F A S C I C U L I M A T H E M A T I C I

Nr 36

Marian Liskowski

APPROXIMATION BY FUNCTIONS IN $C_{0}{ }^{\infty}(\Omega)$ IN ORLICZ - SOBOLEV SPACES

Abstract

The results presented in this paper concern the identity of spaces $W_{0}{ }^{k, M}(\Omega)$ and $W^{k, M}(\Omega)$, generated by φ-functions M with parameter for some class domains $\Omega \subset R^{n}$ and they are the extension of analogous results for clasical Sobolev spaces. The problem of approximation of elements in $W^{k, M}(\Omega)$ by smooth functions on various domains $\Omega \subset R^{n}$ were investigated by different authors for classic Sobolev spaces with integer values of k as well as for some generalization of Sobolev space to the case of noninteger values k (see e.g. N. Meyers and J. Serrin [11] in the case $M(u)=u^{p}, p>1$; T. K. Donaldson and N. S. Trudinger [2], when M is arbitrary N-function; H. Hudzik [3], [4], [5], [6], [7], when M is N-function which depends on parameter; M. Liskowski [9], [10] for some family of generalized Orlicz-Sobolev space, when k is noninteger and M is N-function with parameter). Key words: Orlicz-Sobolev space, dual of Orlicz-Sobolev space, approximation by smooth function in generalized Sobolev spaces, polar set.

1. Introduction

Let Ω be an open and nonempty set in R^{n}. A real-valued function $M: \Omega \times$ $[0, \infty) \rightarrow[0, \infty)$ which satisfies the conditions:

1. $M(t, 0)=0$ for a.e. $t \in \Omega$,
2. M is convex and continous at zero with respect to second variable for a.e. $t \in \Omega$,
3. $M(t, u)$ is ameasurable function of t for every fixed $u \geq 0$
is called a φ-function of the variable u with parameter t.
A φ-function M is called an N-function if satisfies the following condition
4. $\frac{M(t, u)}{u} \rightarrow 0$ as $u \rightarrow 0$ and $\frac{M(t, u)}{u} \rightarrow \infty$ as $u \rightarrow \infty$ for a.e. $t \in \Omega$.

The following conditions will be of importance:
5. there exists a constant $u_{0}>0$ such that $\int_{B} M(t, u) d t<\infty$ for every compact set $B \subset \Omega$ and for all $0 \leq u \leq u_{0}$;
6. for every compact set $B \subset \Omega$ there exists a constant $c>0$ and nonnegative function $g \in L^{1}(B)$ such that $u \leq c M(t, u)+g(t)$ for all $u \geq 0$ and for a.e. $t \in \Omega$.
A function M satisfies the condition Δ_{2} if the following inequality holds

$$
M(t, 2 u) \leq K M(t, u)+h(t)
$$

for all $u \geq 0$ and almost every $t \in \Omega$, where h is a nonnegative integrable function in Ω and K is a positive constant.

Let us denote by X the real space of all complex-valued and locally integrable functions defined on Ω, with equality almost everywhere on Ω. For any fixed integer number $k>0$ and any φ-function M we define on X a functional

$$
I(f)=\sum_{|\alpha| \leq k} \int_{\Omega} M\left(t,\left|D^{\alpha} f(t)\right|\right) d t
$$

where $D^{\alpha} f$ is the distributional derivative of f. The functional I is a convex modular on X.

The Orlicz-Sobolev space is defined in the following manner (see e.g. [5])

$$
W^{k, M}(\Omega)=\{f \in X: I(a f)<\infty \text { for some } a>0\}
$$

If a φ-function M satisfies additionally (5) and (6), then the space $W^{k, M}(\Omega)$ is a Banach space with respect to the Luxemburg norm $\left\|\|_{W^{k, M}}\right.$ (or briefly $\left\|\|_{k, M}\right.$) generated by the convex modular I (see [12]).

The Orlicz-Sobolev space $W^{k, M}(\Omega)$ is a vector subspace of the Orlicz space

$$
L^{M}(\Omega)=\left\{f \in X: \int_{\Omega} M(t, c|f(t)|) d t<\infty \text { for some } c>0\right\}
$$

In the sequel $L^{M}(\Omega)$ will be considered with Luxemburg norm $\left\|\|_{L^{M}}\right.$ generated by a convex modular

$$
I_{0}(f)=\int_{\Omega} M(t,|f(t)|) d t
$$

Let $C_{0}{ }^{\infty}(\Omega)$ be the set of all functions defined on Ω having derivatives of any order on Ω whose supports are compact subset of Ω. If a φ-function M satisfies (5), the inclusion

$$
C_{0}{ }^{\infty}(\Omega) \subset W^{k, M}(\Omega)
$$

holds for every nonnegative and integer k. We denote by $W_{0}{ }^{k, M}(\Omega)$ the closure in $W^{k, M}(\Omega)$ of the set $C_{0}{ }^{\infty}(\Omega)$ with respect to the norm $\left\|\|_{W^{k, M}}\right.$.

For a φ-function M satisfying (6) we have

$$
L^{M}(\Omega) \subset L^{1}{ }_{l o c}(\Omega) .
$$

The condition (6) is sufficient and necessary for this inclusion (see [8]). Thus, if (6) is satisfied, then for every function $f \in L^{M}(\Omega)$ the functional T_{f} defined by

$$
T_{f}(\varphi)=\int_{\Omega} f(t) \varphi(t) d t
$$

for $\varphi \in C_{0}^{\infty}(\Omega)$ is a regular distribution and so $W^{k, M}(\Omega)=L^{M}(\Omega)$ if $k=0$.

2. Results

We start with general results concerning to Orlicz-Sobolev spaces.
Denote:

$$
l=\sum_{|\alpha| \leq k} 1 \quad \text { and } \quad L_{l}{ }^{M}(\Omega)=\prod_{i=1}^{l} L^{M}(\Omega) .
$$

The space $L_{l}{ }^{M}(\Omega)$ with the Luxemburg norm generated by a convex modular of the form

$$
\rho(f)=\sum_{i=1}^{l} I_{0}\left(f_{i}\right)
$$

is a Banach space. On the space $L_{l}{ }^{M}(\Omega)$ is defined also the Orlicz norm by

$$
{ }^{0}\|f\|_{L_{l}{ }^{M}}=\sup \left\{\left|\sum_{i=1}^{l} \int_{\Omega} f_{i}(t) g_{i}(t) d t\right|:\|g\|_{L_{l}} \leq 1\right\}
$$

where N is the complementary function to M in the sense of Young. The Orlicz norm and the Luxemburg norm are equivalent.

Let us suppose that l multiindices α satisfying $|\alpha| \leq k$ are linearly ordered in some convenient fashion so that each $f \in W^{k, M}(\Omega)$ we may associate the well-defined vector $P f$ in $L_{l}{ }^{M}(\Omega)$ of the norm

$$
\begin{equation*}
P f=\left(D^{\alpha} f\right)_{|\alpha| \leq k} \tag{1}
\end{equation*}
$$

defining a mapping $W^{k, M}(\Omega)$ onto a subspace of $L_{l}{ }^{M}(\Omega)$. Since $\|f\|_{W^{k, M}}=$ $\|P f\|_{L_{l}{ }^{M}}$, so P is an isometric isomorphism of $W^{k, M}(\Omega)$ onto $P W^{k, M}(\Omega) \subset$ $L_{l}{ }^{M}(\Omega)$. If $k>0$, then $P W^{k, M}(\Omega)$ is a closed proper subspace of $L_{l}{ }^{M}(\Omega)$.

If M is an N-function satisfying conditions (5), (6) and Δ_{2}, then every functional $f^{*} \in\left(W_{0}^{k, M}(\Omega)\right)^{\prime}$ is an extension to $W^{k, M}(\Omega)$ of some distribution $T \in D^{\prime}(\Omega)$ of the form

$$
\begin{equation*}
T=\sum_{|\alpha| \leq k}(-1)^{|\alpha|} D^{\alpha} T_{f_{\alpha}} \tag{2}
\end{equation*}
$$

where $f=\left(f_{\alpha}\right)_{|\alpha| \leq k} \in L_{l}{ }^{N}(\Omega)$ is an element determining the functional f^{*} of the form

$$
f^{*}(g)=\sum_{|\alpha| \leq k} \int_{\Omega} D^{\alpha} g(t) f_{\alpha}(t) d t
$$

On the other hand if T is any element of $D^{\prime}(\Omega)$ having the form (2) for some $f \in L_{l}{ }^{N}(\Omega)$ then T possesses a unique such extension to $W_{0}{ }^{k, M}(\Omega)$, (see [7]). Thus there holds the following theorem.

Theorem 1. ([7]) If M is an N-function satisfying conditions (5), (6) and Δ_{2}, then the dual $\left(W_{0}{ }^{k, M}(\Omega)\right)^{\prime}$ is the space consisting of those distributions $T \in D^{\prime}(\Omega)$ satisfying (2) for some $f=\left(f_{\alpha}\right)_{|\alpha| \leq k} \in L_{l}^{N}(\Omega)$, normed by

$$
\begin{equation*}
\|T\|=\inf \left\{{ }^{0}\|f\|_{L_{l} N}: f \text { satisfies }(2)\right\} \tag{3}
\end{equation*}
$$

The space of distribution, which are discussed above theorem is denoted by $W^{-k, N}(\Omega)$. Thus $W^{-k, N}(\Omega)$ is isometrically isomorphic to $\left(W_{0}{ }^{k, M}(\Omega)\right)^{\prime}$ and the latter is isometrically isomorphic to $L_{l}{ }^{N} / R$, where $L_{l}{ }^{N} / R$ is the space of equivalence classes identifying those elements of $L_{l}{ }^{N}(\Omega)$, which determine the same linear bounded functional over $W_{0}{ }^{k, M}(\Omega)$.

The above remarks show that each element $g \in L^{N}(\Omega)$ determines a functional $T_{g} \in\left(W_{0}{ }^{k, M}(\Omega)\right)^{\prime}$ by means of

$$
T_{g}(f)=\int_{\Omega} g(t) f(t) d t
$$

The space $L^{N}(\Omega)$ may be normed in the following manner. We take the norm $\left\|\|_{-k, N}\right.$ of $g \in L^{N}(\Omega)$ as the norm of corresponding to the functional T_{g}, that is

$$
\begin{align*}
\mid g \|_{-k, N} & \left.=\left\|T_{g}\right\|_{\left(W_{0}, M\right.}^{k, M}(\Omega)\right)^{\prime} \tag{4}\\
& =\sup \left\{\left|T_{g}(f)\right|: f \in W_{0}^{k, M}(\Omega),\|f\|_{W_{0} k, M} \leq 1\right\}
\end{align*}
$$

Then the set $V=\left\{T_{g}: g \in L^{N}(\Omega)\right\}$ is dense in $\left(W_{0}{ }^{k, M}(\Omega)\right)^{\prime}$, (see [7]). Hence and from (4) follows that $\left(W_{0}{ }^{k, M}(\Omega)\right)^{\prime}$ is a completion of V with respect to the norm $\left\|\|_{-k, N}\right.$.

Let $H^{-k, N}(\Omega)$ denote the completion of $L^{N}(\Omega)$ with respect to $\left\|\|_{-k, N}\right.$. Since V and $L^{N}(\Omega)$ are isometrically isomorphic, then we obtain $H^{-k, N}(\Omega)$ is isometrically isomorphic to the space $\left(W_{0}{ }^{k, M}(\Omega)\right)^{\prime}$.

Thus we have
Theorem 2. If M and N are complementary functions satisfying conditions Δ_{2}, (6) and M satisfies additionally (5), then the space $H^{-k, N}(\Omega)$ is isometrically isomorphic to $W^{-k, N}(\Omega)$.

Throughout the following discussion we will indicate some class of domains $\Omega \subset R^{n}$ for which is true that $W^{k, M}(\Omega)=W_{0}{ }^{k, M}(\Omega)$.

Let F be a closed subset of R^{n}. The closed set F is (k, N)-polar if the only distribution T in $W^{-k, N}\left(R^{n}\right)$ having support in F is the zero distribution, that is $T f=0$ for every $f \in W_{0}{ }^{k, M}\left(R^{n}\right)$, ([1]).

For arbitrary nonnegative and integer number k there holds the embedding

$$
W_{0}^{k+1, M}\left(R^{n}\right) \subset W_{0}^{k, M}\left(R^{n}\right)
$$

If M and N are complementary φ-functions, by the inequality $\|u\|_{k, M} \leq$ $\|u\|_{k+1, M}$ we obtain that any bounded linear functional on the $W_{0}{ }^{k, M}\left(R^{n}\right)$ is bounded on the $W_{0}{ }^{k+1, M}\left(R^{n}\right)$ as well. Thus there holds the inclusion

$$
\begin{equation*}
W^{-k, N}\left(R^{n}\right) \subset W^{-k-1, N}\left(R^{n}\right) \tag{5}
\end{equation*}
$$

From above remarks it follows immediatelly
Lemma 1. For each N-function N any $(k+1, N)$-polar set is also (k, N)-polar set.

Proof. Let $F \subset R^{n}$ be $(k+1, N)$-polar and let T be any distribution in $W^{-k, N}\left(R^{n}\right)$ such that supp $T \subset F$. Hence and by (5) we get $T \in W^{-k-1, N}\left(R^{n}\right)$. Since F is $(k+1, N)$-polar, then $T=0$. Thus F is (k, N)-polar.

For any function f defined on the open set $\Omega \subset R^{n}$ we denote by f^{\bullet} zero extension of f outside Ω

$$
f^{\bullet}(t)=\left\{\begin{array}{cll}
f(t) & \text { if } & t \in \Omega \tag{6}\\
0 & \text { if } & t \in \Omega^{\prime}=R^{n}-\Omega
\end{array}\right.
$$

Lemma 2. Let both the function M and N complementary to M, satisfy conditions (5), (6) and Δ_{2}. Let $f \in W_{0}{ }^{k, M}(\Omega)$. Then for any $|\alpha| \leq k$ there exists distributional derivative of f^{\bullet} on R^{n} and

$$
D^{\alpha} f^{\bullet}(t)=\left\{\begin{array}{cl}
D^{\alpha} f(t) & \text { if } t \in \Omega \\
0 & \text { if } t \in \Omega^{\prime}
\end{array}\right.
$$

Moreover, $f^{\bullet} \in W^{k, M}\left(R^{n}\right)$.
Proof. Let $f \in W_{0}{ }^{k, M}(\Omega)$. Then $I\left(\frac{f}{\|f\|_{k, M}}\right) \leq 1$. For any $|\alpha| \leq k$ we have $D^{\alpha} f \in L^{M}(\Omega)$ and

$$
I_{0}\left(\frac{1}{\|f\|_{k, M}} D^{\alpha} f\right)=\int_{\Omega} M\left(t, \frac{1}{\|f\|_{k, M}}\left|D^{\alpha} f(t)\right|\right) d t \leq I\left(\frac{1}{\|f\|_{k, M}} f\right) \leq 1
$$

Hence we obtain

$$
\left\|D^{\alpha} f\right\|_{L^{M}} \leq\|f\|_{k, M}
$$

Let $\left(u_{n}\right)$ be a sequence in $C_{0}{ }^{\infty}(\Omega)$ converning to f in $W_{0}{ }^{k, M}(\Omega)$. Thus, for any $\varphi \in D\left(R^{n}\right)$ and $|\alpha| \leq k$ we have

$$
\left|\int_{\Omega} D^{\alpha} f(t) \varphi(t) d t-\int_{\Omega} D^{\alpha} u_{n}(t) \varphi(t) d t\right| \leq c\left\|f-u_{n}\right\|_{k, M}
$$

Hence

$$
\begin{aligned}
\int_{R^{n}} & f^{\bullet}(t) D^{\alpha} \varphi(t) d t=\int_{\Omega} f(t) D^{\alpha} \varphi(t) d t=\lim _{n \rightarrow \infty} \int_{\Omega} u_{n}(t) D^{\alpha} \varphi(t) d t \\
& =(-1)^{|\alpha|} \lim _{n \rightarrow \infty} \int_{\Omega} D^{\alpha} u_{n}(t) \varphi(t) d t=(-1)^{|\alpha|} \int_{\Omega} D^{\alpha} f(t) \varphi(t) d t \\
& =(-1)^{|\alpha|} \int_{R^{n}}\left(D^{\alpha} f\right)^{\bullet}(t) \varphi(t) d t .
\end{aligned}
$$

Thus $D^{\alpha} f^{\bullet}=\left(D^{\alpha} f\right)^{\bullet}$ in the distributional sense on R^{n}. Hence we obtain

$$
\begin{aligned}
\int_{\Omega} M\left(t,\left|D^{\alpha} f(t)\right|\right) d t & =\int_{R^{n}} M\left(t,\left|\left(D^{\alpha} f\right)^{\bullet}(t)\right|\right) d t \\
& =\int_{R^{n}} M\left(t,\left|D^{\alpha} f^{\bullet}(t)\right|\right) d t
\end{aligned}
$$

for every $|\alpha| \leq k$. Thus $\|f\|_{W^{k, M}(\Omega)}=\left\|f^{\bullet}\right\|_{W^{k, M}\left(R^{n}\right)}$. By last equality we conclude $f^{\bullet} \in W^{k, M}\left(R^{n}\right)$.

The following theorem delivers a necessary and sufficient condition on Ω that mapping (6) carry $W_{0}^{k, M}(\Omega)$ isometrically onto $W^{k, M}\left(R^{n}\right)$.

Theorem 3. Let M be an N-function and let N be complementary to M, both functions satisfies (5), (6) and $\Delta_{2} . C_{0}{ }^{\infty}(\Omega)$ is dense in $W^{k, M}\left(R^{n}\right)$ if and only if the complement $\Omega^{\prime}=R^{n}-\Omega$ is (k, N)-polar.

Proof. The proof is similar to the proof of the respective theorem for the space $W^{k, p}(\Omega), p \geq 1$ (Theorem 3.23 in [1]).

Let us assume $C_{0}^{\infty}(\Omega)$ is dense in $W^{k, M}\left(R^{n}\right)$. Let T be any distribution in $W^{-k, N}\left(R^{n}\right)$ such that $\operatorname{supp} T \subset \Omega^{\prime}$. If $f \in W^{k, M}\left(R^{n}\right)$, then there exists a sequence $\left(u_{n}\right) \subset C_{0}{ }^{\infty}(\Omega)$ converning to f with respect to the norm of $W^{k, M}\left(R^{n}\right)$. By continuity of T we obtain $T u_{n} \rightarrow T f, n \rightarrow \infty$. Since T has the support in $R^{n}-\Omega$, so $T u_{n}=0, n=1,2, \ldots$ and hence $T f=0$. Thus Ω^{\prime} is (k, N)-polar.

Now let us suppose $C_{0}{ }^{\infty}(\Omega)$ is not dense in $W^{k, M}\left(R^{n}\right)$. Thus there exist an element $f \in W^{k, M}\left(R^{n}\right)$ and a constant $c>0$ such that $\|f-\varphi\|_{W^{k, M}\left(R^{n}\right)} \geq$ c for every $\varphi \in C_{0}^{\infty}(\Omega)$ and the constant being independent of φ. By the Hahn-Banach theorem there exists a functional $T \in W^{-k, N}\left(R^{n}\right)$ such that $T \varphi=0$ for all $\varphi \in C_{0}{ }^{\infty}(\Omega)$ and $T f=1$. Thus we have supp $T \subset \Omega^{\prime}$ but $T \neq 0$. Hence Ω^{\prime} cannot be (k, N)-polar.

For differentiable functions is true that identical vanishing of first derivatives over rectangle $B \subset R^{n}$ implies constancy of this function on that rectangle. This result has extension to functions possessing distributional derivatives. There holds the following lemma.

Lemma 3. ([1]) Let

$$
B=\left(a_{1}, b_{1}\right) \times\left(a_{2}, b_{2}\right) \times \ldots \times\left(a_{n}, b_{n}\right)
$$

be an open rectangular box in R^{n} and let f possesses distributional derivatives $D^{\alpha} f=0$ for all $|\alpha|=1$. Then there exists a constant c such that $f(t)=c$ almost everywhere in B.

Theorem 4. Let N-functions M and N satisfy the condition Δ_{2} and let M satisfies (5) and (6).

1. If $C_{0}{ }^{\infty}(\Omega)$ is dense in $W^{k, M}(\Omega)$, then $\Omega^{\prime}=R^{n}-\Omega$ is (k, N)-polar.
2. If Ω^{\prime} is both $(1, M)$-polar and (k, N)-polar, then $C_{0}{ }^{\infty}(\Omega)$ is dense in $W^{k, M}(\Omega)$.

Proof. The idea of this proof is derived from the proof of the respective theorem for the space $W^{k, p}(\Omega), p \geq 1$ (Theorem 3.28 in [1]).

1. Let $W^{k, M}(\Omega)=W_{0}^{k, M}(\Omega)$. We shall show that Ω^{\prime} has measure zero. Let us suppose that Ω^{\prime} has a positive measure. Then there exists an open rectangle $P \subset R^{n}$ such that $P \cap \Omega$ and $P \cap \Omega^{\prime}$ are set of positive measure.

Denote by f the function which is the restriction to Ω of some function $g \in C_{0}{ }^{\infty}\left(R^{n}\right)$ which is identically one on $P \cap \Omega$. Then $f \in W^{k, M}(\Omega)$ and so $f \in W_{0}^{k, M}(\Omega)$. By Lemma 2 we have $f^{\bullet} \in W^{k, M}\left(R^{n}\right)$ and $D^{\alpha} f^{\bullet}=\left(D^{\alpha} f\right)^{\bullet}$ in the distributional sense on R^{n} for $|\alpha|=1$. Since $D^{\alpha} f=0$ on $P \cap \Omega$ then for the zero extension there holds $\left(D^{\alpha} f\right)^{\bullet}=0$ on P. Thus also $D^{\alpha} f^{\bullet}=0$
on P for $|\alpha|=1$ as a distribution on P. By Lemma $3 f^{\bullet}$ must have a constant value almost everywhere in P, a contradiction because $f^{\bullet}(t)=1$ for $t \in P \cap \Omega$ and $f^{\bullet}(t)=0$ for $t \in P \cap \Omega^{\prime}$. Thus Ω^{\prime} has measure zero.

Now, we will apply the above fact in order to prove density of $C_{0}{ }^{\infty}(\Omega)$ in $W^{k, M}(\Omega)$. Let $g \in W^{k, M}\left(R^{n}\right)$ and let f be the restriction of g to Ω. Then $f \in W^{k, M}(\Omega)$ and hence $f \in W_{0}{ }^{k, M}(\Omega)$ Thus f can be approximated by functions of $C_{0}{ }^{\infty}(\Omega)$. By Lemma $2 f^{\bullet} \in W^{k, M}\left(R^{n}\right)$ and f^{\bullet} can be also approximated by elements of $C_{0}^{\infty}(\Omega)$. Since $g(t)=f^{\bullet}(t)$ a.e. in R^{n}, then g and f^{\bullet} have the same distributional derivatives and so coincide in $W^{k, M}\left(R^{n}\right)$. Thus g can be approximated by elements $C_{0}^{\infty}(\Omega)$. Therefore $C_{0}{ }^{\infty}(\Omega)$ is dense in $W^{k, M}\left(R^{n}\right)$. By Theorem 3 the set Ω^{\prime} is (k, N)-polar.
2. Let $f \in W^{k, M}(\Omega)$. Since $f \in L^{M}(\Omega)$, then $f^{\bullet} \in L^{M}\left(R^{n}\right)$. Thus f^{\bullet} generate a distribution $T_{f} \bullet$ as a locally integrable function in R^{n} and there exists $D^{\alpha} T_{f} \bullet,|\alpha|=1$. Consequently, there exists

$$
\int_{R^{n}} D^{\alpha} f^{\bullet}(t) \varphi(t) d t
$$

for any $|\alpha|=1$ and for all $\varphi \in D\left(R^{n}\right)$. This integral ia a regular distribution generated by $D^{\alpha} f^{\bullet}$. Thus $D^{\alpha} T_{f} \bullet=T_{D^{\alpha} f} \bullet$ for $|\alpha|=1$ and $T_{D^{\alpha} f} \bullet \in$ $W^{-1, M}\left(R^{n}\right)$.

We have $D^{\alpha} f \in L^{M}(\Omega)$ for any $|\alpha|=1$. Hence the zero extension $\left(D^{\alpha} f\right)^{\bullet}$ is an element of $L^{M}\left(R^{n}\right)$. Since $L^{M}\left(R^{n}\right) \subset H^{-1, M}\left(R^{n}\right)$, then $T_{\left(D^{\alpha} f\right)} \in \in$ $W^{-1, M}\left(R^{n}\right)$. Hence, we obtain

$$
T_{D^{\alpha} f \bullet-\left(D^{\alpha} f\right)} \bullet=T_{D^{\alpha} f \bullet}-T_{\left(D^{\alpha} f\right)} \bullet \in W^{-1, M}\left(R^{n}\right)
$$

for all $|\alpha|=1$. Moreover

$$
D^{\alpha} f^{\bullet}(t)-\left(D^{\alpha} f\right)^{\bullet}(t)=0
$$

for every $t \in \Omega$ So supp $T_{D^{\alpha} f}{ }^{\bullet}-\left(D^{\alpha} f\right) \bullet \subset \Omega^{\prime}$ for all $|\alpha|=1$. Since Ω^{\prime} is $(1, M)$-polar we obtain

$$
T_{D^{\alpha} f \bullet-\left(D^{\alpha} f\right)} \bullet(\varphi)=0
$$

for all $\varphi \in D\left(R^{n}\right)$. This implies $D^{\alpha} f^{\bullet}=\left(D^{\alpha} f\right)^{\bullet}$ almost everywhere in R^{n} for $|\alpha|=1$. Thus $D^{\alpha} f^{\bullet} \in L^{M}\left(R^{n}\right)$ for $|\alpha|=1$ and we have $f^{\bullet} \in W^{1, M}\left(R^{n}\right)$. Using the induction principle with respect $|\alpha|$, we obtain that $D^{\alpha} f^{\bullet}=\left(D^{\alpha} f\right)^{\bullet}$ in the distributional sense, for $|\alpha| \leq k$.

Finally $f^{\bullet} \in W^{k, M}\left(R^{n}\right)$. By (k, M)-polarity of Ω^{\prime} and Theorem 3 we obtain that $C_{0}{ }^{\infty}(\Omega)$ is dense in $W^{k, M}\left(R^{n}\right)$. Thus we have the closure of $C_{0}{ }^{\infty}(\Omega)$ in norm $\left\|\|_{k, M}\right.$ is the space $W^{k, M}\left(R^{n}\right)$. Simultaneously this same
closure is, by definition, the space $W_{0}{ }^{k, M}(\Omega)$. Since $f^{\bullet} \in W^{k, M}\left(R^{n}\right)$ and $f^{\bullet}(t)=f(t)$ for $t \in \Omega$, then $f \in W_{0}{ }^{k, M}(\Omega)$.

Let M_{1} and M_{2} be φ-functions. A function M_{2} is nonweaker than M_{1} if the following condition holds

$$
\begin{equation*}
M_{1}(t, u) \leq K_{1} M_{2}\left(t, K_{2} u\right)+h(t) \tag{7}
\end{equation*}
$$

for all $u \geq 0$ and a.e. $t \in \Omega$, where h is nonnegative, integrable function in Ω and K_{1}, K_{2} are positive constans.

The condition (7) we write $M_{1} \prec M_{2}$, (see [12]). If the inequality (7) is satisfied for every $u \geq u_{0}$, where $u_{0}>0$ is fixed, then we say that M_{2} is nonweaker than M_{1} for large u.

If φ-functions M_{1} and M_{2} satisfy (6) and $M_{1} \prec M_{2}$, then the embedding

$$
\begin{equation*}
W^{k, M_{2}}(\Omega) \subset W^{k, M_{1}}(\Omega) \tag{8}
\end{equation*}
$$

holds for every nonnegative integer k. If Ω has finite measure, then embedding (8) holds when $M_{1} \prec M_{2}$ for large u, (see [5]).

Lemma 4. Let an N-function M satisfies conditions (5), (6), Δ_{2} and let N be a complementary function to M. The set $F \subset R^{n}$ is (k, N)-polar if and only if $F \cap K$ is (k, N)-polar for every compact set $K \subset R^{n}$.

The proof is analogous as in the case, when $M(t, u)=u^{p}, p>1$.
Lemma 5. Let M_{1} and M_{2} be N-functions satisfying (5), (6) and Δ_{2}. Let N_{1}, N_{2} be complementary functions respectively. If $M_{1} \prec M_{2}$ for large u and the set $F \subset R^{n}$ is $\left(k, N_{2}\right)$-polar, then F is also $\left(k, N_{1}\right)$-polar.

Proof. Let K be a compact set in R^{n} and let $F \subset R^{n}$ be (k, N_{2})-polar. We will show that $F \cap K$ is $\left(k, N_{1}\right)$-polar. Let us denote by G an arbitrary open and bounded set in R^{n} such that $K \subset G$. There holds the embedding $W_{0}{ }^{k, M_{2}}(G) \subset W_{0}{ }^{k, M_{1}}(G)$. Hence we have $W^{-k, N_{1}}(G) \subset W^{-k, N_{2}}(G)$.

Let $T \in W^{-k, N_{1}}\left(R^{n}\right)$ be such that supp $T \subset F \cap K$. Then $T \in W^{-k, N_{1}}(G)$ and hence $T \in W^{-k, N_{2}}(G)$. Since $F \cap K$ is $\left(k, N_{2}\right)$-polar, so $T=0$. Thus $F \cap K$ is $\left(k, N_{1}\right)$-polar and, by Lemma $4, F$ is $\left(k, N_{1}\right)$-polar.

Theorem 5. Let M and N be complementary N-functions satisfying the condition Δ_{2} and let M satisfies (5) and (6). Let furthermore M be such that the complementary function N satisfies $N \prec M$ for large u. Then $W^{k, M}(\Omega) \subset W_{0}{ }^{k, M}(\Omega)$ if and only if the set Ω^{\prime} is (k, N)-polar.

Proof. Let us suppose Ω^{\prime} is (k, N)-polar. Since $N \prec M$ then, by Lemma $5, \Omega^{\prime}$ is (k, M)-polar. Thus Ω^{\prime} is $(1, M)$-polar. The result now follows by Theorem 4(1).

Examples.

1. Let $M(t, u)=u^{p(t)}$, where $1 \leq p(t)<\infty$. If $p(t) \geq 2$, then the complementary function N is $N(t, u)=u^{q(t)}$, where $\frac{1}{p(t)}+\frac{1}{q(t)}=1$ and $q(t) \leq p(t)$ for every $t \in \Omega$. So $N \prec M$ for $u \geq 1$ and $h=0$.
2. Let $M(u)=e^{u}-u-1, u \geq 0$. Then the complementary function is $N(u)=(1+u) \ln (1+u)-u$ satisfies $N \prec M$ for all $u \geq 0$.

References

[1] Adams R.A., Sobolev spaces, Academic Press, New York - San Francisco London 1975.
[2] Donaldson T.K., Trudinger N.S., Orlicz-Sobolev spaces and imbedding theorems, J. Functional Analysis, 8(1971), 52-75.
[3] Hudzik H., On density of $C_{0}{ }^{\infty}(\Omega)$ in Orlicz-Sobolev space $W_{M}^{k}(\Omega)$ for every open set $\Omega \subset R^{n}$, Funct. et Approximatio, 5(1977), 113-128.
[4] Hudzik H., On problem of density of $C_{0}{ }^{\infty}(\Omega)$ in generalized Orlicz-Sobolev space $W_{M}^{k}(\Omega)$ for every open set $\Omega \subset R^{n}$, Comm. Mathematicae, 20(1977), 5-78.
[5] Hudzik H., On continuity of the imbedding operation from $W_{M_{1}}^{k}(\Omega)$ into $W_{M_{2}}^{k}(\Omega)$, Funct. et Approximatio, 6(1978), 111-118.
[6] HudzIk H., Density of $C_{0}{ }^{\infty}\left(R^{n}\right)$ in generalized Orlicz-Sobolev space $W_{M}^{k}\left(R^{n}\right)$, Funct. et Approximatio, 7(1979), 15-21.
[7] Hudzik H., The problems of separability, duality, reflexivity and of comparison for generalized Orlicz-Sobolev spaces $W_{M}^{k}(\Omega)$, Comm. Mathematicae, 21(1979), 315-324.
[8] Kozek A., Convex integral functionals in Orlicz spaces, Comm. Mathematicae, 21(1979), 109-135.
[9] Liskowski M., Density of $C_{0}{ }^{\infty}\left(R^{n}\right)$ in generalized Besov space $B^{k, \phi}\left(R^{n}\right)$, Funct. et Approximatio, 15(1986), 185-193.
[10] Liskowski M., Approximation in Orlicz-Slobodecki space by functions in $C^{\infty}(\Omega)$, Fasciculi Mathematici, 29(1999), 43-54.
[11] Meyers N., Serrin J., H W W, Proc. Nat. Acad. Sci., USA, 51(1964), 1055-1056.
[12] Musielak J., Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer, 1983.

Marian Liskowski
Institute of Mathematics, Poznań University of Technology Piotrowo 3A, 60-965 Poznań, Poland
e-mail: mliskows@math.put.poznan.pl

Received on 29.09.2004 and, in revised from, on 03.01.2005.

