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ON CLOSED INVERSE IMAGES

OF MESOCOMPACT SPACES

Abstract: In this paper, we prove that mesocompactness is in-
versely preserved under paracompact mappings with regular im-
ages. As an application of this result, we prove that mesocompact-
ness is inversely preserved under closed Lindelöf mappings with
regular domains and images, which answers a question on meso-
compactness posed by S. Lin. We also give a counterexample to
show that the regularity of domains in this application can not be
omitted.
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1. Introduction and Basic Notions

Mesocompactness, was introduced by J.R.Boone [2], is one of the im-
portant covering properties in General Topology, which lies between para-
compactness and metacompactness. V.J. Mancuso proved that mesocom-
pactness is inversely preserved under perfect mappings ([8]). Note that
paracompactness and metacompactness are inversely preserved under closed
Lindelöf mappings with regular domains ([4]). Naturally, we are interested
in that whether the analogous result on mesocompactness is true. So S.Lin
raised following question in a surveys on ”spaces and mappings” ([7]).

Question 1. ([7]). (1) If domains and images are regular, is mesocom-
pactness inversely preserved under closed Lindelöf mappings?

(2) Furthermore, can the regularity in the above (1) be omitted?

In this paper, we investigate the above Question 1. We prove that meso-
compactness is inversely preserved under paracompact mappings with regu-
lar images. As an application of this result, we prove that mesocompactness
is inversely preserved under closed Lindelöf mappings with regular domains
and images. In addition, we give a counterexample to show that the reg-
ularity of domains in this application can not be omitted, but we do not
know whether the regularity of images can be omitted.
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Throughout this paper, all spaces are assumed to be Hausdorff and all
mappings are assumed to be continuous and onto. N denotes the set of all
natural numbers. Let U and V be two families of (open) subsets of a space
X. We say that V is a partial (open) refinement of U , if for every V ∈ V there
is U ∈ U such that V ⊂ U ; moreover, we say that V is a (open) refinement of
U , if in addition

⋃
V =

⋃
U is also satisfied. Let U be a family of subsets of a

space X.
⋃
U and

⋂
U denote the union

⋃
{U : U ∈ U} and the intersection⋂

{U : U ∈ U} respectively. Let A ⊂ X. U
∧

A and (U)A denote the family
{U

⋂
A : U ∈ U} and the family {U ∈ U : U

⋂
A 6= ∅} respectively. For

x ∈ X, (U){x} is replaced by (U)x and the cardinality of (U)x is denoted by
ord(x,U). Let f : X −→ Y be a mapping, and let U and V are two families
of subsets of X and Y respectively, then f(U) = {f(U) : U ∈ U} and
f−1(V) = {f−1(V ) : V ∈ V}. One may refer to [5] for undefined notations
and terminology.

2. The Main Results

Definition 1. ([8]). A family U of subset of a space X is called compact
finite if for every compact subset K ⊂ X, (U)K is finite. A space X is called
mesocompact if every open cover of X has a compact finite open refinement.

Definition 2. ([9]). Let U be a family of subsets of a space X and let
X0 be a subset of X.

(1) U is called locally finite at X0 if for each x ∈ X0, there is an open
neighborhood U of x such that (U)U if finite.

(2) U is called compact finite at X0 if (U)K is finite for every compact
subset K ⊂ X0.

Definition 3. ([3]). A mapping f : X −→ Y is called paracompact, if
for every y ∈ Y and every family U of open subsets of X satisfying f−1(y) ⊂⋃
U , there exists a neighborhood Vy of y such that f−1(Vy) is covered by U

and U ∧ f−1(Vy) has a open refinement Vy such that Vy is locally finite at
f−1(y).

Remark 1. ([3]). (1) Every paracompact mapping is closed.
(2) A mapping f : X −→ Y is paracompact if and only if for every y ∈ Y

and every family U of open subsets of X satisfying f−1(y) ⊂
⋃
U , there

exists an open neighborhood Vy of y and a partial open refinement Vy of U
such that f−1(Vy) ⊂

⋃
Vy and Vy is locally finite at f−1(Vy).

Definition 4. A closed mapping f : X −→ Y is called perfect (closed
Lindelöf), if f−1(y) is a compact subset (Lindelöf subset) of X for every
y ∈ Y .
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Lemma 1. ([5]). A mapping f : X −→ Y is closed if and only if for
every y ∈ Y and every open subset U in X which contains f−1(y), there
exists an open neighborhood V of y such that f−1(V ) ⊂ U .

Lemma 2. Let f : X −→ Y be a paracompact mapping. Then for every
y ∈ Y and every family U of open subsets of X satisfying f−1(y) ⊂

⋃
U ,

there exists an open neighborhood Vy of y and a partial open refinement Vy

of U such that f−1(V ) ⊂
⋃
Vy and Vy is compact finite at f−1(Vy).

Proof. Let y ∈ Y and U be a family of open subsets of X such that
f−1(y) ⊂

⋃
U . Since f is paracompact, by Remark 1(2), there exists an

open neighborhood Vy of y and a partial open refinement Vy of U such that
f−1(V ) ⊂

⋃
Vy and Vy is locally finite at f−1(Vy). Let K ⊂ f−1(Vy) be a

compact subset. For every x ∈ K, there exists an open neighborhood Ux

of x such that (Vy)Ux is finite. Note that {Ux : x ∈ K} covers K. There
exists a finite subset K ′ of K such that {Ux : x ∈ K ′} covers K. Put UK =⋃
{Ux : x ∈ K ′}, then (Vy)UK

is finite, so (Vy)K is finite. Consequently, Vy

is compact finite at f−1(Vy). �

Theorem 1. Let f : X −→ Y be a paracompact mapping with a regular
image. If Y is mesocompact, then X is mesocompact.

Proof. Suppose Y is a mesocompact space. Let U be an open cover
of X. By Lemma 2, for every y ∈ Y , there exists an open neighborhood
Vy of y and a partial open refinement Vy of U such that f−1(Vy) ⊂

⋃
Vy

and Vy is compact finite at f−1(Vy). By the regularity of Y , there exists an
open neighborhood Oy of y such that Oy ⊂ Vy. Since Y is mesocompact,
the open cover {Oy : y ∈ Y } of Y has a compact finite open refinement
W. Without loss of generality, we may assume W = {Wy : y ∈ Y }, where
Wy ⊂ Oy for every y ∈ Y . Put Fy = Vy

∧
f−1(Wy) for every y ∈ Y and put

F =
⋃
{Fy : y ∈ Y }. It is obvious that F is an open refinement of U . It

suffices to prove that F is compact finite.
Let K be a compact subset of X. Note that W is compact finite in Y . It

is easy to see that f−1(W) is compact finite in X. Thus there exists a finite
Y0 ⊂ Y such that for every y ∈ Y − Y0, K misses all elements of Fy. Now
we only need to prove that (Fy)K is finite for every y ∈ Y0.

Let y ∈ Y0. Then (Fy)K = {V
⋂

f−1(Wy) : (V
⋂

f−1(Wy))
⋂

K 6=
∅, V ∈ Vy} = {V

⋂
f−1(Wy) : V

⋂
(f−1(Wy)

⋂
K) 6= ∅, V ∈ Vy} ⊂

{V
⋂

f−1(Wy) : V
⋂

(f−1(Wy)
⋂

K) 6= ∅, V ∈ Vy}. Since f−1(Wy)
⋂

K ⊂
f−1(Wy) ⊂ f−1(Wy) ⊂ f−1(Oy) ⊂ f−1(Vy), f−1(Wy)

⋂
K is a compact sub-

set of f−1(Vy). Note that Vy is compact finite at f−1(Vy). {V
⋂

f−1(Wy) :
V

⋂
(f−1(Wy)

⋂
K) 6= ∅, V ∈ Vy} is finite. This proves that (Fy)K is

finite. �
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Lemma 3. If f : X −→ Y is a closed Lindelöf mapping with a regular
domain, then f is paracompact.

Proof. Let y ∈ Y and let U be a family of open subsets of X which
covers f−1(y). Since f is Lindelöf, there exists a countable subfamily U ′ =
{Un : n ∈ N} of U which covers f−1(y). By the regularity of X, there exists
a family W = {Wn : n ∈ N} of open subsets of X such that f−1(y) ⊂

⋃
W

and Wn ⊂ Un for every n ∈ N .
Put V1 = U1

⋂
(
⋃
W) and Vn = (Un −

⋃
{Wi : i < n})

⋂
(
⋃
W) for every

n ≥ 2. Put Vy = {Vn : n ∈ N}. It is clear that Vy is a partial open
refinement of U and

⋃
Vy ⊂

⋃
W.

Claim 1. f−1(y) ⊂
⋃
Vy.

Let x ∈ f−1(y). Put n = min{i ∈ N : x ∈ Wi}, then x ∈ Vn ∈ V. So
f−1(y) ⊂

⋃
Vy.

By Lemma 1, there is an open neighborhood Vy of y such that f−1(Vy) ⊂⋃
Vy.

Claim 2. Vy is locally finite at f−1(Vy).

Let x ∈ f−1(Vy). Since f−1(Vy) ⊂
⋃
Vy ⊂

⋃
W, there is i ∈ N such that

x ∈ Wi, thus Wi is an open neighborhood of x which misses Vn for every
n > i, that is, (U)Wi is finite. So Vy is locally finite at f−1(Vy).

By Remark 1(2), f is paracompact. �

Now we give the main theorem in this paper, which is obtained from
Theorem 1 and Lemma 3.

Theorem 2. Let f be a closed Lindelöf mapping from a regular space
X onto a regular space Y . If Y is mesocompact, then X is mesocompact.

3. The Counterexample

Now we give an example to show that the regularity of the domain in
Theorem 2 can not be omitted. Recall a space X is said to be (countable)
θ-refinable ([6]), if for every (countable) open cover of X, there is a sequence
{Un : n ∈ N} of open refinements such that for every x ∈ X, there is some
n ∈ N with ord(x,Un) < ∞; is said to be strongly paracompact ([4]) if
every open cover of X has a star-finite open refinement. Note that strong
paracompactness =⇒ mesocompactness =⇒ θ-refinability. It suffices to give
an example to show that the closed Lindelöf inverse image of a normal
strongly paracompact space even need not be θ-refinability.
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Construction. Let X, Q and I be the set of all real numbers, the set
of all rational numbers and the set of all irrational numbers respectively.
Define a base B of X as follows.
B = {{x} : x ∈ I}

⋃
{G(x, n) : x ∈ Q,n ∈ N}, here G(x, n) = {y ∈ I :

−1/n < y − x < 1/n}
⋃
{x}.

That is, X is a Bennett and Lutzer’s space([1]). Define an equivalence
relation R on X as follows: xRy if and only if either x, y ∈ Q or x = y.
Put Y is the quotient space X/R and put f : X −→ Y is a natural mapping,
that is, f(x) = [x]R for every x ∈ X.

Claim 3. f is a closed Lindelöf mapping.

Proof. It is clear. �

Claim 4. Y is Hausdorff, strongly paracompact, hence it is normal.

Proof. It is clear that Y is Hausdorff. Let U be any open cover of Y .
Pick x0 ∈ Q and put y0 = f(x0). Pick U ∈ U such that y0 ∈ U . Then
{U}

⋃
{{y} : y ∈ Y − U} is a discrete (hence star-finite) open refinement of

U . Thus Y is strongly paracompact. �

Claim 5.([1]). X is Hausdorff, but X is neither regular nor θ-refinable.

Remark 2. In fact, X is not countably θ-refinable.

Proof. Assume X is countably θ-refinable. Let U be an open cover of
X. Then there exists a countable subfamily V of U which cover Q. Put
W =

⋃
V. Then W is both open and closed in X, and V is a countable

open cover of W . Notice that countable θ-refinability is hereditary to closed
subspace, W is countably θ-refinable, so there exists a sequence of open
refinements {Vn : n ∈ N} of V such that for every x ∈ W there exists
n ∈ N such that ord(x,Vn) < ∞. Put Un = Vn

⋃
{{x} : x ∈ X −W} for

every n ∈ N . Then {Un} is a sequence of open refinements of U . For every
x ∈ X, if x ∈ W , there exists n ∈ N such that ord(x,Vn) < ∞, hence
ord(x,Un) = ord(x,Vn) < ∞; if x ∈ X −W , then ord(x,Un) = 1 < ∞ for
every n ∈ N . Thus X is θ-refinable. This is a contradiction, as X is not
θ-refinable from Claim 5. �

Remark 3. By the above, all covering properties which are between
strong paracompactness and countable θ-refinability are not inversely pre-
served under closed Lindelöf mappings if without requiring the regularity
of domains involved.

Unfortunately, we do not know whether the regularity of the Y in Theo-
rem 2 can be omitted. So we raise the following question.
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Question 2. Is mesocompactness inversely preserved under closed Lindelöf
mappings with regular domains?

The author would like to thank the referee for his valuable amendments.
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