=1,2 \ldots\),
(b) for an arbitrary positive integer \(n\) (or \(\nu\) ) there exists a positive integer \(\nu_{0}\) (or \(n_{0}\) ) such that \(a_{n \nu_{0}} \neq 0\) (or \(a_{n_{0} \nu} \neq 0\) ), respectively,
(c) there exist \(\lim _{n \rightarrow \infty} a_{n \nu}=0\) for \(\nu=1,2, \ldots\),
(d) \(\sup _{n} \sum_{\nu=1}^{\infty} a_{n \nu} \leq K<\infty\),
(e) \(\sup _{n} a_{n \nu} \rightarrow 0\) as \(\nu \rightarrow \infty\).

Let \({ }^{n}, T_{b}, T_{0}, T_{f}\) denote spaces of all real sequences, bounded real sequences, real sequences convergent to zero and sequences with a finite number of elements different from zero, respectively. Sequences belonging to \(T\) will be denoted by \(x=\left(t_{\nu}\right), y=\left(s_{\nu}\right), x_{m}=\left(t_{\nu}^{m}\right),|x|=\left(\left|t_{\nu}\right|\right)\), \(0=(0)\). Moreover, we shall write \(e_{p}, e^{q}, e_{p}^{q}\) for the following sequences: \(0,0, \ldots, 1,0, \ldots\) (with 1 at the \(p\) th place) \(; 1,1, \ldots, 1,0, \ldots\) (with 1 at the first \(q\) places) \(; 0, \ldots, 0,1, \ldots 1,0, \ldots\) (with 1 at the \(p\) th, \((p+1)\) st, \(\ldots,(p+q-1)\) st place), respectively.

A sequence of positive integers \(\Theta=\left(k_{r}\right)\) is called lacunary if \(k_{0}=0\), \(k_{r}<k_{r+1}\) for all \(r\) and if \(I_{r}=\left(k_{r-1}, k_{r}\right]\) then \(h_{r}=k_{r}-k_{r-1} \rightarrow \infty\) as \(r \rightarrow \infty\).

In the following the quotient \(\frac{k_{r}}{k_{r-1}}\) will be denoted by \(q_{r}\), (compare [4]).
By a modulus function we understand the increasing function \(f\) from \([0, \infty)\) to \([0, \infty)\) such that: \(f(x)=0\) if and only if \(x=0, f(x+y) \leq f(x)+\) \(f(y)\) for \(x, y \geq 0\) and is continuous from the right at 0 . Throughout this paper the sequence \(\left(f_{n}\right), n=1,2, \ldots\) of modulus functions will be denoted by \(F\), (compare [12]).

By a \(\varphi\)-function we understand a continuous non-decreasing function \(\varphi(u)\) defined for \(u \geq 0\) and such that \(\varphi(0)=0, \varphi(u)>0\) for \(u>0\) and \(\varphi(u) \rightarrow \infty\) as \(u \rightarrow \infty\). The symbol \(\varphi(|x|)\) means the function \(\varphi(|x(t)|)\).

A \(\varphi\)-function \(\varphi\) is called non weaker than a \(\varphi\)-function \(\psi\) and we write \(\psi \prec \varphi\) if there are constants \(c, b, k, l>0\) such that \(c \psi(l u) \leq b \varphi(k u)\), (for all, large or small \(u\), respectively).
\(\varphi\)-functions \(\varphi\) and \(\psi\) are called equivalent and we write \(\varphi \sim \psi\) if there are positive constants \(b_{1}, b_{2}, c, k_{1}, k_{2}, l\) such that \(b_{1} \varphi\left(k_{1} u\right) \leq c \psi(l u) \leq b_{2} \varphi\left(k_{2} u\right)\), (for all, large or small \(u\), respectively).

A \(\varphi\)-function \(\varphi\) is said to satisfy the condition \(\left(\Delta_{2}\right)\), ( for all, large or small \(u\), respectively) if for some constant \(k>1\) there is satisfied the inequality \(\varphi(2 u) \leq k \varphi(u)\).

In the following let \(\varphi=\left(\varphi_{\nu}\right)\) and \(\psi=\left(\psi_{\nu}\right)\) be two sequences of \(\varphi\)-functions. We say that relations between \(\varphi=\left(\varphi_{\nu}\right)\) and \(\psi=\left(\psi_{\nu}\right)\) hold if and only if these relations hold between \(\varphi\)-functions \(\varphi_{\nu}\) and \(\psi_{\mu}\) for every \(\nu\). For more properties of \(\varphi\)-functions see e.g. [7], [9], [10], [18], [19].

\section*{3. Spaces of strongly \((A, \varphi)\)-summable sequences}

For a given the sequence \(\varphi=\left(\varphi_{\nu}\right)\) of \(\varphi\)-functions \(\varphi_{\nu}(u)\) and the matrix \(A=\left(a_{n \nu}\right)\) we adopt the following notations:
\[
\begin{gathered}
\sigma_{n}^{\varphi}(x)=\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right) \text { for } n=1,2, \ldots, \\
T_{\varphi}^{0}=\left\{x \in T: \sigma_{n}^{\varphi}(x)<\infty \text { for } n=1,2, \ldots \text { and } \lim _{n \rightarrow \infty} \sigma_{n}^{\varphi}(x)=0\right\}, \\
T_{\varphi}=\left\{x \in T: \lambda x \in T_{\varphi}^{0} \text { for an arbitrary } \lambda>0\right\} \\
T_{\varphi}^{*}=\left\{x \in T: \lambda x \in T_{\varphi}^{0} \text { for a certain } \lambda>0\right\}
\end{gathered}
\]

Sequences \(x\), which belong to \(T_{\varphi}^{*}\) are called strongly \((A, \varphi)\)-summable to zero.

A list of the most interesting properties concerning the space \(T_{\varphi}^{*}\) is presented below, (compare also [11], [13], [16] or [18]).
(1) \(T_{\varphi} \subset T_{\varphi}^{0} \subset T_{\varphi}^{*}\).
(2) \(T_{f} \subset T_{\varphi}\) if and only if the matrix \(A\) satisfies the condition (c).
(3) If the matrix \(A\) possesses the property (c), then \(e_{p}, e^{q}, e_{p}^{q} \in T_{\varphi}\), if \(\lim _{n \rightarrow \infty} a_{n \nu}=0\) for \(\nu=1,2, \ldots\) does not hold then we have \(T_{\varphi}=T_{\varphi}^{0}=T_{\varphi}^{*}=\{0\}\).
(4) If the matrix \(A\) possesses the property (d) then \(T_{b} \cap T_{\varphi}^{*}=T_{b} \cap T_{\psi}^{*}\)
and \(T_{b} \cap T_{\varphi}=T_{b} \cap T_{\varphi}^{*}\) for an arbitrary two sequences \(\varphi\) and \(\psi\) of \(\varphi\)-functions.
(5) \(\varphi\) satisfies the condition \(\left(\Delta_{2}\right)\) for large arguments if and only if \(T_{\varphi}=T_{\varphi}^{*}\).
(6) Let the matrix \(A\) has properties (a)-(d); if \(\psi \prec \varphi\) for large arguments then \(T_{\varphi}^{*} \subset T_{\psi}^{*}\) and \(T_{\varphi} \subset T_{\psi}\), if \(\varphi \sim \psi\) for large arguments then \(T_{\varphi}^{*}=T_{\psi}^{*}\) and \(T_{\varphi}=T_{\psi}\).

\section*{4. Spaces of lacunary strongly convergent sequences}

Let \(\varphi=\left(\varphi_{\nu}\right)\) and \(F=\left(f_{n}\right)\) be given sequences of \(\varphi\)-functions and modulus functions, respectively. Moreover, let a matrix \(A\) and a lacunary sequence \(\Theta\) be given. We introduce the set \(T_{\Theta}^{0}((A, \varphi), F)\) by the formula:
\[
T_{\Theta}^{0}((A, \varphi), F)=\left\{x=\left(t_{\nu}\right): \lim _{r \rightarrow \infty} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\right)=0\right\} .
\]

Moreover, let
\(T_{\Theta}((A, \varphi), F)=\left\{x=\left(t_{\nu}\right): \lim _{r \rightarrow \infty} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\lambda\left|t_{\nu}\right|\right)\right)=0\right.\)
\[
\text { for an arbitrary } \lambda>0\} \text {, }
\]
\(T_{\Theta}^{*}((A, \varphi), F)=\left\{x=\left(t_{\nu}\right): \lim _{r \rightarrow \infty} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\lambda\left|t_{\nu}\right|\right)\right)=0\right.\)
\[
\text { for a certain } \lambda>0\} \text {. }
\]

The sequence \(x\) is said to be lacunary strong \((A, \varphi)\)-convergent to zero with respect to a modulus \(F\), if \(x \in T_{\Theta}^{0}((A, \varphi), F)\).

Let us remark that in particulary we have:
\(1^{0}\) If \(\varphi_{\nu}(u)=u\) for all \(\nu\), then we obtain the set
\(T_{\Theta}^{0}((A, u), F) \equiv N_{\Theta}^{0}(A, F) \equiv\left\{x=\left(t_{\nu}\right): \lim _{r \rightarrow \infty} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu}\left|t_{\nu}\right|\right)=0\right\}\),
(compare e.g. [1]).
\(2^{0}\) If \(f_{n}(v)=v\) for all \(n\), then
\(T_{\Theta}^{0}((A, \varphi), \nu) \equiv T_{\Theta}^{0}((A, \varphi)) \equiv\left\{x=\left(t_{\nu}\right): \lim _{r \rightarrow \infty} \frac{1}{h_{r}} \sum_{n \in I_{r}} \sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)=0\right\}\).
\(3^{0}\) If \(A=I\) and moreover \(\varphi_{\nu}(u)=u\) and \(f_{n}(v)=v\) for all \(\nu\) and \(n\), respectively, then we have the sequence space,
\[
N_{\Theta}^{0} \equiv T_{\Theta}^{0}((I, u), \nu) \equiv\left\{x=\left(t_{n} u\right): \lim _{r \rightarrow \infty} \frac{1}{h_{r}} \sum_{n \in I_{r}}\left|t_{n}\right|=0\right\}
\]
(compare [1]).
Theorem 1. Let \(\varphi=\left(\varphi_{\nu}\right)\) be a given sequence of \(\varphi\)-functions and let \(F=\left(f_{n}\right)\) be a sequence of modulus functions. Then, for the usual definition of addition of sequences and multiplication by a scalar,
\((\alpha) T_{\Theta}^{0}((A, \varphi), F)\) is a convex set,
\((\beta) T_{\Theta}^{*}((A, \varphi), F)\) is a linear space.
Proof. We limit ourselves to the proof of the property ( \(\alpha\) ). Suppose that \(x=\left(t_{\nu}\right), y=\left(s_{\nu}\right) \in T_{\Theta}^{0}((A, \varphi), F)\) and \(\alpha, \beta\) are arbitrary numbers such that \(0 \leq \alpha, \beta \leq 1\) and \(\alpha+\beta=1\). We have
\[
\begin{aligned}
\frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|\alpha t_{\nu}+\beta s_{\nu}\right|\right)\right) \leq & \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\right) \\
& +\frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|s_{\nu}\right|\right)\right)
\end{aligned}
\]

Thus, \(\alpha x+\beta y \in T_{\Theta}^{0}((A, \varphi), F)\).
Theorem 2. Let \(F\) and \(\varphi\) be sequences of modulus functions and \(\varphi\)-functions, respectively. Moreover let the matrix \(A\) and the sequence \(\Theta\) be given. If
\[
w((A, \varphi), F)=\left\{x=\left(t_{\nu}\right): \lim _{m \rightarrow \infty} \frac{1}{m} \sum_{n=1}^{m} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\right)=0\right\}
\]
then the following relations are true:
(a) If \(\liminf _{r} q_{r}>1\), then \(w((A, \varphi), F) \subseteq T_{\Theta}^{0}((A, \varphi), F)\).
(b) If \(\lim \sup _{r} q_{r}<\infty\), then \(T_{\Theta}^{0}((A, \varphi), F) \subseteq w((A, \varphi), F)\).
(c) If \(1<\liminf _{r} q_{r} \leq \underset{r}{\limsup } q_{r}<\infty\), then \(T_{\Theta}^{0}((A, \varphi), F)=w((A, \varphi), F)\).

Proof. (a). Let us suppose that \(x \in w((A, \varphi), F)\). There exists \(\delta>0\) such that \(q_{r}>1+\delta\) for sufficiently large \(r\) and we have \(\frac{h_{r}}{k_{r}} \geq \frac{\delta}{1+\delta}\) for sufficiently large \(r\). Consequently,
\[
\begin{aligned}
\frac{1}{k_{r}} \sum_{n=1}^{k_{r}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\right) & \geq \frac{1}{k_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\right) \\
& \geq \frac{\delta}{1+\delta} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\right) .
\end{aligned}
\]

Finally, \(x \in T_{\Theta}^{0}((A, \varphi), F)\).
(b). Let us remark that the condition \(\lim \sup q_{r}<\infty\) implies that there exists a constant \(M>0\) such that \(q_{r}<M\) for every \(r\). If \(x \in T_{\Theta}^{0}((A, \varphi), F)\) and \(\varepsilon>0\) is an arbitrary number, then there exists an index \(m_{0}\) such that
\[
H_{m}=\frac{1}{h_{m}} \sum_{n \in I_{m}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\right)<\varepsilon
\]
for every \(m \geq m_{0}\). Thus, there exists a constant \(L>0\) such that \(H_{m} \leq L\) for all \(m\). Choosing an integer \(\alpha\) such that \(k_{r-1}<\alpha<k_{r}\) we obtain
\[
I=\frac{1}{\alpha} \sum_{n=1}^{\alpha} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\right) \leq \frac{1}{k_{r-1}} \sum_{n=1}^{k_{r}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\right)=I_{1}+I_{2},
\]
where
\[
\begin{aligned}
& I_{1}=\frac{1}{k_{r-1}} \sum_{m=1}^{m_{0}} \sum_{n \in I_{m}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\right), \\
& I_{2}=\frac{1}{k_{r-1}} \sum_{m=m_{0}+1}^{\alpha} \sum_{n \in I_{m}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\right) .
\end{aligned}
\]

It is easily verified that
\[
\begin{aligned}
I_{1} & =\frac{1}{k_{r-1}}\left(\sum_{n \in I_{1}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\right)+\ldots+\sum_{n \in I_{m_{0}}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\right)\right) \\
& \leq \frac{1}{k_{r-1}}\left(h_{1} H_{1}+\ldots+h_{m_{0}} H_{m_{0}}\right) \leq \frac{1}{k_{r-1}} m_{0} k_{m_{0}} \sup _{1 \leq i \leq m_{0}} H_{i} \leq \frac{m_{0} k_{m_{0}}}{k_{r-1}} L .
\end{aligned}
\]

Moreover, we have
\[
\begin{aligned}
I_{2} & =\frac{1}{k_{r-1}} \sum_{m=m_{0}+1}^{\alpha} \sum_{n \in I_{m}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\right) \\
& \leq \varepsilon \frac{1}{k_{r-1}} \sum_{m=m_{0}+1}^{\alpha} h_{m} \leq \varepsilon \frac{k_{r}}{k_{r-1}}=\varepsilon q_{r}<\varepsilon M
\end{aligned}
\]

Thus, the following inequality holds \(I \leq \frac{m_{0} k_{m_{0}}}{k_{r-1}} L+\varepsilon M\). Finally, \(x \in\) \(w((A, \varphi), F)\).

Theorem 3. Let the sequence \(\Theta\), the modulus functions \(F\) and two sequences of \(\varphi\)-functions \(\varphi\) and \(\psi\) be given. Suppose that the matrix \(A\) satisfies the conditions (a), (b) and (d) and let \(\varphi\)-functions \(\varphi\) and \(\psi\) satisfy the condition \(\left(\Delta_{2}\right)\) for large \(u\).
\((\alpha)\) If \(\psi \prec \varphi\) for large \(u\), then \(T_{\Theta}^{0}((A, \varphi), F) \subset T_{\Theta}^{0}((A, \psi), F)\).
\((\beta)\) If \(\varphi\)-function \(\varphi\) and \(\psi\) are equivalent for large \(u\), then \(T_{\Theta}^{0}((A, \varphi), F)=\) \(T_{\Theta}^{0}((A, \psi), F)\).

Proof. Let \(x=\left(t_{\nu}\right) \in T_{\Theta}^{0}((A, \varphi), F)\). By assumption we have \(\psi_{\nu}\left(\left|t_{\nu}\right|\right) \leq\) \(b \varphi_{\nu}\left(c\left|t_{\nu}\right|\right)\) for \(b, c, u_{0}>0,\left|t_{\nu}\right|>u_{0}\) and all \(\nu\). Let us denote \(x=x^{1}+x^{2}\), where \(x^{1}=\left(t_{\nu}^{(1)}\right)\) and \(t_{\nu}^{(1)}=t_{\nu}\) for \(\left|t_{\nu}\right|<u_{0}\) and \(t_{\nu}^{(1)}=0\) for remaining values of \(\nu\). It is easily seen that \(x^{1} \in T_{\Theta}^{0}((A, \psi), F)\). Moreover, by the assumptions we get
\[
\begin{aligned}
\frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \psi_{\nu}\left(\left|t_{\nu}^{(2)}\right|\right)\right) & \leq \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(b \sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(c\left|t_{\nu}^{(2)}\right|\right)\right) \\
& \leq \frac{L}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}^{(2)}\right|\right)\right)
\end{aligned}
\]
where the constant \(L\) depends on the properties of \(F, \varphi\) and \(\psi\). Finally, we obtain \(x_{2}=\left(t_{\nu}^{2}\right) \in T_{\Theta}^{0}((A, \psi), F)\) and consequently \(x \in T_{\Theta}^{0}((A, \psi), F)\). By \((\alpha)\) we obtain \(T_{\Theta}^{0}((A, \varphi), F)=T_{\Theta}^{0}((A, \psi), F)\).

Remark. Let us remark that the modulus functions \(f_{n}\) are continuous in the interval \([0, \infty)\). Moreover, it is easily verified that by the assumptions of matrix \(A\) and the function \(f_{n}\) we have that the sums
\[
S_{p q}^{n}=a_{n, p}+a_{n, p+1}+\ldots+a_{n, p+q-1}
\]
and \(\sum_{n \in I_{r}} f_{n}\left(\max _{p \leq \nu \leq p+q-1} \varphi_{\nu}(1) S_{p q}^{n}\right)\) are bounded, and tend to zero as \(n \rightarrow \infty\) and \(r \rightarrow \infty\), respectively (compare [11], [16], [18]). Consequently we have \(e_{p}, e^{q}, e_{p}^{q} \in T_{\Theta}^{0}((A, \varphi), F)\).

Theorem 4. Let \(F=\left(f_{n}\right)\) be a sequence of modulus functions such that are equicontinuous at 0 and \(\sup f_{n}(1)<\infty\). Moreover, let the matrix \(A=\left(a_{n \nu}\right)\) and the sequence \(\varphi=\binom{n}{\nu^{\prime}}\) of \(\varphi\)-functions be given. The following inclusion hold:
\[
T_{\Theta}^{0}((A, \varphi)) \subseteq T_{\Theta}^{0}((A, \varphi), F) .
\]

Proof. Let \(x \in T_{\Theta}^{0}((A, \varphi))\) for a given \(\varepsilon>0\) we choose \(0<\delta<1\) such that \(f_{n}(v)<\varepsilon\) for all \(n\) and every \(v \in[0, \delta]\). We can write
\[
\frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\right)=S_{1}+S_{2}
\]
where \(S_{1}=\frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\right)\) and this sum is taken over \(\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\right) \leq \delta\), and \(S_{2}=\frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\right)\) and this sum is taken over \(\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\right)>\delta\). By definition of the modulus \(F\) we have \(S_{1} \leq \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}(\delta)=\sum_{n \in I_{r}} f_{n}(\delta)<\varepsilon\) and moreover \(S_{2} \leq\) \(\frac{1}{\delta} \frac{1}{h_{r}}\left(\sup _{n} f_{n}(1)\right) \sum_{n \in I_{r}} \sum_{\nu=1}^{\infty} a_{n \nu} \varphi\left(\left|t_{\nu}\right|\right)\). Finally, we get \(x \in T_{\Theta}^{0}((A, \varphi), F)\).

Remark. Let us remark that in the case \(A=I, f_{n}(\nu)=\nu^{\frac{1}{n+1}}\), for \(n \geq 1\) and \(\nu>0\), and convex \(\varphi\)-functions \(\varphi_{\nu}\), we may choose the sequence \(x=\left(t_{\nu}\right)\) by the formulas: \(t_{\nu}=\varphi_{\nu}^{-1}\left(h_{r}\right)\) if \(\nu=k_{r}\) for some \(r \geq 1\) and \(t_{\nu}=0\) otherwise. Then we have
\(\frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{\nu=1}^{\infty} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\right)=\frac{1}{h_{r}} f_{k_{r}}\left(h_{r}\right)=\left(h_{r}\right)^{-1}\left(h_{r}\right)^{\frac{1}{k_{r}+1}} \rightarrow 0, \quad\) as \(r \rightarrow \infty\) and \(\frac{1}{h_{r}} \sum_{n \in I_{r}} \sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)=\frac{1}{h_{r}} h_{r} \rightarrow 1\) as \(r \rightarrow \infty\). Thus \(x \in T_{\Theta}^{0}((A, \varphi), F)\) but \(x \notin T_{\Theta}^{0}((A, \varphi))\).

\section*{5. Some remarks on lacunary \((A, \varphi)\)-statistical convergence}

Let \(\Theta=\left(k_{r}\right)\) be a lacunary sequence, and let the matrix \(A=\left(a_{n \nu}\right)\), the sequence \(x=\left(t_{\nu}\right)\), the sequence \(\varphi\) of \(\varphi\)-functions \(\varphi_{\nu}(u)\) and a positive number \(\varepsilon\) be given. We adopt the following notation
\[
K_{\Theta}^{r}((A, \varphi), \varepsilon)=\left\{n \in I_{r}: \sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right) \geq \varepsilon\right\}
\]

The sequence \(x\) is said to be lacunary \((A, \varphi)\)-statistically convergent to a number zero if for every \(\varepsilon>0\)
\[
\lim _{r \rightarrow \infty} \frac{1}{h_{r}} \mu\left(K_{\Theta}^{r}((A, \varphi), \varepsilon)\right)=0
\]
where \(\mu\left(K_{\Theta}^{r}((A, \varphi), \varepsilon)\right)\) denotes the number of elements belonging to the set \(K_{\Theta}^{r}((A, \varphi), \varepsilon)\). The set of all lacunary \((A, \varphi)\)-statistical convergent sequences is denoted by \(S_{\Theta}((A, \varphi))\),
\[
S_{\Theta}((A, \varphi))=\left\{x=\left(t_{\nu}\right): \lim _{r \rightarrow \infty} \frac{1}{h_{r}} \mu\left(K_{\Theta}^{r}((A, \varphi), \varepsilon)\right)=0\right\},
\]
(compare [2], [4], [5], [6], [15] and [17]).
Theorem 5. If \(\psi \prec \varphi\) and \(\varphi \in\left(\Delta_{2}\right)\) for large arguments then
\[
S_{\Theta}((A, \psi)) \subset S_{\Theta}((A, \varphi)) .
\]

Proof. The assumptions imply that
\[
\sum_{\nu=1}^{\infty} a_{n \nu} \psi_{\nu}\left(\left|t_{\nu}\right|\right) \leq b \sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(c\left|t_{\nu}\right|\right) \leq L b \sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right),
\]
for \(b, c>0, n \in N\), where the constant \(L\) depends on the properties of \(\varphi\). Consequently we obtain
\[
\mu\left(K_{\Theta}^{r}((A, \varphi), \varepsilon)\right) \leq \mu\left(K_{\Theta}^{r}((A, \psi), \varepsilon)\right)
\]
and
\[
\lim _{r \rightarrow \infty} \frac{1}{h_{r}} \mu\left(K_{\Theta}^{r}((A, \varphi), \varepsilon)\right) \leq \lim _{r \rightarrow \infty} \frac{1}{h_{r}} \mu\left(K_{\Theta}^{r}((A, \psi), \varepsilon)\right) .
\]

Corollary. If \(\psi \sim \varphi\) and \(\varphi, \psi \in\left(\Delta_{2}\right)\) for large arguments then
\[
S_{\Theta}((A, \varphi))=S_{\Theta}((A, \psi)) .
\]

Theorem 6. Let \(\Theta, F\) and \(\varphi\) be given. Suppose that the sequence \(\left(f_{n}\right)\) is pointwise convergent.
( \(\alpha\) ) If \(\lim _{n} f_{n}(\nu)>0\) for \(\nu>0\) then \(T_{\Theta}^{0}((A, \varphi), F) \subset S_{\Theta}^{0}((A, \varphi))\) for every matrix \(A\).
( \(\beta\) ) If moreover \(\varphi=\left(\varphi_{\nu}\right)\) is a sequence of convex \(\varphi\)-functions then the inclusion \(T_{\Theta}^{0}((A, \varphi), F) \subset S_{\Theta}((A, \varphi))\) implies that \(\lim _{n} f_{n}(\nu)>0\) for \(\nu>0\).

Proof. \((\alpha)\). Let \(\varepsilon\) be a positive number and let \(x \in T_{\Theta}^{0}((A, \varphi), F)\). If \(\lim _{n} f_{n}(\nu)>0\), then there exists \(\alpha>0\) such that \(f_{n}(\nu)>\alpha\) for \(\nu>\varepsilon\) and for all \(n\). We have
\[
\begin{array}{r}
\frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\right) \geq \frac{1}{h_{r}} \sum_{n \in I_{r}^{1}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\right) \\
\geq \frac{1}{h_{r}} \sum_{n \in I_{r}^{1}} f_{n}(\varepsilon) \geq \frac{1}{h_{r}} \alpha \mu\left(K_{\Theta}^{r}((A, \varphi), \varepsilon)\right)
\end{array}
\]
where \(I_{r}^{1}=\left\{n \in I_{r}: \sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right) \geq \varepsilon\right\}\). Finally \(x \in S_{\Theta}((A, \varphi))\).
\((\beta)\). Let us suppose that \(\lim _{n} f_{n}(\nu)>0\) does not hold. Then there exists a positive number \(\alpha\) such that \(\lim _{n} f_{n}(\alpha)=0\). We can select a lacunary sequence \(\Theta=\left(k_{r}\right)\) such that \(f_{n}(\alpha)<\frac{1}{2^{r}}\) for any \(n>k_{r-1}\). In the following, we take \(A=I\) and we can select the sequence \(x=\left(t_{\nu}\right)\) by the formulas: \(t_{\nu}=\) \(\varphi_{\nu}^{-1}(\alpha)\) for \(k_{k-1}<\nu \leq \frac{1}{2}\left(k_{r-1}+k_{r}\right)\), and \(t_{\nu}=0\) for \(\frac{1}{2}\left(k_{r-1}+k_{r}\right)<\nu \leq k_{r}\). It is easily verified that \(\sum_{n \in I_{r}} f_{n}\left(\left|\sum_{\nu=k_{k-1}+1}^{k_{r}} \varphi_{\nu}\left(\varphi_{\nu}^{-1}(\alpha)\right)\right|\right)<\left(k_{r}-k_{r-1}\right) \frac{1}{2^{r}}\) and \(\sigma_{n}^{\varphi}(x) \sum_{\nu=k_{k-1}+1}^{k_{r}} \varphi_{\nu}\left(t_{\nu}\right)=\frac{k_{r}-k_{r-1}}{2} \alpha\). Finally, we have \(x \in T_{\Theta}^{0}((A, \varphi), F)\), but \(x \notin S_{\Theta}((A, \varphi))\).

Theorem 7. Let \(\Theta, F\) and \(\varphi\) be given.
( \(\alpha\) ) If \(\lim _{\nu} \sup _{n} f_{n}(\nu)<\infty\) then \(S_{\Theta}((A, \varphi)) \subset T_{\Theta}^{0}((A, \varphi), F)\) for every matrix \(A\).
( \(\beta\) ) If moreover \(\varphi=\left(\varphi_{\nu}\right)\) is a sequence of convex \(\varphi\)-functions then the inclusion \(S_{\Theta}((A, \varphi)) \subset T_{\Theta}^{0}((A, \varphi), F)\) implies that \(\sup _{\nu} \sup _{n} f_{n}(\nu)<\infty\).

Proof. \((\alpha)\). Let \(x \in S_{\Theta}((A, \varphi))\). Let us denote \(h(\nu)=\sup _{n} f_{n}(\nu)\), \(h=\sup _{\nu} h(\nu), I_{r}^{1}=K_{\Theta}^{r}((A, \varphi), \varepsilon)\) and \(I_{r}^{2}=\left\{\nu \in I_{r}: \sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)<\varepsilon\right\}\). Thus, we have
\[
\begin{aligned}
& \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\right) \leq \frac{1}{h_{r}} \sum_{n \in I_{r}^{1}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\right)+ \\
& \quad+\frac{1}{h_{r}} \sum_{n \in I_{r}^{2}} f_{n}\left(\sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\right) \leq \frac{1}{h_{r}} h \mu\left(K_{\Theta}^{r}((A, \varphi), \varepsilon)\right)+h(\varepsilon)
\end{aligned}
\]

Taking the limit as \(\varepsilon \rightarrow 0\), we obtain that \(x \in T_{\Theta}^{0}((A, \varphi))\).
\((\beta)\). Let us suppose that \(\sup \sup f_{n}(\nu)=\infty\). Then we choose the increasing sequence \(\left(\nu_{r}\right)\) such that \(f_{k_{r}}^{\nu}\left(\nu_{r}\right) \geq h_{r}\), for \(r \geq 1\). We can take the matrix \(A=I\) and the sequence \(x=\left(t_{\nu}\right)\) defined by the formulas: \(t_{\nu}=\varphi_{k_{r}}^{-1}\left(\nu_{r}\right)\) for \(\nu=k_{r}\) (and for some \(r=1,2, \ldots\) ) and \(t_{\nu}=0\) otherwise. Finally, since \(\mu\left(K_{\Theta}^{r}((I, \varphi), \varepsilon)\right)\) is the finite number and \(\sum_{n \in I_{r}} f_{n}\left(\sum_{\nu=k_{k-1}+1}^{k_{r}} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\right) \geq h_{r}\) for every \(r\), then we obtain \(x \in S_{\Theta}((A, \varphi))\) but \(x \notin T_{\Theta}^{0}((A, \varphi), F)\).

Theorem 8. Suppose that the matrix \(A\) is regular and that the modulus functions \(F=\left(f_{n}\right)\) are bounded. Then the condition \(x \in T_{0}\) implies \(x \in\) \(S_{\Theta}((A, \varphi))\).

Proof. If \(x=\left(t_{\nu}\right) \in T_{0}\), by regularity of \(A\) we have \(\lim _{n \rightarrow \infty} \sum_{\nu=1}^{\infty} a_{n \nu} \varphi_{\nu}\left(\left|t_{\nu}\right|\right)\) \(=0\). Thus, by the definition of statistical \((A, \varphi)\)-convergence, we obtain \(\lim _{n \rightarrow \infty} \frac{1}{h_{r}} \mu\left(K_{\Theta}^{r}((A, \varphi), \varepsilon)\right)=0\) and \(x \in S_{\Theta}((A, \varphi))\).

\section*{References}
[1] T. Bilgin, Lacunary strong \(A\)-convergence with respect to a sequence modulus functions, Preprint of Department of Mathematics University of 100. Yil, Van Turkey, (2001), 1-5.
[2] J.S. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull., 32(1989), 194-198.
[3] A. Esi, The \(A\)-statistical and strongly \((A-p)\)-Cesàro convergence of sequences, Pure and Appl. Math. Sci., 43(1996), 89-93.
[4] A.R. Freedman, J.J. Sember, M. Raphel, Some Cesàro-type summability spaces, Proc. London Math. Soc., 37(1978), 508-520.
[5] J. Frydy, On statistical convergence, Analysis, 5(1985), 301-313.
[6] J. Frydy, C. Orhan, Lacunary statistical convergence, Pacific J. Math., 160(1993), 45-51.
[7] A. Kufner, O. John, S. Fučik, Function spaces, Prague, 1977.
[8] I.J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc., 100(1986), 161-166.
[9] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer Verlag. Berlin-Heidelberg-New York-Tokyo 1983
[10] J. Musielak, W. Orlicz, On modular spaces, Studia Math., 18(1959), 49-65.
[11] J. Musielak, W. Orlicz, On modular spaces of strongly summable sequences, Studia Math., 22(1962), 127-144.
[12] H. Nakano, Concave modulars, J. Math. Soc. Japan, 5(1953), 29-49.
[13] W. Orlicz, On some spaces of strongly summable sequences, Studia Math., 22(1963), 331-336.
[14] S. Pehlivan, B. Fisher, On some sequence spaces, Indian J. Pure Appl. Math., 25(1994), 1067-1071.
[15] T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca, 2(1980), 139-150.
[16] A. WASZAK, On spaces of strongly summable sequences with an Orlicz metric, Comment. Math., 11(1968), 229-246.
[17] A. Waszak, On the strong convergence in some sequence spaces, Fasc. Math., 33(2002), 125-137.
[18] A. WASZAK, D. ŻURAKOWSKI, Musielak-Orlicz spaces of sequences connected with strong summability, Fasc. Math., 28(1998), 157-165.
[19] D. Żurakowski, On completeness of some Musielak-Orlicz spaces, Fasc. Math., 24(1994), 13-17.

Aleksander Waszak
Faculty of Mathematics and Computer Science Adam Mickiewicz University
Umultowska 87, 61-614 Poznań, POLAND

Received on 12.11.2004 and, in revised from, on 15.12.2004```

