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A NOTE ON THE CORE TOPOLOGY

AND THREE OTHER ONES

Abstract: In the paper there are considered the topologies de-
fined in real linear spaces: the core topology, the topology gen-
erated by the family of directionally continuous functions, and
the topology defined by Klee in [7]. The notion of the last one
is extended to infinite dimensional case by means of the finite
topology investigated by Kakutani and Klee [5]. Some properties
of the finite topology are proved. The main result says that every
one of considered topologies contain essentially the next one in
the order listed above.
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1. Introduction and Basic Notions

In the paper we deal with some topological spaces defined in real linear
spaces. We establish the inclusions between them. The strongest of them
is the core topology [6, p.446]. It is stronger than topology generated by
the family of all directionally continuous functions. The weakest of them is
the topology defined by Klee [7, p.27-28] in finite dimensional case. Taking
use of the concept of the finite topology [5, p.55-56] we extend it for infinite
dimensional spaces. To do it we have to state some properties of the finite
topology. Before we give definitions of all these topologies, we establish
the notation and terminology. We base on the monography [1], the page
references are to its Polish edition.

The sets of natural, real and nonnegative numbers are denoted by N, R
and R+, respectively. The letter X always stands for a real linear space,
and its zero element is written as 0. The closed line segment between points
a, b ∈ X is designated as

〈a, b〉 = {λa+ (1− λ)b : 0 6 λ 6 1} ,

analogical denotations are used for open and semiopen intervals, e.g. 〈a, b) =
〈a, b〉 \ {b}. For any sets S ⊂ R and A,B ⊂ X and for any s ∈ S and x ∈ X
we write

SA = {sa : s ∈ S, a ∈ A} , sA = {s}A,
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A+B = {a+ b : a ∈ A, b ∈ B} , x+B = {x}+B.

If A and B are sets contained in linear subspaces L and M , respectively,
and L∩M = {0}, then A+B is called, as usually, a direct sum and denoted
by A⊕B.

We write
∑

t∈T at when almost all summing elements at are equal to 0.
The linear space spanned by the set A ⊂ X is defined as the set

Lin(A) =

{∑
k

αkuk : αk ∈ R, uk ∈ A

}
.

The restriction of the function f to the set A contained in the domain of
f is denoted by f |A, and f−1(B) = {a : f(a) ∈ B} is the inverse-image of
the function f assuming values in the set B.

sup {fk : k = 1, 2, . . . , n} is the function ϕ defined by the formula

ϕ(x) = sup {fk(x) : k = 1, 2, . . . , n} .

The cardinal of N is denoted by ℵ0.
The strongest topology in X such that in every finite dimensional sub-

space L of X it induces the Euclidean topology, is called a finite topology
(see [5,p.55]) and is denoted by τ(X). We refer to it as to a natural, or
usual, topology in X.

IntA,ClA,Fr A denote the interior, the closure and the boundary set of
the set A ⊂ X (inX, in the natural topology inX), respectively. Sometimes,
to make our consideration more legible, we write IntXA,ClXA,FrXA.

Given a subset L of X, the topology induced in L by the topology
η in X is denoted by η|L. Sometimes it is called a subspace topology.
The interior, the closure and the boundary set of the set A in the topology
induced in L are denoted by IntLA,ClLA,FrLA, respectively.

Let A be any subset of X. The core of A with respect to X, denoted by
CorXA, is defined to be the subset of A such that a ∈ CorX A if and only
if for every x ∈ X \ {a} there exists an element y in the segment (a, x) such
that 〈a, y〉 ⊂ A. We will write CorA instead of CorXA if it is clear which
space X is considered. Following [4] we call a set A a core set if A = CorA.
In [9] and [8] it is called an algebraically open set. Obviously, the empty set
∅ is core set. Examples of sets, for which

Cor CorA 6= CorA

are given in [4] and [9].
It is obvious that the family of all core sets is a topology. This topo-

logy is called a core topology, and it is denoted by τ1(X), or τ1 if it is
clear in which space X it is considered. It was first defined by V.L.Klee in
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1951 [6]. The core topology is an initial point to define such topologies as
approximate-core topology, core-almost everywhere topology, Hashimoto-core
topology etc, see e.g. [2], [11], [12], [3].

The investigation of core topologies has been continued by Klee in [7],
where he also dealt with an other topology (however only in finite dimen-
sional spaces) which in this paper is to be denoted by τ3(X), or τ3. To
define this topology let us introduce the notion of a Klee pair. A pair (U,F )
of subsets U,F ⊂ X is called a Klee pair for a point x ∈ X if U is open
in τ(X), F ⊂ U, {x} ∪ F is closed and x ∈ Cor({x} ∪ F ). Now, the Klee
topology in X is called the topology, the base of which is the family of all
open sets in τ(X) and all sets of the form {x} ∪ U , where x ∈ X, and U
is open in τ(X) and has a subset F of X such that (U,F ) is the Klee pair
for x.

Another topology we deal with in our paper with is to be denoted by
τ2(X), or τ2, and called a directional topology. By definition, it is the
topology generated in X by the family of all directionally continuous func-
tions on X. Let’s recall that a real-valued function f on X is called direc-
tionally continuous if for each line L ⊂ X its restriction f |L is continuous
on L.

For any i ∈ {1, 2, 3}, the interior, the closure and the frontier of a set A
with respect to the i-th topology τi(X) are denoted IntiA,CliA and FriA,
respectively. A set open in the topology τi(X) is called i-open set. Analogous
symbolism is applied to other notions related to topologies τi(X), so we
have i-curves, i-compactness etc. When we write that a property holds for
the index j we mean that it holds for all three topologies τj(X), i.e. for
j = 1, 2, 3. If a property holds also for the topology τ , we embrace the index
j in parethesis, so we have e.g. (j)-open sets. We point out that the notions
such as open set, closure, component, which are not preceded by the index j,
relate to the natural topology, unless it is expressively indicated otherwise.

2. Some Remarks on Investigated Topologies

Theorem 1. Let L be a linear variety in X. The topology induced in L
by the topology τ(X) or τj(X) is identical with the topology τ(L) and τj(L),
respectively. In case X = R all four topologies τ(X) and τj(X) are identical.

Proof. We start with case X = R. First, τ1(R) = τ(R) because every
core subset A of the space R is open. Next, τ2(R) = τ(R) because any
function f : R → R directionally continuous is continuous. To show that
τ3(R) = τ(R) we take arbitrary open set B ⊂ R, a number h ∈ R and a set
F such that (B,F ) is the Klee pair for h. Then h belongs to an interval
(a, b) ⊂ {h} ∪ F . Therefore {h} ∪B is open.



52 L. Jankowski, A. Marlewski

Now we go to investigate spaces X of dimension greater than 1. The
equality τ(L) = τ(X)|L holds true because the variety L ∩M is finite di-
mensional for arbitrary finite dimensional subspace M of X. The identity
τ1(L) = τ1(X)|L is proved in [4, p.240]. To see that τ2(L) = τ2(X)|L, first
we notice that for any function f : X → R and any set A ⊂ R there holds
the equality ϕ−1(A) = f−1(A) ∩ L, where ϕ = f |L. So, the restriction ϕ
of a directionally continuous function f on X is directionally continuous on
L. Let X = L ⊕M and ψ(l + m) = f(l) for all l ∈ L and m ∈ M . Then
ψ−1(A) = f−1(A) ⊕M for every directionally continuous function f on L.
Consequently, for every directionally continuous function f on X and g on
L there exist directionally continuous functions ϕ on L and ξ on X such
that ϕ = f |L and ξ|L = g. Therefore

f−1(U) ∩ L = ϕ−1(U) and ξ−1(U) ∩ L = g−1(U)

for every open set U ⊂ R. It says that a set G is 2-open in L iff there exists
a 2-open set G1 in X such that G = G1 ∩ L. This states the equality of
topologies τ2(L) and that induced in L by τ2(X).

To prove the last equality, i.e. τ3(L) = τ3(X)|L, we start with the obser-
vation that a set F is closed in τ(X) iff for every finite dimensional subspace
M of X the intersection F ∩M is closed in M . Thus, if (G,F ) is the Klee
pair for h ∈ X, then (G∩L,F∩L) is also the Klee pair for h, provided h ∈ L.
It implies that the topology induced in L by τ3(X) is weaker than τ3(L).
There is no loss of generality when in the proof of the inverse implication
we assume that L is a subspace of X. Let’s take a set G = G1 ∪ {h} such
that (G1, F1) is the Klee pair in L for the point h ∈ L. Let M denote a
complementary space to L in X, and let U be an open set in X such that
M ⊕ {h} \ {h} ⊂ U and U ∩ L = ∅. Let’s define G′1 = (G1 ∪ U) ⊕M and
F ′1 = (F1∪{h})⊕M \{h}. Then (G′1, F

′
1) is the Klee pair in X for the point

h. This means that G′1 ∪ {h} is 3-open in X. This gives that the topology
induced by τ3(X) in L is equal to the topology τ3(L). And this also closes
the proof. �

Taking into account Theorem 1 we will abbreviate the denotations in
τj(X) and τj(L), to τj in every case it does not lead to missunderstanding.

From the proof of Theorem 1, as well as from [4,p.240], it follows

Corollary 1. Let L be a linear variety in the space X. If G ⊂ X
is an open or i-open set, where i ∈ {1, 2}, and M is the subspace which
complements L to X, then the set G⊕M is open or i-open, respectively.

Corollary 2. Every linear variety in the space X is (j)-closed.

Proof. Obviously, if L is a subspace of X and codim(L) = 1, then L is
closed set in the topology τ . Analogous property holds in topologies τ1 and



A note on the core topology and three other ones 53

τ3. In the topology τ2 it is enough to assume that L⊕R = X and define the
function f by the formula f(l + r) = r for all l ∈ L and r ∈ R. Naturally,
the function f is directionally continuous in X. Thus the subspace L is a
closed set.

Now it follows that the intersection of any family of such subspaces
is (j)-closed set. Since every subspace is an intersection of subspaces of
codimension equal to 1, so every subspace is (j)-closed. Obviously, if A is
(j)-closed subset of X, then for arbitrary element x ∈ X the set x + A is
(j)-closed. Therefore every linear variety is (j)-closed. This completes the
proof. �

Now we are going to prove our main result, namely that the topology τ2
is essentially weaker than τ1 and it is essentially stronger than τ3. To state
these inclusions we have to exhibit some properties of considered topologies.
The first one is related to the result proved in [4, p.245]: 1-closure of a
non-empty 1-open subset of Rn contains a non-empty open set. In view of
Corollary 2 this result may be formulated as

Theorem 2. Let L be a finite dimensional subspace of X, and G be an
1-open set in X having at least one element common with L. Then there
exists a non-empty open set U ⊂ L such that U ⊂ Cl1G.

Corollary 3. If G1 and G2 are disjoint 1-open non-empty sets in X,
then

IntL (Cl (G1 ∩ L)) ∩ IntL (Cl (G2 ∩ L)) = ∅

for every finite dimensional subspace L of X.

Proof. Let’s suppose that the above intersection of the interiors, denoted
here by U , is non-empty. Then the sets G1 ∩ U and G2 ∩ U are dense in U .
Since each open set is 1-open, the set G1 ∩ U is 1-open in L. Therefore, by
Theorem 2, in L there exists a non-empty open set V contained in Cl1(G1∩
U). So V ⊂ U and G2 ∩ V is dense in V . Therefore, by Theorem 2, in L
there exists a non-empty open set W contained in Cl1(G2 ∩ V ). G1 and G2

are disjoint, so W ∩ G1 = ∅. Resuming we see that W ⊂ U ⊂ Cl(G1 ∩ U).
Just obtained relation W ⊂ Cl(G1 ∩ U) and the relation W ∩ G1 = ∅ are
contradictory. This way the proof is completed. �

Corollary 3 does not hold in the infinite dimensional case, and it is to
be shown in paper in preparation. Here we show that in Theorem 2 the
assumption on the finite dimensionality of the spaceX can not be suspended.
It is verified below, where we construct an 1-open set such that its closure
has the empty interior in the natural topology τ .
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Example 1. Let X be a countable dimensional linear space. We can
identify it with the space of all real sequences having finite number of
non-zero elements. We can write

X =
∞⋃
n=1

Rn,

where Rm ⊂ Rn form < n, i.e. we identify a point x = (x1, x2, . . . , xm, 0, . . .,
0) ∈ Rn with the point x = (x1, x2, . . . , xm) ∈ Rm. Let the set {an : n ∈ N}
be dense in R and let differentiable functions fn, gn, where n ∈ N, on R be
such that

(1) fn, gn are odd,
(2) 0 < fn(r) < gn(r) for all r > 0,
(3) gn(r)− fn(r) ≤ 2−2nr for all r > 0,
(4) their derivatives f ′n, g

′
n vanish at 0,

(5) fn, gn are convex in an interval (0, r〉 with an r > 0.

For every natural n ≥ 2 we define the sets Sn ⊂ X as follows: an element
x = (xk) ∈ Sn iff

1◦ xn > 0 and fn(xn) ≤ x1 − an ≤ gn(xn)
or 2◦ xn < 0 and gn(xn) ≤ x1 − an ≤ fn(xn).

It’s obvious that the sharp inequalities in above relations produce sets IntSn,
and ClSn = Sn ∪ Pn, where Pn is the set of elements (xk) ∈ X such that
x1 = an, xn = 0 and other xl’s are arbitrary real numbers.

By the definition of the set Sn, the n-th element xn in the sequence
(xk) ∈ Sn is non-zero, so Rm ∩ Sn = ∅ for m < n. We define S = ∪∞n=2Sn
and we wish to show that for arbitrary m < n the set Rn ∩ (X \ S) \ Rm is
non-empty. We will show even more: (In \ S) \ Rm 6= ∅ where I = 〈−r, r〉
and r is an arbitrary positive number. Since Rn ∩ Sk = ∅ for n < k, so
In ∩ Sk = ∅. Therefore

In ∩ (X \ S) = In \ ∪nk=1Sk.

Taking into account that for k = 2, 3, . . . , n there holds

µ(In ∩ Sk) ≤ (2r)n2−2n−1,

where µ is the usual measure in Rn, we have

µ(In \ S) ≥ (2r)n −
n∑
k=2

µ(In ∩ Sk) > 0.
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Since µ(Rm) = 0, so µ ((In \ S) \ Rm) > 0, and it proves that (In \ S) \Rm

is not empty.
Now we are going to show that the set X \ S is 1-open. In this aim we

take an arbitrary x = (xk) ∈ X \ S and arbitrary y = (yk) ∈ X \ {x}.
Obviously, there exists a natural number m such that both x, y ∈ Rm. We
will show that in the interval (x, y) there exists an element z such that the
interval 〈x, z〉 ⊂ X \ S. We will show that for every k = 2, 3 . . . ,m there
exists element zk ∈ (x, y) such that 〈x, zk〉 ⊂ Rm \ Sk.

We have to consider two cases

(α) x ∈ Rm \ Cl Sk
(β) x ∈ Pk.

In case (α) we have x ∈ IntRm (Rm \ Sk), and it proves that there exists
an element zk we looked for.

Let’s now consider the case (β). Let’s take a Hamel base of the space
X composed of elements bk = (δk,l), where δk,l is the Kronecker delta. If
y ∈ Pk, then 〈x, y〉 ⊂ Rm \ Sk because Pk ∩ Sk = ∅. It proves the existense
of a desired zk. If y 6∈ Pk, by p we denote the projection from Rm onto Lk =
Lin ({b1, bk}), so p(x) = (x1, xk), p(y) = (y1, yk). From conditions (1) and
(5) it follows that there exists u ∈ (p(x), p(y)) such that 〈p(x), u〉 ⊂ Lk \Sk.
Let Mk = Lin ({b2, b3, . . . , bn} \ {bk}). Then 〈p(x), u〉 ⊕Mk ⊂ Rm \ Sk and
(p(x), u) ⊕Mk ⊂ (p(x), p(y)) ⊕Mk. Therefore in the set {u} ⊕Mk there
exists an element zk we looked for. Hence for every k = 2, 3, . . . ,m there
exists zk ∈ (x, y) such that 〈x, zk〉 ⊂ Rm \ Sk. In consequence, 〈x, z〉 =⋂m
k=2〈x, zk〉 ⊂ Rm \

⋃m
k=2 Sk. Since Sn ∩ Rm = ∅ for n > m, so 〈x, z〉 ⊂

Rm \
⋃∞
k=2 Sk = Rm \ S ⊂ X \ S.

Now we are going to prove that Int (X \ IntS) = ∅.
Suppose that there exists an open non-empty set U ⊂ X \ IntS.
Then

U ⊂ X \ Cl (IntS) ⊂ X \
∞⋃
n=2

ClSn.

Let’s fix m ∈ N. Since Sn ∩ Rm = ∅ for n > m and ClSn = Sn ∪ Pn, so
Cl (Sn) ∩ Rm = Pn ∩ Rm = {an} ⊕ Rm−1

Therefore

Rm ∩ U ⊂ Rm \
∞⋃
n=2

ClSn ⊂ Rm \
∞⋃

n=m+1

(Pn ∩ Rm) = Rm \ Z,

where Z =
∞⋃

n=m+1
{an} ⊕ Rm−1.

Since the set {an : n > m} is dense in R, so Z is dense in Rm. Since
Rm ∩ U is open, so the inclusion Rm ∩ U ⊂ Rm \ Z cannot hold. This
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contradiction shows that Int (X \ IntS) = ∅. Therefore Int (Cl(X \ S)) = ∅.
So the constructed set S fulfills requirements: X \S is 1-open and its closure
has the empty interior.

Below we give a simple example of the set A in the infinite dimen-
sional space X such that IntXA = ∅ and for every n ∈ N one can take
a n-dimensional subspace L ⊂ X such that IntL (A ∩ L) 6= ∅.

Example 2. Let B = {bt : t ∈ T} be a Hamel base of X, and
A = Conv (B ∪ {0}). Let’s take a finite number of elements b1, b2, . . . , bm
of B and let’s denote L = Lin ({b1, b2, . . . , bm}). Then for any element
x ∈ IntL (A ∩ L) we have x =

∑m
i=1 λibi, where

∑m
i=1 λi = 1 and λi > 0 for

i = 1, 2, . . . ,m. At last, let’s take b ∈ B \ L and define M = L + Rb. It’s
clear that A ∩M = Conv (B ∪ {b} ∪ {0}). Therefore x /∈ IntM (A ∩M), so
x /∈ IntXA.

A more advanced case is presented in [5, p55]. There it is shown that
there exists a set A in the infinite dimensional space X such that 0 ∈ IntLA
for every finite dimensional space L and 0 6∈ IntXA.

Otherwise than in the above examples, in the next part we state that
under some assumptions a set is open if its intersection with some subspaces
is open. Precisely, it holds true

Lemma 1. Let L be a family of subspaces of X which are linearly ordered
by the inclusion, and ∪L = X. For every L ∈ L let GL be open set in L,
and let GL ⊂ GM if L ⊂ M . Then the set G = ∪{GL : L ∈ L} is open
in X.

Proof. We can choose a well-ordered subfamily M⊂ L such that ∪M =
X. This way we have M = {Lα : α < γ}, where α, γ are ordinals. Let’s take
an element x ∈ G. Obviously, there exists β0 < γ such that x ∈ Gβ0 , where
Gβ = GLβ

. We will show that in G there exists an open set U containing x.
In this aim we construct the family {Uβ : β < γ} such that for every ordinal
number β, where β0 ≤ β < γ, the following conditions hold

(i) Uβ is open in Lβ
(ii) Uβ ⊂ Gβ
(iii) Uα = Uβ ∩ Lα for α < β.

Inductively, we start with Uβ0 = Gβ0 and we assume that for some ordinary
number ϕ there are already defined, for all β < ϕ, the sets Uβ satisfying
conditions (i)-(iii), and we define Uϕ. There are two cases possible: or ϕ
has its immediate preceding numer δ, or ϕ is a limit ordinal, i.e. it is not a
successor ordinal.
If ϕ = δ+1, we take the subspace M complementary to Lδ in the space Lϕ,
and we set Uϕ = (Uδ ⊕M)∩Gϕ. It is easy to see that Uϕ satisfies conditions
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(i)-(iii).
If ϕ is a limit ordinal, we set

Uϕ =
⋃
β<ϕ

Uβ.

For every β < ϕ there holds Lβ ∩ Uϕ = Uβ, so Lβ ∩ Uϕ is open. Indeed, if
L is finite dimensional subspace in Lϕ, then the open set L ∩ Uϕ = L ∩ Uα
for each ordinary number α < ϕ such that L ⊂ Lα. Now it is clear that Uϕ
satisfies conditions (i)-(iii). Now we set

U =
⋃
β<γ

Uβ

and we argue as above to conclude that the set U is contained in G, is open
in X and contains x. Thus G is open, and it makes the proof complete. �

Theorem 3. The topological space (X, τ) is hereditarily normal.

Proof. Let γ denote the limit ordinal such that card γ = dim X, let
{bα : α < γ} be a Hamel base of the space X (with elements identified by
ordinal α ≥ 1), and let Xβ = Lin ({bα : α < β}), where β ≥ 2. The proof
is by the transfinite induction, so we will assume that for some ordinary
number δ (where 2 ≤ δ ≤ γ) the space (Xβ , τ) is hereditarily normal if
β < δ and we will show that (Xδ, τ) is also hereditarily normal.
Obviously, the space (Xβ , τ) is hereditarily normal if β ∈ N, so it is enough
to consider ordinals δ ≥ ℵ0. If δ is not an initial ordinal, there exists an
ordinal δ′ < δ such that card δ′ = card δ. Therefore card δ = card δ′ =
dimXδ′ = dimXδ and, consequently, (Xδ, τ) is hereditarily normal. In case
δ is an initial ordinal, we consider two separated sets A, B, i.e. sets satisfying
conditions A∩Cl(B) = Cl(A)∩B = ∅ both in Xδ. For every ordinal number
β such that 2 ≤ β and β < δ we will define sets Gβ , Hβ such that

(1) Gβ ,Hβ , are open in Xβ ,
(2) A ∩Xβ ⊂ Gβ and B ∩Xβ ⊂ Hβ,
(3) Gβ′ ⊂ Gβ′′ and Hβ′ ⊂ Hβ′′ for all β′ < β′′,
(4) Gβ ∩Hβ = ∅,
(5) Gβ ⊂ Xδ \ ClB and Hβ ⊂ Xδ \ ClA.

For β = 2 the hereditary normalness of the space (R2, τ) guarantees that
in R2 there exist sets G′ and H ′ satisfying conditions (1), (2) and (4). Since
the sets A and B are separated, so there exist open sets G′′ and H ′′ such
that A ⊂ G′′ ⊂ Xδ \B and B ⊂ H ′′ ⊂ Xδ \A. It is easy to see now that the
intersections

G2 = G′ ∩G′′ and H2 = H ′ ∩H ′′
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satisfies conditions (1)-(5), the condition (3) being satisfied by definition (for
β < 2 there do not exist sets Gβ and Hβ).

Now we suppose that for any ordinal ϕ, where 2 ≤ ϕ ≤ δ, and every
ordinal β < ϕ there are already defined sets Gβ and Hβ satisfying conditions
(1)-(5), and we are going to construct analogous sets Gϕ and Hϕ.

There are two cases to be considered: ϕ has its predecessor or ϕ is a limit
ordinal.

We investigate the first case, i.e. when there exists an ordinal ψ such
that ϕ = ψ + 1. We start with showing that the sets

Aψ = (A ∩Xϕ) ∪Gψ and Bψ = (B ∩Xϕ) ∪Hψ

are separated. We do it by the verification that each component, A ∩ Xϕ

and Gψ, of the set Aψ is separated with every component, B ∩Xϕ and Hψ,
of the set Bψ. Conditions (1) and (4) imply that Gψ and Hψ are separated.
The sets A∩Xϕ and B ∩Xϕ are separated because A and B are separated.
By the condition (5) it is Cl (A ∩Xϕ) ∩Hψ ⊂ Cl (A ∩Xδ) ∩ (Xδ \ Cl A) ⊂
Cl A ∩ (Xδ \ Cl A) = ∅.

At last, we go to state that

(A ∩Xϕ) ∩ Cl Hψ = ∅ = (B ∩Xϕ) ∩ Cl Gψ.

By Corollary 2 the subspace Xψ is closed, so ClHψ ⊂ Xψ. Hence

(A ∩Xϕ) ∩ ClHψ ⊂ (A ∩Xψ) ∩ ClHψ ⊂ Gψ ∩ ClHψ,

where the last inclusion is implied by (2). Since Gψ is open in Xψ, so by (4)
the intersection Gψ∩ ClHψ is empty, and it proves that (A ∩Xϕ)∩ClHψ =
∅. Similarly, (B ∩Xϕ)∩ClGψ = ∅. Now, all four possibilities examined, we
conclude that Aψ and Bψ are separated.
For (Xϕ, τ) is hereditarily normal, so there exist disjoint sets C and D which
are open in Xϕ and contain sets Aψ and Bψ, respectively. Since A and B
are separated, so

A ∩Xϕ ⊂ X \ ClB and B ∩Xϕ ⊂ X \ ClA.

Futhermore, by (5) we have

Aψ ⊂ X \ ClB and Bψ ⊂ X \ ClA.

Now it is not difficult to check that the sets

Gϕ = C ∩ (X \ ClB) and Hϕ = D ∩ (X \ ClA)
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satisfy conditions (1)-(5), and this concludes the proof in the first case.
In the second case, i.e. when ϕ is a limit ordinal, we set Gϕ =

⋃
ψ<ϕGψ and

Hϕ =
⋃
ψ<ϕHψ. By Lemma 1, both these sets are open inXϕ. They contain

sets A ∩ Xϕ and B ∩ Xϕ, respectively. Since sets Gψ and Hψ are disjoint
for all ψ < ϕ, so Gϕ and Hϕ are disjoint, too. Hence Gϕ and Hϕ satisfy
conditions (1), (2) and (4). It is not difficult to verify that they also satisfy
conditions (3) and (5). So, for every β such that 2 ≤ β and β < δ there
exist the families of sets Gβ and Hβ satisfying conditions (1)-(5). Therefore
the unions G =

⋃
β<δ Gβ and H =

⋃
β<δHβ are open in Xδ, are disjoint,

and contain A and B, respectively. By Theorem 2.1.7 in [1, p.96], the space
(Xδ, τ) is hereditarily normal.

We worked with ordinal δ ≤ γ, so in virtue of the transfinite induction
the space (Xγ , τ) is hereditarily normal. In view of the equality Xγ = X
this completes the proof. �

3. Theorems on Inclusions between Topologies

In this part of the paper we will prove the inclusions between topologies
τ1, τ2 and τ3. But first we show

Theorem 4. The basis of the topology τ2 is the family of all sets of the
form f−1 ((0,∞)), where f ’s are directionally continuous functions.

Proof. Let F denote the set of all directionally continuous functions on
X. For arbitrary f ∈ F and any r, s ∈ R such that r < s the equality

f−1 ((r, s)) = f−1 ((−∞, s)) ∩ f−1 ((r,∞))

holds. Therefore

(1) f−1 ((r, s)) = g−1 ((0,∞)) ∩ h−1 ((0,∞)) ,

where g = −f + s, h = f − r, both functions in F .
Let P be the family of the subsets in X of the form f−1((r, s)), where

f ∈ F and r < s. Obviously, the family P is a subbase of the topology τ2.
Let B be the base of the topology generated by P, i.e. B =

⋃
n∈N

Bn, where

Bn =

{
n⋂
k=1

Ak : A1, A2, . . . , An ∈ P

}
.

By (1) the base B is contained in the family of all finite intersections of
the family

B′ =
{
f−1 ((0,∞)) : f ∈ F

}
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It’s clear that f−1((0,∞)) is 2-open if f ∈ F . Therefore the family B′ is
also a subbase of the topology τ2.
It is obvious that

f−1 ((0,∞)) =
m⋂
k=1

f−1
k ((0,∞))

where f1, f2, . . . , fm ∈ F and f = sup {fk : k = 1, 2, . . . ,m}. Hence the
family B′ is a base of τ2. �

Now, at last, we are ready to prove

Theorem 5. In every real linear space of dimension greater than 1 the
topology τ1 is essentially stronger then the topology τ2.

Proof. Let f be a directionally continuous function on X, and r < s.
Let’s denote U = f−1((r, s)) and let’s take an arbitrary x ∈ U . Let P be
a straight line passing through x. It’s obvious that the restriction fP = f |P
is continuous on P and the set U ∩ P is open. So there exist elements
y, z ∈ P such that x ∈ (y, z) ⊂ f−1

P ((r, s)) ⊂ U . Therefore x ∈ CorU . Since
x is taken arbitrarily in U , so CorU = U , and it says that every 2-open set
is 1-open.

Now we will show that the inclusion τ2 ⊂ τ1 is sharp in X = R2. It means
we will find a set which is 1-open and is not 2-open. Let U be an open set
and G be an 1-open set such that G ∩ U 6= ∅ and U \G is dense in U ; such
a set exists by virtue of Lemma 1 in [4, p.241]. From Theorem 2 it follows
that there exists a non-empty open set V such that V ⊂ Cl1 (U ∩G). The
set V ∩ G is not 2-open and we prove it by reductio ad absurdum. So we
suppose that V ∩G is 2-open. By Theorem 4, for every x ∈ V ∩G there exists
a directionally continuous function f such that x ∈ f−1((0,∞)) ⊂ V ∩ G.
Therefore f−1 ((−∞, 0〉)⊃ V \G. Then we take into consideration two sets:

A = f−1
((r

2
,∞

))
and B = f−1

((
−∞,

r

2

))
,

where r = f(x). These 2-open sets are 1-open and disjoint. Moreover,
x ∈ A ⊂ V ∩G. Obviously,

V \G ⊂ f−1
((
−∞,

r

2

〉)
.

Since f is directionally continuous, so Cl2B = f−1((−∞, r2〉). Hence
V \G ⊂ Cl2B ⊂ ClB. Since V \G is dense in V , so V ⊂ ClB.

On the other hand, A is 1-open, so, by Theorem 2, there exists a non-empty
open set W such that W ⊂ Cl1A ⊂ ClA. It implies that W ⊂ ClA ⊂
Cl (V ∩ G) ⊂ ClV . Further, since W and V are open, so W ⊂ J , where
J = Int (ClA)∩Int (ClB). It contradicts Corollary 3, where it is stated that
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J = ∅. This proves that the set G ∩ V is not 2-open. Taking into account
that V is open (and, in consequence, it is 2-open), we see that G cannot be
2-open.

So we know that in R2 there exists a set which is 1-open and is not
2-open. By Theorem 1 it follows that such a set exists in each space X of
dimension greater than 2. �

Arguing as in the second part of the proof of Theorem 5 for any finite
dimensional space (it is enough to replace R2 by Rn) one can show

Corollary 4. Let G be an 1-open set. If there exists a finite dimensional
subspace L and an open set U ⊂ L such that U ∩G 6= ∅ and L \G is dense
in U , then G is not 2-open.

Note that Corollary 4 is slightly stronger than the result given in [8,
p.31], where Theorem 3 states that every directionally continuous function
is core continuous, and it is mentioned that this does not hold in the case
of pointwise continuity.

A different problem concerning core continuous functions is considered
by R.J.Pawlak in [10]. He asks do exist core continuous and bounded
real-valued functions on R2 such that they are not almost continuous (a
function f mapping a topological space S in a topological space Y is called
almost continuous if, for every open set U ⊂ S × Y containing the graph
of f , U contains the graph of some continuous function from S in Y ). He
answers positively, see [10, p.466].

Theorem 6. In every real linear space of dimension greater than 1 the
topology τ2 is essentially stronger than the topology τ3.

Proof. In the proof we adopt the proof of Theorem 6 in [7, p.29], stating
that the topological space (Rn, τ3) is completely regular. The key point of
this proof is the normality of the space (Rn \ {h}, τ) with arbitrary h ∈ Rn.
From Theorem 3 it follows that the space (X \ {h}, τ) is normal in case
dimX ≥ ℵ0, too.

Let G be a set belonging to the base of τ3.
First we consider the case when G is an open set. Let x ∈ G. It’s

clear that then there exists a continuous function f on X such that x ∈
f−1((0,∞)) ⊂ G. Obviously, f is directionally continuous. Hence for every
x ∈ G there exists a 2-open set contained in G. It says that G is open.

Let now (G1, F1) be a Klee pair for h ∈ X and G = G1 ∪ {h}. Let
F = F1 ∪ {h}. Thanks to the normality of X \ {h} we can define a function
f : X → 〈0, 1〉 which is continuous on X \ {h} in the topology τ , and its
restrictions to sets F and X \G1 are f |F = 1 and f |X \G1 = 0, respectively.
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By the construction, f is directionally continuous. Thus, by Theorem 4, the
set G1 = f−1((0,∞)) is 2-open. It proves that τ3 ⊂ τ2.

We will show that this inclusion is sharp. First we investigate the case
X = R2. Here we find a 2-open set G which is not 3-open one. This set
will be symmetric with respect to both axes of the rectangular coordinate
system, i.e. a point (r1, r2) ∈ G iff (|r1| , |r2|) ∈ G, so we need to define G
only on the quarter R2

+.

Let (sn) be a decreasing sequence of positive real numbers tending to 0,
and let γ, ϕ, χ and ψ be real-valued functions defined on R+ and such that:
(1) γ is strictly convex and differentiate function,
(2) ϕ, χ and ψ are continuous functions,
(3) ϕ(0) = χ(0) = ψ(0) = γ(0) = 0 and the derivative γ′(0) = 0,
(4) 0 < ϕ(r) < χ(r) < ψ(r) < γ(r) if r ∈ S = R+ \ {sn : n ∈ N},
(5) ϕ(sn) = χ(sn) = ψ(sn) for each n ∈ N,
(6) graphs of functions ϕ, χ and ψ are tangent to the lines {(sn, r) : r ∈ R}

at points (sn, 0), n ∈ N .
Now we define the set G in R2

+, symmetric with respect to both axes, by
the equality

G ∩ R2
+ = {(r, t) : 0 ≤ t < χ(r) and r ∈ S}

∪{(r, t) : ψ(t) < t < γ(t) and r ∈ (0,∞)
∪{(r, 0) : r ∈ R+}

∪{(r, t) : t > 2γ(r) and r ∈ (0,∞)}.

We define the set F , also symmetric with respect to both axes, by the
formula

F ∩ R2
+ = {(r, t) : 0 ≤ t ≤ ϕ(r) and r ∈ (0,∞)}

∪
∞⋃
n=1

{
(sn, t) : 0 ≤ t ≤ γ(sn)

2

}
∪{(r, t) : t ≥ 3γ(r) and r ∈ R+}

We see that F is closed and F ⊂ G. Let’s define another set, Y = R2\{(s, 0) :
s = 0 or |s| = sn with some n ∈ N}.
By Theorem 3, the topological space (Y, τ) is normal. Thus the sets Y \G
and F ∩ Y are disjoint and closed in Y . Therefore there exists a continuous
function f : Y → 〈0, 1〉 such that f |Y \G = 0 and f |F = 1. We extend the
function f over R2 by putting f(x) = 1 for each x ∈ R2 \ Y . It is obvious
that if x ∈ R2 \ Y , then x ∈ CorF . Therefore f is directionally continuous
and G = f−1((0,∞)). This means that the set G is 2-open. It is also obvious
that if x ∈ R2 \ Y , then there does not exist its neighbourhood contained
in G. So there is no s > 0 such that the segment {(r, 0) : −s < r < s} is
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contained in IntG. In consequence, there does not exists a closed set E such
that (G,E \ {0}) is a Klee pair for 0. It implies that the set G is not 3-open
in R2.

By Theorem 1 this result is valid in any space X of dimension equal at
least 2. �
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