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ON THE CHARACTERIZATION OF THE

EXPONENTIAL DISTRIBUTION BY RECORD

VALUES WITH A RANDOM INDEX

Abstract: We give some characterizations of the exponential
distribution based on the distributional properties and the ex-
pected values of record values; the index of record values has the
geometric distribution.
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1. Introduction

Let X be a nonnegative random variable, and let F (x) = P (X < x)
be its distribution function. Let F (x) = 1 − F (x) be a survival function
corresponding to X.

We say that F has increasing failure rate average (F ∈ IFRA) if− 1
x lnF (x)

is nondecreasing in x > 0. Similarly, F has decreasing failure rate average
(F ∈ DFRA) if − 1

x lnF (x) is nonincreasing in x > 0.
It is known (see [3]) that F ∈ IFRA if and only if

(1) F (αx) ≥ [F (x)]α for all 0 < α < 1 and x > 0,

and F ∈ DFRA if and only if

(2) F (αx) ≤ [F (x)]α for all 0 < α < 1 and x > 0.

We say that X is exponentially distributed if

(3) F (x) = 1− e−λ x, x > 0, for some λ > 0.

We say that v is geometrically distributed if

(4) P (v = k) = p(1− p)k−1, k = 1, 2, ..., for some 0 < p < 1.

Let (Xn, n ≥ 1) be a sequence of independent and identically distributed
random variables. Define the sequence of record times (L(n), n ≥ 1) in the
following way L(1) = 1, L(n) = min{j : Xj > XL(n−1)}, n ≥ 2.
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Then the sequence (Rn, n ≥ 1), where Rn = XL(n), is called the sequence of
record values of (Xn, n ≥ 1).

The following theorem is given in [5] (Theorem 4.5.2, p.129):
Let (Xn, n ≥ 1) be a sequence of independent and identically distributed

positive random variables with a continuous distribution function F . As-
sume that the limit limx→0+

F (x)
x exists and is finite. Moreover, assume that

v is a geometric random variable independent of the sequence (Xn, n ≥ 1),
and the condition (4) holds. The random variables X1 and pRv are identi-
cally distributed if and only if F is a distribution function of the exponential
law.

Moreover, the following theorem given in [2] (Theorem 8.1, p.63) is valid:
Let (Xn, n ≥ 1) be a sequence of independent and identically distributed

nonnegative and nondegenerate random variables with a distribution fun-
ction F . Assume that v is a geometric random variable independent of the
sequence (Xn, n ≥ 1), and the condition (4) holds. The random variables X1

and p
∑v

j=1 Xj are identically distributed if and only if F is a distribution
function of the exponential law.

We can obtain a characterization of the exponential distribution by a
property of record Rv for a geometrically distributed v.

2. Results

Theorem 1. Let (Xn, n ≥ 1) be a sequence of independent and iden-
tically distributed nonnegative random variables with a continuous distri-
bution function F ∈ IFRA. Assume that limx→0+

F (x)
x = λ, 0 < λ < ∞.

Moreover, assume that v is a geometric random variable independent of the
sequence (Xn, n ≥ 1), and the condition (4) holds. The random variables∑v

i=1 Xi and Rv are identically distributed if and only if F is of the form (3).

Proof. Let ϕ1 and ϕ2 be the Laplace transforms of
∑v

i=1 Xi and Rv,
respectively. We have for s > 0,

ϕ1(s) = E

[
exp

(
−s

v∑
i=1

Xi

)]
=

∞∑
k=1

p(1− p)k−1[ϕ(s)]k =
pϕ(s)

1− qϕ(s)
,

where q = 1− p, ϕ(s) = E[exp(−sX1)]. Because

(5) FRv(y) = 1−
[
F (y)

]p for y > 0 ([5],p.130),

we obtain

ϕ2(s) = E
(
e−sRv

)
=
∫ ∞

0
e−syp

[
F (y)

]p−1
dF (y) = 1− s

∫ ∞

0
e−sy

[
F (y)

]p
dy.
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By virtue of the equality φ1(s) = φ2(s) (for s > 0), we get on simplification

(6) −ϕ(s)− ϕ(0)
s

1
1− qϕ(s)

=
∫ ∞

0
e−sy

[
F (y)

]p
dy.

Taking limits of both sides of (6) as s goes to 0+, we have

(7) −ϕ′(0)
1
p

=
∫ ∞

0

[
F (y)

]p
dy.

Writing EX1 =
∫∞
0 F (y)dy = −ϕ′(0) we get from (7)

(8)
∫ ∞

0
F (y)dy = p

∫ ∞

0

[
F (y)

]p
dy.

Substituting y = z/p in the integral on the right-hand side of (8) we get

(9)
∫ ∞

0

{
F (y)−

[
F

(
y

p

)]p}
dy = 0.

Let F ∈ IFRA. Then the inequality (1) holds. Hence

F (y)−
[
F

(
y

p

)]p

≥ 0 for y > 0.

Therefore

(10) F (y) =
[
F

(
y

p

)]p

for almost all (with respect to the Lebesgue measure) y > 0 and a fixed
0 < p < 1. Since limx→0+

F (x)
x = λ, 0 < λ < ∞, it follows from (10) that

F (x) = exp(−λx), x > 0, λ > 0, (see [5], p.130).
Now suppose that X1 has distribution function (3). Then from (5) we

obtain that FRv(y) = 1 − e−λ p y for y > 0, λ > 0, 0 < p < 1. It is known
([4], p. 70) that the random variable

∑v
i=1 Xi is exponentially distributed

with the scale parameter pλ. Therefore Rv and
∑v

i=1 Xi are identically
distributed. �

Remark 1. Theorem 1 is also true if the condition ”F ∈ IFRA” is
replaced by ”F ∈ DFRA and EX1 < ∞”. Here in the proof we use the
inequality (2).

Theorem 2. Let (Xn, n ≥ 1) be a sequence of independent and iden-
tically distributed nonnegative random variables with a continuous distri-
bution function F . Assume that limx→0+

F (x)
x = λ, 0 < λ < ∞. Let
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v1 and v2 be two integer-valued random variables distributed independently
of the sequence (Xn, n ≥ 1). Suppose that P (v1 = k) = p1(1 − p1)k−1,
P (v2 = k) = p2(1 − p2)k−1, k = 1, 2, ..., 0 < p1 < 1, 0 < p2 < 1, p1 6= p2.
The random variables

p1Rv1 and p2Rv2

are identically distributed if and only if F is of the form (3).

Proof. From (5) we obtain

(11) FpRv(y) = 1−
[
F

(
y

p

)]p

for y > 0.

Let p1Rv1 and p2Rv2 have the same distribution and p1 < p2. Then

(12)
[
F

(
z

p1

)]p1

=
[
F

(
z

p2

)]p2

for z > 0.

Substituting z = yp2 in (12) we get

F (y) =

[
F

(
y
p1

p2

)] p1
p2

for y > 0,

i.e. the equation (10) for a fixed p = p1/p2, 0 < p < 1. Since limx→0+
F (x)

x =
λ, 0 < λ < ∞, it follows that F is of the form (3). The same holds if p1 > p2.
Now let X1 be exponentially distributed with distribution function (3). Then
from (11) we conclude that the random variables p1Rv1 and p2Rv2 have the
same distribution function (3). �

Theorem 3. Assume that the assumptions of Theorem 2 are satisfied.
Let E(piRvi) < ∞ for i = 1, 2 and F ∈ IFRA (or F ∈ DFRA). Then X1

has the distribution function defined in (3) if and only if

(13) E(p1Rv1) = E(p2Rv2).

Proof. If X1 has the exponential distribution function (3), then

E(p1Rv1) = E(p2Rv2) =
1
λ

.

Now let us suppose that the condition (13) is satisfied. Because

E(piRvi) =
∫ ∞

0
F piRvi

(y)dy for i = 1, 2,
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formula (13) can be written as follows

(14)
∫ ∞

0

{[
F

(
y

p1

)]p1

−
[
F

(
y

p2

)]p2
}

dy = 0.

Let p1 < p2 and F ∈ IFRA. From (1), for α = p1/p2, we have

F

(
p1

p2
z

)
≥
[
F (z)

] p1
p2 , z > 0.

Substituting y = p1z in the above inequality we obtain[
F

(
y

p2

)]p2

≥
[
F

(
y

p1

)]p1

for y > 0.

Therefore [F (y/p1)]p1 − [F (y/p2)]p2 does not change sign. From (14) we
obtain [

F

(
y

p1

)]p1

=
[
F

(
y

p2

)]p2

for almost all y > 0.

Next, analogously as in the proof of Theorem 2, we get that F has the
form (3). If F ∈ DFRA, then in the proof we use (2). �

Theorem 4. Assume that the assumptions of Theorem 2 are satisfied.
Then X1 has the distribution function defined in (3) if and only if

(15) rp1 Rv1
(y) = rp2 Rv2

(y) for y > 0,

where r is the failure rate.

Proof. By formula (11) we get

F p1 Rv1
(y) =

[
F

(
y

p1

)]p1

for y > 0.

Hence the density function of p1 Rv1 is of the form

fp1 Rv1
(y) =

[
F

(
y

p1

)]p1−1

f

(
y

p1

)
for y > 0,

and the failure rate

rp1 Rv1
(y) =

f
(

y
p1

)
F
(

y
p1

) for y > 0.
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The condition (15) can be written as

f
(

y
p1

)
F
(

y
p1

) =
f
(

y
p2

)
F
(

y
p2

) , y > 0,

or equivalently by derivative(
− ln

[
F

(
y

p1

)]p1
)′

=
(
− ln

[
F

(
y

p2

)]p2
)′

, y > 0.

Hence

(16) − ln
[
F

(
y

p1

)]p1

= − ln
[
F

(
y

p2

)]p2

+ C, y > 0.

Taking limits of both sides of (16) as y goes to 0+, we have C = 0. Then[
F

(
y

p1

)]p1

=
[
F

(
y

p2

)]p2

for y > 0.

Next, analogously as in the proof of Theorem 2, we get that F has the form
(3).

If X1 has the distribution function (3), then the random variables p1Rv1

and p2Rv2 are identically distributed. Therefore the equality (15) is true. �

Note that the characterization of the exponential distribution by the dis-
tributional properties of the random variable vX1:v, where v has the geo-
metric distribution, was considered by Ahsanullah [1].
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