2005

$\rm Nr~35$

ALEKSANDER WASZAK

SOME REMARKS ON STRONG CONVERGENCE IN MODULAR SPACES OF SEQUENCES

ABSTRACT: In this paper we study some connections between strong (A, φ) -summability of sequences and lacunary statistical convergence or lacunary strong convergence with respect to a modulus functions.

KEY WORDS: sequence spaces, modular spaces.

1. Introduction

In papers of J. Musielak [9], J. Musielak and W. Orlicz [11], W. Orlicz [13] and moreover [16] and [18] some modular spaces connected with strong (A, φ) -summability of sequences are considered and investigated.

In paper of A. Freedman, J. Somberg and M. Raphel [4] the spaces of lacunary strong convergence of sequences are introduced as the sets

$$N_{\Theta} = \left\{ x = (t_{\nu}) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{\nu \in I_r} |t_{\nu} - s| \text{ for some } s \right\},$$

where $\Theta = (k_r)$ is a given lacunary sequence. The relation between I_r and k_r is mentioned in the part 2.

If $F = (f_n)$ is a given sequence of modulus functions (the notation of modulus function was introduced by H. Nakano [12]) and $A = (a_{n\nu})$ is a given matrix, then we may define the following sequence sets

$$N_{\Theta}(A,F) = \left\{ x = (t_{\nu}) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{n \in I_r} f_n \left(\left| \sum_{\nu=1}^{\infty} a_{n\nu} t_{\nu} - s \right| \right) = 0 \text{ for some } s \right\},\$$
$$N_{\Theta}^0(A,F) = \left\{ x = (t_{\nu}) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{n \in I_r} f_n \left(\left| \sum_{\nu=1}^{\infty} a_{n\nu} t_{\nu} \right| \right) = 0 \right\}.$$

Sequences x, which belong to $N_{\Theta}^0(A, F)$ are called lacunary strongly convergent to zero witch respect a modulus F, (for definition see [1], compare also [2], [3], [8] or [17]).

Throughout this paper it will be supposed that s = 0 and that we take the sequence (σ_n^{φ}) , where $\sigma_n^{\varphi}(x) = \sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu}(|t_{\nu}|)$ instead of the sequence

 $\left(\sum_{\nu=1}^{\infty}a_{n\nu}t_{\nu}\right).$

Finally, the space $T^0_{\Theta}((A, \varphi), F)$ of lacunary strongly convergent to zero sequences is defined by the formula

$$T_{\Theta}^{0}((A,\varphi),F) = \left\{ x = (t_{\nu}) : \lim_{r \to \infty} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(|\sigma_{n}^{\varphi}(x)| \right) = 0 \right\}.$$

2. Preliminaries

Let $A = (a_{n\nu})$ be an infinite matrix. The following assumptions on the matrix A will be used in some of our further considerations:

- (a) is nonnegative i.e. $a_{n\nu} \ge 0$ for $n, \nu = 1, 2...,$
- (b) for an arbitrary positive integer n (or ν) there exists a positive integer ν_0 (or n_0) such that $a_{n\nu_0} \neq 0$ (or $a_{n_0\nu} \neq 0$), respectively,
- (c) there exist $\lim_{n\to\infty} a_{n\nu} = 0$ for $\nu = 1, 2, ...,$
- (d) $\sup_{n} \sum_{\nu=1}^{\infty} a_{n\nu} \le K < \infty,$ (e) $\sup_{n} a_{n\nu} \to 0 \text{ as } \nu \to \infty.$

Let T, T_b, T_0, T_f denote spaces of all real sequences, bounded real sequences, real sequences convergent to zero and sequences with a finite number of elements different from zero, respectively. Sequences belonging to T will be denoted by $x = (t_{\nu}), y = (s_{\nu}), x_m = (t_{\nu}^m), |x| = (|t_{\nu}|),$ 0 = (0). Moreover, we shall write e_p , e^q , e^q_p for the following sequences: 0, 0, ..., 1, 0, ... (with 1 at the p th place); 1, 1, ..., 1, 0, ... (with 1 at the first q places); 0, ..., 0, 1, ...1, 0, ... (with 1 at the p th, (p+1) st, ..., (p+q-1) st place), respectively.

A sequence of positive integers $\Theta = (k_r)$ is called lacunary if $k_0 = 0$, $k_r < k_{r+1}$ for all r and if $I_r = (k_{r-1}, k_r]$ then $h_r = k_r - k_{r-1} \rightarrow \infty$ as $r \to \infty$.

In the following the quotient $\frac{k_r}{k_{r-1}}$ will be denoted by q_r , (compare [4]).

By a modulus function we understand the increasing function f from $[0,\infty)$ to $[0,\infty)$ such that: f(x) = 0 if and only if x = 0, $f(x+y) \leq f(x) + 1$ f(y) for $x, y \ge 0$ and is continuous from the right at 0. Throughout this paper the sequence (f_n) , n = 1, 2, ... of modulus functions will be denoted by F, (compare [12]).

By a φ -function we understand a continuous non-decreasing function $\varphi(u)$ defined for $u \ge 0$ and such that $\varphi(0) = 0$, $\varphi(u) > 0$ for u > 0 and $\varphi(u) \to \infty$ as $u \to \infty$. The symbol $\varphi(|x|)$ means the function $\varphi(|x(t)|)$.

A φ -function φ is called non weaker than a φ -function ψ and we write $\psi \prec \varphi$ if there are constants c, b, k, l > 0 such that $c\psi(l u) \leq b\varphi(k u)$, (for all, large or small u, respectively).

 φ -functions φ and ψ are called equivalent and we write $\varphi \sim \psi$ if there are positive constants b_1, b_2, c, k_1, k_2, l such that $b_1\varphi(k_1u) \leq c\psi(lu) \leq b_2\varphi(k_2u)$, (for all, large or small u, respectively).

A φ -function φ is said to satisfy the condition (Δ_2) , (for all, large or small u, respectively) if for some constant k > 1 there is satisfied the inequality $\varphi(2u) \leq k \varphi(u)$.

In the following let $\varphi = (\varphi_{\nu})$ and $\psi = (\psi_{\nu})$ be two sequences of φ -functions. We say that relations between $\varphi = (\varphi_{\nu})$ and $\psi = (\psi_{\nu})$ hold if and only if these relations hold between φ -functions φ_{ν} and ψ_{μ} for every ν . For more properties of φ -functions see e.g. [7], [9], [10], [18], [19].

3. Spaces of strongly (A, φ) -summable sequences

For a given the sequence $\varphi = (\varphi_{\nu})$ of φ -functions $\varphi_{\nu}(u)$ and the matrix $A = (a_{n\nu})$ we adopt the following notations:

$$\sigma_n^{\varphi}(x) = \sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(|t_{\nu}| \right) \quad \text{for} \quad n = 1, 2, ...,$$
$$x \in T : \sigma^{\varphi}(x) < \infty \quad \text{for} \quad n = 1, 2 \qquad \text{and} \quad \lim_{\nu \to \infty} \sigma^{\varphi}(x) < \infty$$

$$\begin{split} T^0_{\varphi} &= \left\{ x \in T \,:\, \sigma^{\varphi}_n(x) < \infty \ \text{ for } n = 1, 2, \dots \ \text{ and } \lim_{n \to \infty} \sigma^{\varphi}_n(x) = 0 \right\}, \\ T_{\varphi} &= \left\{ x \in T \,:\, \lambda x \in T^0_{\varphi} \ \text{ for an arbitrary } \lambda > 0 \right\} \\ T^*_{\varphi} &= \left\{ x \in T \,:\, \lambda x \in T^0_{\varphi} \ \text{ for a certain } \lambda > 0 \right\}. \end{split}$$

Sequences x, which belong to T^*_{φ} are called strongly (A, φ) -summable to zero.

A list of the most interesting properties concerning the space T_{φ}^* is presented below, (compare also [11], [13], [16] or [18]).

- (1) $T_{\varphi} \subset T_{\varphi}^0 \subset T_{\varphi}^*$.
- (2) $T_f \subset T_{\varphi}$ if and only if the matrix A satisfies the condition (c).
- (3) If the matrix A possesses the property (c), then e_p , e^q , $e_p^q \in T_{\varphi}$, if $\lim_{n\to\infty} a_{n\nu} = 0$ for $\nu = 1, 2, ...$ does not hold then we have $T_{\varphi} = T_{\varphi}^0 = T_{\varphi}^* = \{0\}.$
- (4) If the matrix A possesses the property (d) then $T_b \cap T^*_{\varphi} = T_b \cap T^*_{\psi}$

and $T_b \cap T_{\varphi} = T_b \cap T_{\varphi}^*$ for an arbitrary two sequences φ and ψ of φ -functions.

- (5) φ satisfies the condition (Δ_2) for large arguments if and only if $T_{\varphi} = T_{\varphi}^*$.
- (6) Let the matrix A has properties (a)-(d); if $\psi \prec \varphi$ for large arguments then $T_{\varphi}^* \subset T_{\psi}^*$ and $T_{\varphi} \subset T_{\psi}$, if $\varphi \sim \psi$ for large arguments then $T_{\varphi}^* = T_{\psi}^*$ and $T_{\varphi} = T_{\psi}$.

4. Spaces of lacunary strongly convergent sequences

Let $\varphi = (\varphi_{\nu})$ and $F = (f_n)$ be given sequences of φ -functions and modulus functions, respectively. Moreover, let a matrix A and a lacunary sequence Θ be given. We introduce the set $T^0_{\Theta}((A, \varphi), F)$ by the formula:

$$T^0_{\Theta}((A,\varphi),F) = \left\{ x = (t_{\nu}) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{n \in I_r} f_n\left(\sum_{\nu=1}^{\infty} a_{n\nu}\varphi_{\nu}\left(|t_{\nu}|\right)\right) = 0 \right\}$$

Moreover, let

$$T_{\Theta}((A,\varphi),F) = \left\{ x = (t_{\nu}) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(\lambda \left| t_{\nu} \right| \right) \right) = 0$$

for an arbitrary $\lambda > 0 \right\},$

$$T^*_{\Theta}((A,\varphi),F) = \left\{ x = (t_{\nu}) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(\lambda \left| t_{\nu} \right| \right) \right) = 0$$

for a certain $\lambda > 0 \right\}.$

The sequence x is said to be lacunary strong (A, φ) -convergent to zero with respect to a modulus F, if $x \in T^0_{\Theta}((A, \varphi), F)$.

Let us remark that in particulary we have:

 1^0 If $\varphi_{\nu}(u) = u$ for all ν , then we obtain the set

$$T^{0}_{\Theta}((A,u),F) \equiv N^{0}_{\Theta}(A,F) \equiv \left\{ x = (t_{\nu}) : \lim_{r \to \infty} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n} \left(\sum_{\nu=1}^{\infty} a_{n\nu} |t_{\nu}| \right) = 0 \right\},$$

(compare e.g. [1]).

 2^0 If $f_n(v) = v$ for all n, then

$$T^{0}_{\Theta}((A,\varphi),\nu) \equiv T^{0}_{\Theta}((A,\varphi)) \equiv \left\{ x = (t_{\nu}) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{n \in I_r} \sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu}\left(|t_{\nu}|\right) = 0 \right\}$$

 3^0 If A = I and moreover $\varphi_{\nu}(u) = u$ and $f_n(v) = v$ for all ν and n, respectively, then we have the sequence space,

$$N_{\Theta}^{0} \equiv T_{\Theta}^{0}((I,u),\nu) \equiv \left\{ x = (t_{n}u) : \lim_{r \to \infty} \frac{1}{h_{r}} \sum_{n \in I_{r}} |t_{n}| = 0 \right\}$$

(compare [1]).

Theorem 1. Let $\varphi = (\varphi_{\nu})$ be a given sequence of φ -functions and let $F = (f_n)$ be a sequence of modulus functions. Then, for the usual definition of addition of sequences and multiplication by a scalar,

- (α) $T^0_{\Theta}((A, \varphi), F)$ is a convex set,
- (β) $T^*_{\Theta}((A, \varphi), F)$ is a linear space.

Proof. We limit ourselves to the proof of the property (α) . Suppose that $x = (t_{\nu}), y = (s_{\nu}) \in T^{0}_{\Theta}((A, \varphi), F)$ and α, β are arbitrary numbers such that $0 \leq \alpha, \beta \leq 1$ and $\alpha + \beta = 1$. We have

$$\frac{1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(|\alpha t_{\nu} + \beta s_{\nu}| \right) \right) \le \frac{1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(|t_{\nu}| \right) \right) + \frac{1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(|s_{\nu}| \right) \right).$$
as, $\alpha x + \beta y \in T^0_{\alpha}((A, \varphi), F).$

Thus, $+ \beta y \in T^{0}_{\Theta}((A,\varphi),F)$

Theorem 2. Let F and φ be sequences of modulus functions and φ -functions, respectively. Moreover let the matrix A and the sequence Θ be given. If

$$w((A,\varphi),F) = \left\{ x = (t_{\nu}) : \lim_{m \to \infty} \frac{1}{m} \sum_{n=1}^{m} f_n\left(\sum_{\nu=1}^{\infty} a_{n\nu}\varphi_{\nu}\left(|t_{\nu}|\right)\right) = 0 \right\}$$

then the following relations are true:

- (a) If $\liminf_{r} q_r > 1$, then $w((A, \varphi), F) \subseteq T^0_{\Theta}((A, \varphi), F)$.
- (b) If $\limsup q_r < \infty$, then $T^0_{\Theta}((A, \varphi), F) \subseteq w((A, \varphi), F)$.
- (c) If $1 < \liminf_{r} q_r \le \limsup_{r} q_r < \infty$, then $T^0_{\Theta}((A, \varphi), F) = w((A, \varphi), F)$.

Proof. (a). Let us suppose that $x \in w((A, \varphi), F)$. There exists $\delta > 0$ such that $q_r > 1 + \delta$ for sufficiently large r and we have $\frac{h_r}{k_r} \geq \frac{\delta}{1+\delta}$ for sufficiently large r. Consequently,

$$\frac{1}{k_r} \sum_{n=1}^{k_r} f_n\left(\sum_{\nu=1}^{\infty} a_{n\nu}\varphi_{\nu}\left(|t_{\nu}|\right)\right) \ge \frac{1}{k_r} \sum_{n \in I_r} f_n\left(\sum_{\nu=1}^{\infty} a_{n\nu}\varphi_{\nu}\left(|t_{\nu}|\right)\right)$$
$$\ge \frac{\delta}{1+\delta} \frac{1}{h_r} \sum_{n \in I_r} f_n\left(\sum_{\nu=1}^{\infty} a_{n\nu}\varphi_{\nu}\left(|t_{\nu}|\right)\right).$$

Finally, $x \in T^0_{\Theta}((A, \varphi), F)$.

(b). Let us remark that the condition $\limsup_{r} q_r < \infty$ implies that there exists a constant M > 0 such that $q_r < M$ for every r. If $x \in T^0_{\Theta}((A, \varphi), F)$ and $\varepsilon > 0$ is an arbitrary number, then there exists an index m_0 such that

$$H_m = \frac{1}{h_m} \sum_{n \in I_m} f_n \left(\sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(|t_{\nu}| \right) \right) < \varepsilon$$

for every $m \ge m_0$. Thus, there exists a constant L > 0 such that $H_m \le L$ for all m. Choosing an integer α such that $k_{r-1} < \alpha < k_r$ we obtain

$$I = \frac{1}{\alpha} \sum_{n=1}^{\alpha} f_n \left(\sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(|t_{\nu}| \right) \right) \le \frac{1}{k_{r-1}} \sum_{n=1}^{k_r} f_n \left(\sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(|t_{\nu}| \right) \right) = I_1 + I_2$$

where

$$I_1 = \frac{1}{k_{r-1}} \sum_{m=1}^{m_0} \sum_{n \in I_m} f_n \left(\sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(|t_{\nu}| \right) \right),$$
$$I_2 = \frac{1}{k_{r-1}} \sum_{m=m_0+1}^{\alpha} \sum_{n \in I_m} f_n \left(\sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(|t_{\nu}| \right) \right)$$

It is easily verified that

$$I_{1} = \frac{1}{k_{r-1}} \left(\sum_{n \in I_{1}} f_{n} \left(\sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(|t_{\nu}| \right) \right) + \ldots + \sum_{n \in I_{m_{0}}} f_{n} \left(\sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(|t_{\nu}| \right) \right) \right)$$
$$\leq \frac{1}{k_{r-1}} \left(h_{1}H_{1} + \ldots + h_{m_{0}}H_{m_{0}} \right) \leq \frac{1}{k_{r-1}} m_{0}k_{m_{0}} \sup_{1 \leq i \leq m_{0}} H_{i} \leq \frac{m_{0}k_{m_{0}}}{k_{r-1}} L.$$

Moreover, we have

$$I_{2} = \frac{1}{k_{r-1}} \sum_{m=m_{0}+1}^{\alpha} \sum_{n \in I_{m}} f_{n} \left(\sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(|t_{\nu}| \right) \right)$$
$$\leq \varepsilon \frac{1}{k_{r-1}} \sum_{m=m_{0}+1}^{\alpha} h_{m} \leq \varepsilon \frac{k_{r}}{k_{r-1}} = \varepsilon q_{r} < \varepsilon M.$$

Thus, the following inequality holds $I \leq \frac{m_0 k_{m_0}}{k_{r-1}} L + \varepsilon M$. Finally, $x \in w((A, \varphi), F)$.

Theorem 3. Let the sequence Θ , the modulus functions F and two sequences of φ -functions φ and ψ be given. Suppose that the matrix A satisfies the conditions (a), (b) and (d) and let φ -functions φ and ψ satisfy the condition (Δ_2) for large u.

- (a) If $\psi \prec \varphi$ for large u, then $T^0_{\Theta}((A,\varphi), F) \subset T^0_{\Theta}((A,\psi), F)$.
- (β) If φ -function φ and ψ are equivalent for large u, then $T^0_{\Theta}((A, \varphi), F) = T^0_{\Theta}((A, \psi), F)$.

Proof. Let $x = (t_{\nu}) \in T^{0}_{\Theta}((A, \varphi), F)$. By assumption we have $\psi_{\nu}(|t_{\nu}|) \leq b\varphi_{\nu}(c|t_{\nu}|)$ for $b, c, u_{0} > 0$, $|t_{\nu}| > u_{0}$ and all ν . Let us denote $x = x^{1} + x^{2}$, where $x^{1} = (t_{\nu}^{(1)})$ and $t_{\nu}^{(1)} = t_{\nu}$ for $|t_{\nu}| < u_{0}$ and $t_{\nu}^{(1)} = 0$ for remaining values of ν . It is easily seen that $x^{1} \in T^{0}_{\Theta}((A, \psi), F)$. Moreover, by the assumptions we get

$$\frac{1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{\nu=1}^{\infty} a_{n\nu} \psi_{\nu} \left(\left| t_{\nu}^{(2)} \right| \right) \right) \leq \frac{1}{h_r} \sum_{n \in I_r} f_n \left(b \sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(c \left| t_{\nu}^{(2)} \right| \right) \right) \\
\leq \frac{L}{h_r} \sum_{n \in I_r} f_n \left(\sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(\left| t_{\nu}^{(2)} \right| \right) \right),$$

where the constant L depends on the properties of F, φ and ψ . Finally, we obtain $x_2 = (t_{\nu}^2) \in T_{\Theta}^0((A,\psi), F)$ and consequently $x \in T_{\Theta}^0((A,\psi), F)$. By (α) we obtain $T_{\Theta}^0((A,\varphi), F) = T_{\Theta}^0((A,\psi), F)$.

Remark. Let us remark that the modulus functions f_n are continuous in the interval $[0, \infty)$. Moreover, it is easily verified that by the assumptions of matrix A and the function f_n we have that the sums

$$S_{pq}^n = a_{n,p} + a_{n,p+1} + \ldots + a_{n,p+q-2}$$

and $\sum_{n \in I_r} f_n\left(\max_{p \le \nu \le p+q-1} \varphi_{\nu}(1) S_{pq}^n\right)$ are bounded, and tend to zero as $n \to \infty$ and $r \to \infty$, respectively (compare [11], [16], [18]). Consequently we have $e_p, e^q, e^q_p \in T^0_{\Theta}((A, \varphi), F)$. **Theorem 4.** Let $F = (f_n)$ be a sequence of modulus functions such that are equicontinuous at 0 and $\sup_{n} f_n(1) < \infty$. Moreover, let the matrix $A = (a_{n\nu})$ and the sequence $\varphi = (\varphi_{\nu})$ of φ -functions be given. The following inclusion hold:

$$T^0_{\Theta}((A,\varphi)) \subseteq T^0_{\Theta}((A,\varphi),F).$$

Proof. Let $x \in T^0_{\Theta}((A, \varphi))$ for a given $\varepsilon > 0$ we choose $0 < \delta < 1$ such that $f_n(v) < \varepsilon$ for all n and every $v \in [0, \delta]$. We can write

$$\frac{1}{h_r}\sum_{n\in I_r} f_n\left(\sum_{\nu=1}^{\infty} a_{n\nu}\varphi_{\nu}\left(|t_{\nu}|\right)\right) = S_1 + S_2$$

where $S_1 = \frac{1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(|t_{\nu}| \right) \right)$ and this sum is taken over $\left(\sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(|t_{\nu}| \right) \right) \leq \delta$, and $S_2 = \frac{1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(|t_{\nu}| \right) \right)$ and this sum is taken over $\left(\sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(|t_{\nu}| \right) \right) > \delta$. By definition of the modulus F we have $S_1 \leq \frac{1}{h_r} \sum_{n \in I_r} f_n \left(\delta \right) = \sum_{n \in I_r} f_n \left(\delta \right) < \varepsilon$ and moreover $S_2 \leq \frac{1}{\delta} \frac{1}{h_r} (\sup_n f_n(1)) \sum_{n \in I_r} \sum_{\nu=1}^{\infty} a_{n\nu} \varphi \left(|t_{\nu}| \right)$. Finally, we get $x \in T_{\Theta}^0((A, \varphi), F)$.

Remark. Let us remark that in the case A = I, $f_n(\nu) = \nu^{\frac{1}{n+1}}$, for $n \ge 1$ and $\nu > 0$, and convex φ -functions φ_{ν} , we may choose the sequence $x = (t_{\nu})$ by the formulas: $t_{\nu} = \varphi_{\nu}^{-1}(h_r)$ if $\nu = k_r$ for some $r \ge 1$ and $t_{\nu} = 0$ otherwise. Then we have

$$\frac{1}{h_r} \sum_{n \in I_r} f_n\left(\sum_{\nu=1}^{\infty} \varphi_{\nu}\left(|t_{\nu}|\right)\right) = \frac{1}{h_r} f_{k_r}\left(h_r\right) = (h_r)^{-1} \left(h_r\right)^{\frac{1}{k_r+1}} \to 0, \quad \text{as } r \to \infty$$

and
$$\frac{1}{h_r} \sum_{n \in I_r} \sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu}\left(|t_{\nu}|\right) = \frac{1}{h_r} h_r \to 1 \text{ as } r \to \infty. \text{ Thus } x \in T^0_{\Theta}((A,\varphi), F)$$

but $x \notin T^0_{\Theta}((A,\varphi)).$

5. Some remarks on lacunary (A, φ) -statistical convergence

Let $\Theta = (k_r)$ be a lacunary sequence, and let the matrix $A = (a_{n\nu})$, the sequence $x = (t_{\nu})$, the sequence φ of φ -functions $\varphi_{\nu}(u)$ and a positive number ε be given. We adopt the following notation

$$K_{\Theta}^{r}\left(\left(A,\varphi\right),\varepsilon\right) = \left\{n \in I_{r} : \sum_{\nu=1}^{\infty} a_{n\nu}\varphi_{\nu}\left(\left|t_{\nu}\right|\right) \geq \varepsilon\right\}.$$

The sequence x is said to be lacunary (A, φ) -statistically convergent to a number zero if for every $\varepsilon > 0$

$$\lim_{r \to \infty} \frac{1}{h_r} \, \mu \left(K_\Theta^r \left(\left(A, \varphi \right), \varepsilon \right) \right) = 0,$$

where $\mu(K_{\Theta}^{r}((A,\varphi),\varepsilon))$ denotes the number of elements belonging to the set $K_{\Theta}^{r}((A,\varphi),\varepsilon)$. The set of all lacunary (A,φ) -statistical convergent sequences is denoted by $S_{\Theta}((A,\varphi))$,

$$S_{\Theta}\left((A,\varphi)\right) = \left\{ x = (t_{\nu}) : \lim_{r \to \infty} \frac{1}{h_r} \mu\left(K_{\Theta}^r\left((A,\varphi),\varepsilon\right)\right) = 0 \right\}$$

(compare [2], [4], [5], [6], [15] and [17]).

Theorem 5. If $\psi \prec \varphi$ and $\varphi \in (\Delta_2)$ for large arguments then

$$S_{\Theta}\left((A,\psi)\right) \subset S_{\Theta}\left((A,\varphi)\right).$$

Proof. The assumptions imply that

$$\sum_{\nu=1}^{\infty} a_{n\nu} \psi_{\nu} \left(|t_{\nu}| \right) \le b \sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(c \left| t_{\nu} \right| \right) \le Lb \sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(|t_{\nu}| \right),$$

for $b, c > 0, n \in N$, where the constant L depends on the properties of φ . Consequently we obtain

$$\mu\left(K_{\Theta}^{r}\left(\left(A,\varphi\right),\varepsilon\right)\right) \leq \mu\left(K_{\Theta}^{r}\left(\left(A,\psi\right),\varepsilon\right)\right)$$

and

$$\lim_{r \to \infty} \frac{1}{h_r} \, \mu \left(K_\Theta^r \left(\left(A, \varphi \right), \varepsilon \right) \right) \leq \lim_{r \to \infty} \frac{1}{h_r} \, \mu \left(K_\Theta^r \left(\left(A, \psi \right), \varepsilon \right) \right).$$

Corollary. If $\psi \sim \varphi$ and $\varphi, \psi \in (\Delta_2)$ for large arguments then

$$S_{\Theta}\left(\left(A, arphi
ight)
ight) = S_{\Theta}\left(\left(A, \psi
ight)
ight)$$
 .

Theorem 6. Let Θ , F and φ be given. Suppose that the sequence (f_n) is pointwise convergent.

- $\begin{array}{ll} (\alpha) & If \lim_n f_n \left(\nu\right) > 0 \ for \ \nu > 0 \ then \ T^0_\Theta((A,\varphi),F) \subset S^0_\Theta((A,\varphi)) \ for \\ every \ matrix \ A. \end{array}$
- (β) If moreover $\varphi = (\varphi_{\nu})$ is a sequence of convex φ -functions then the inclusion $T^{0}_{\Theta}((A,\varphi), F) \subset S_{\Theta}((A,\varphi))$ implies that $\lim_{n} f_{n}(\nu) > 0$ for $\nu > 0$.

Proof. (α). Let ε be a positive number and let $x \in T^0_{\Theta}((A, \varphi), F)$. If $\lim_n f_n(\nu) > 0$, then there exists $\alpha > 0$ such that $f_n(\nu) > \alpha$ for $\nu > \varepsilon$ and for all n. We have

$$\frac{1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(|t_{\nu}| \right) \right) \ge \frac{1}{h_r} \sum_{n \in I_r^1} f_n \left(\sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(|t_{\nu}| \right) \right)$$
$$\ge \frac{1}{h_r} \sum_{n \in I_r^1} f_n(\varepsilon) \ge \frac{1}{h_r} \alpha \, \mu \left(K_{\Theta}^r((A, \varphi), \varepsilon) \right),$$

where $I_r^1 = \left\{ n \in I_r : \sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(|t_{\nu}| \right) \ge \varepsilon \right\}$. Finally $x \in S_{\Theta}((A, \varphi))$.

(β). Let us suppose that $\lim_{n} f_n(\nu) > 0$ does not hold. Then there exists a positive number α such that $\lim_{n} f_n(\alpha) = 0$. We can select a lacunary sequence $\Theta = (k_r)$ such that $f_n(\alpha) < \frac{1}{2^r}$ for any $n > k_{r-1}$. In the following, we take A = I and we can select the sequence $x = (t_{\nu})$ by the formulas: $t_{\nu} = \varphi_{\nu}^{-1}(\alpha)$ for $k_{k-1} < \nu \leq \frac{1}{2}(k_{r-1} + k_r)$, and $t_{\nu} = 0$ for $\frac{1}{2}(k_{r-1} + k_r) < \nu \leq k_r$. It is easily verified that $\sum_{n \in I_r} f_n\left(\left|\sum_{\nu=k_{k-1}+1}^{k_r} \varphi_{\nu}\left(\varphi_{\nu}^{-1}(\alpha)\right)\right|\right) < (k_r - k_{r-1})\frac{1}{2^r}$ and $\sigma_n^{\varphi}(x) \sum_{\nu=k_{k-1}+1}^{k_r} \varphi_{\nu}(t_{\nu}) = \frac{k_r - k_{r-1}}{2}\alpha$. Finally, we have $x \in T_{\Theta}^0((A, \varphi), F)$, but $x \notin S_{\Theta}((A, \varphi))$.

Theorem 7. Let Θ , F and φ be given.

(a) If $\limsup_{\nu \to n} f_n(\nu) < \infty$ then $S_{\Theta}((A, \varphi)) \subset T_{\Theta}^0((A, \varphi), F)$ for every matrix A.

(β) If moreover $\varphi = (\varphi_{\nu})$ is a sequence of convex φ -functions then the inclusion $S_{\Theta}((A, \varphi)) \subset T^{0}_{\Theta}((A, \varphi), F)$ implies that $\sup f_{n}(\nu) < \infty$.

Proof. (α). Let $x \in S_{\Theta}((A, \varphi))$. Let us denote $h(\nu) = \sup_{n} f_n(\nu)$, $h = \sup_{\nu} h(\nu), I_r^1 = K_{\Theta}^r((A, \varphi), \varepsilon)$ and $I_r^2 = \left\{ \nu \in I_r : \sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu}(|t_{\nu}|) < \varepsilon \right\}$. Thus, we have

$$\frac{1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(|t_{\nu}| \right) \right) \leq \frac{1}{h_r} \sum_{n \in I_r^1} f_n \left(\sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(|t_{\nu}| \right) \right) + \frac{1}{h_r} \sum_{n \in I_r^2} f_n \left(\sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} \left(|t_{\nu}| \right) \right) \leq \frac{1}{h_r} h \mu \left(K_{\Theta}^r((A, \varphi), \varepsilon) \right) + h(\varepsilon).$$

Taking the limit as $\varepsilon \to 0$, we obtain that $x \in T^0_{\Theta}((A, \varphi))$.

(β). Let us suppose that $\sup_{\nu} \sup_{n} f_{n}(\nu) = \infty$. Then we choose the increasing sequence (ν_{r}) such that $f_{k_{r}}(\nu_{r}) \geq h_{r}$, for $r \geq 1$. We can take the matrix A = I and the sequence $x = (t_{\nu})$ defined by the formulas: $t_{\nu} = \varphi_{k_{r}}^{-1}(\nu_{r})$ for $\nu = k_{r}$ (and for some r = 1, 2, ...) and $t_{\nu} = 0$ otherwise. Finally, since $\mu(K_{\Theta}^{r}((I, \varphi), \varepsilon))$ is the finite number and $\sum_{n \in I_{r}} f_{n}(\sum_{\nu=k_{k-1}+1}^{k_{r}} \varphi_{\nu}(|t_{\nu}|)) \geq h_{r}$ for every r, then we obtain $x \in S_{\Theta}((A, \varphi))$ but $x \notin T_{\Theta}^{\Theta}((A, \varphi), F)$.

Theorem 8. Suppose that the matrix A is regular and that the modulus functions $F = (f_n)$ are bounded. Then the condition $x \in T_0$ implies $x \in S_{\Theta}((A, \varphi))$.

Proof. If $x = (t_{\nu}) \in T_0$, by regularity of A we have $\lim_{n \to \infty} \sum_{\nu=1}^{\infty} a_{n\nu} \varphi_{\nu} (|t_{\nu}|) = 0$. Thus, by the definition of statistical (A, φ) -convergence, we obtain $\lim_{n \to \infty} \frac{1}{h_r} \mu (K^r_{\Theta}((A, \varphi), \varepsilon)) = 0$ and $x \in S_{\Theta}((A, \varphi))$.

References

- T. BILGIN, Lacunary strong A-convergence with respect to a sequence modulus functions, Preprint of Department of Mathematics University of 100. Yil, Van Turkey, (2001), 1-5.
- [2] J.S. CONNOR, On strong matrix summability with respect to a modulus and statistical convergence, *Canad. Math. Bull.*, 32(1989), 194-198.
- [3] A. ESI, The A-statistical and strongly (A p)-Cesàro convergence of sequences, *Pure and Appl. Math. Sci.*, 43(1996), 89-93.
- [4] A.R. FREEDMAN, J.J. SEMBER, M. RAPHEL, Some Cesàro-type summability spaces, Proc. London Math. Soc., 37(1978), 508-520.
- [5] J. FRYDY, On statistical convergence, Analysis, 5(1985), 301-313.
- [6] J. FRYDY, C. ORHAN, Lacunary statistical convergence, *Pacific J. Math.*, 160(1993), 45-51.
- [7] A. KUFNER, O. JOHN, S. FUČIK, Function spaces, Prague, 1977.
- [8] I.J. MADDOX, Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc., 100(1986), 161-166.
- J. MUSIELAK, Orlicz spaces and modular spaces, *Lecture Notes in Math. 1034*, Springer Verlag. Berlin-Heidelberg-New York-Tokyo 1983
- [10] J. MUSIELAK, W. ORLICZ, On modular spaces, Studia Math., 18(1959), 49-65.
- [11] J. MUSIELAK, W. ORLICZ, On modular spaces of strongly summable sequences, *Studia Math.*, 22(1962), 127-144.
- [12] H. NAKANO, Concave modulars, J. Math. Soc. Japan, 5(1953), 29-49.

ALEKSANDER WASZAK

- [13] W. ORLICZ, On some spaces of strongly summable sequences, *Studia Math.*, 22(1963), 331-336.
- [14] S. PEHLIVAN, B. FISHER, On some sequence spaces, Indian J. Pure Appl. Math., 25(1994), 1067-1071.
- [15] T. SALAT, On statistically convergent sequences of real numbers, Math. Slovaca, 2(1980), 139-150.
- [16] A. WASZAK, On spaces of strongly summable sequences with an Orlicz metric, Comment. Math., 11(1968), 229-246.
- [17] A. WASZAK, On the strong convergence in some sequence spaces, Fasc. Math., 33(2002), 125-137.
- [18] A. WASZAK, D. ŻURAKOWSKI, Musielak-Orlicz spaces of sequences connected with strong summability, *Fasc. Math.*, 28(1998), 157-165.
- [19] D. ŻURAKOWSKI, On completeness of some Musielak-Orlicz spaces, Fasc. Math., 24(1994), 13-17.

Aleksander Waszak Faculty of Mathematics and Computer Science Adam Mickiewicz University Umultowska 87, 61-614 Poznań, POLAND

Received on 12.11.2004 and, in revised from, on 15.12.2004