$\frac{F A S C I C U L I M A T H E M A T I C I}{Nr 36}$

MARIAN LISKOWSKI

APPROXIMATION BY FUNCTIONS IN $C_0^{\infty}(\Omega)$ IN ORLICZ - SOBOLEV SPACES

ABSTRACT: The results presented in this paper concern the identity of spaces $W_0^{k,M}(\Omega)$ and $W^{k,M}(\Omega)$, generated by φ -functions M with parameter for some class domains $\Omega \subset \mathbb{R}^n$ and they are the extension of analogous results for clasical Sobolev spaces.

The problem of approximation of elements in $W^{k,M}(\Omega)$ by smooth functions on various domains $\Omega \subset \mathbb{R}^n$ were investigated by different authors for classic Sobolev spaces with integer values of k as well as for some generalization of Sobolev space to the case of noninteger values k (see e.g. N. Meyers and J. Serrin [11] in the case $M(u) = u^p$, p > 1; T. K. Donaldson and N. S. Trudinger [2], when M is arbitrary N-function; H. Hudzik [3], [4], [5], [6], [7], when M is N-function which depends on parameter; M. Liskowski [9], [10] for some family of generalized Orlicz-Sobolev space, when k is noninteger and M is N-function with parameter).

KEY WORDS: Orlicz-Sobolev space, dual of Orlicz-Sobolev space, approximation by smooth function in generalized Sobolev spaces, polar set.

1. Introduction

Let Ω be an open and nonempty set in \mathbb{R}^n . A real-valued function $M: \Omega \times [0, \infty) \to [0, \infty)$ which satisfies the conditions:

- 1. M(t,0) = 0 for a.e. $t \in \Omega$,
- 2. *M* is convex and continous at zero with respect to second variable for a.e. $t \in \Omega$,
- 3. M(t, u) is a measurable function of t for every fixed $u \ge 0$

is called a φ -function of the variable u with parameter t.

A φ -function M is called an N-function if satisfies the following condition

4.
$$\frac{M(t,u)}{u} \to 0$$
 as $u \to 0$ and $\frac{M(t,u)}{u} \to \infty$ as $u \to \infty$ for a.e. $t \in \Omega$.

The following conditions will be of importance:

- 5. there exists a constant $u_0 > 0$ such that $\int_B M(t, u) dt < \infty$ for every compact set $B \subset \Omega$ and for all $0 \le u \le u_0$;
- 6. for every compact set $B \subset \Omega$ there exists a constant c > 0 and nonnegative function $g \in L^1(B)$ such that $u \leq c M(t, u) + g(t)$ for all $u \geq 0$ and for a.e. $t \in \Omega$.

A function M satisfies the condition Δ_2 if the following inequality holds

$$M(t, 2u) \le K M(t, u) + h(t)$$

for all $u \ge 0$ and almost every $t \in \Omega$, where h is a nonnegative integrable function in Ω and K is a positive constant.

Let us denote by X the real space of all complex-valued and locally integrable functions defined on Ω , with equality almost everywhere on Ω . For any fixed integer number k > 0 and any φ -function M we define on X a functional

$$I(f) = \sum_{|\alpha| \le k} \int_{\Omega} M(t, |D^{\alpha}f(t)|) dt,$$

where $D^{\alpha}f$ is the distributional derivative of f. The functional I is a convex modular on X.

The Orlicz-Sobolev space is defined in the following manner (see e.g. [5])

$$W^{k,M}(\Omega) = \left\{ f \in X : I(af) < \infty \text{ for some } a > 0 \right\}.$$

If a φ -function M satisfies additionally (5) and (6), then the space $W^{k,M}(\Omega)$ is a Banach space with respect to the Luxemburg norm $\| \|_{W^{k,M}}$ (or briefly $\| \|_{k,M}$) generated by the convex modular I (see [12]).

The Orlicz-Sobolev space $W^{k,M}(\Omega)$ is a vector subspace of the Orlicz space

$$L^{M}(\Omega) = \left\{ f \in X \colon \int_{\Omega} M(t, c|f(t)|) dt < \infty \text{ for some } c > 0 \right\}.$$

In the sequel $L^M(\Omega)$ will be considered with Luxemburg norm $\| \|_{L^M}$ generated by a convex modular

$$I_0(f) = \int_{\Omega} M(t, |f(t)|) dt.$$

Let $C_0^{\infty}(\Omega)$ be the set of all functions defined on Ω having derivatives of any order on Ω whose supports are compact subset of Ω . If a φ -function Msatisfies (5), the inclusion

$$C_0^{\infty}(\Omega) \subset W^{k,M}(\Omega)$$

holds for every nonnegative and integer k. We denote by $W_0^{k,M}(\Omega)$ the closure in $W^{k,M}(\Omega)$ of the set $C_0^{\infty}(\Omega)$ with respect to the norm $\| \|_{W^{k,M}}$.

For a φ -function M satisfying (6) we have

$$L^M(\Omega) \subset L^1_{loc}(\Omega).$$

The condition (6) is sufficient and necessary for this inclusion (see [8]). Thus, if (6) is satisfied, then for every function $f \in L^M(\Omega)$ the functional T_f defined by

$$T_f(\varphi) = \int_{\Omega} f(t) \,\varphi(t) dt$$

for $\varphi \in C_0^{\infty}(\Omega)$ is a regular distribution and so $W^{k,M}(\Omega) = L^M(\Omega)$ if k = 0.

2. Results

We start with general results concerning to Orlicz-Sobolev spaces. Denote:

$$l = \sum_{|\alpha| \le k} 1$$
 and $L_l^M(\Omega) = \prod_{i=1}^l L^M(\Omega).$

The space $L_l^M(\Omega)$ with the Luxemburg norm generated by a convex modular of the form

$$\rho(f) = \sum_{i=1}^{l} I_0(f_i)$$

is a Banach space. On the space $L_l^M(\Omega)$ is defined also the Orlicz norm by

$${}^{0}||f||_{L_{l}^{M}} = \sup\left\{ \left| \sum_{i=1}^{l} \int_{\Omega} f_{i}(t)g_{i}(t)dt \right| : ||g||_{L_{l}^{N}} \leq 1 \right\},$$

where N is the complementary function to M in the sense of Young. The Orlicz norm and the Luxemburg norm are equivalent.

Let us suppose that l multiindices α satisfying $|\alpha| \leq k$ are linearly ordered in some convenient fashion so that each $f \in W^{k,M}(\Omega)$ we may associate the well-defined vector Pf in $L_l^M(\Omega)$ of the norm

(1)
$$Pf = (D^{\alpha}f)_{|\alpha| < k}$$

defining a mapping $W^{k,M}(\Omega)$ onto a subspace of $L_l^M(\Omega)$. Since $||f||_{W^{k,M}} = ||Pf||_{L_l^M}$, so P is an isometric isomorphism of $W^{k,M}(\Omega)$ onto $PW^{k,M}(\Omega) \subset L_l^M(\Omega)$. If k > 0, then $PW^{k,M}(\Omega)$ is a closed proper subspace of $L_l^M(\Omega)$.

If M is an N-function satisfying conditions (5), (6) and Δ_2 , then every functional $f^* \in (W_0^{k,M}(\Omega))'$ is an extension to $W^{k,M}(\Omega)$ of some distribution $T \in D'(\Omega)$ of the form

(2)
$$T = \sum_{|\alpha| \le k} (-1)^{|\alpha|} D^{\alpha} T_{f_{\alpha}},$$

where $f = (f_{\alpha})_{|\alpha| \le k} \in L_l^N(\Omega)$ is an element determining the functional f^* of the form

$$f^*(g) = \sum_{|\alpha| \le k} \int_{\Omega} D^{\alpha} g(t) f_{\alpha}(t) dt$$

On the other hand if T is any element of $D'(\Omega)$ having the form (2) for some $f \in L_l^N(\Omega)$ then T possesses a unique such extension to $W_0^{k,M}(\Omega)$, (see [7]). Thus there holds the following theorem.

Theorem 1. ([7]) If M is an N-function satisfying conditions (5), (6) and Δ_2 , then the dual $(W_0^{k,M}(\Omega))'$ is the space consisting of those distributions $T \in D'(\Omega)$ satisfying (2) for some $f = (f_\alpha)_{|\alpha| \le k} \in L_l^N(\Omega)$, normed by

(3)
$$||T|| = \inf \left\{ {}^{0} ||f||_{L_{l}^{N}} : f \text{ satisfies } (2) \right\}.$$

The space of distribution, which are discussed above theorem is denoted by $W^{-k,N}(\Omega)$. Thus $W^{-k,N}(\Omega)$ is isometrically isomorphic to $(W_0^{k,M}(\Omega))'$ and the latter is isometrically isomorphic to L_l^N/R , where L_l^N/R is the space of equivalence classes identifying those elements of $L_l^N(\Omega)$, which determine the same linear bounded functional over $W_0^{k,M}(\Omega)$.

The above remarks show that each element $g \in L^N(\Omega)$ determines a functional $T_g \in (W_0^{k,M}(\Omega))'$ by means of

$$T_g(f) = \int_{\Omega} g(t)f(t)dt.$$

The space $L^{N}(\Omega)$ may be normed in the following manner. We take the norm $\| \|_{-k,N}$ of $g \in L^{N}(\Omega)$ as the norm of corresponding to the functional T_{g} , that is

(4)
$$|g||_{-k,N} = ||T_g||_{(W_0^{k,M}(\Omega))'}$$

= $\sup\left\{|T_g(f)|: f \in W_0^{k,M}(\Omega), ||f||_{W_0^{k,M}} \le 1\right\}.$

Then the set $V = \{T_g : g \in L^N(\Omega)\}$ is dense in $(W_0^{k,M}(\Omega))'$, (see [7]). Hence and from (4) follows that $(W_0^{k,M}(\Omega))'$ is a completion of V with respect to the norm $\| \|_{-k,N}$. Let $H^{-k,N}(\Omega)$ denote the completion of $L^N(\Omega)$ with respect to $\| \|_{-k,N}$. Since V and $L^N(\Omega)$ are isometrically isomorphic, then we obtain $H^{-k,N}(\Omega)$ is isometrically isomorphic to the space $(W_0^{k,M}(\Omega))'$.

Thus we have

Theorem 2. If M and N are complementary functions satisfying conditions Δ_2 , (6) and M satisfies additionally (5), then the space $H^{-k,N}(\Omega)$ is isometrically isomorphic to $W^{-k,N}(\Omega)$.

Throughout the following discussion we will indicate some class of domains $\Omega \subset \mathbb{R}^n$ for which is true that $W^{k,M}(\Omega) = W_0^{k,M}(\Omega)$.

Let F be a closed subset of \mathbb{R}^n . The closed set F is (k, N)-polar if the only distribution T in $W^{-k,N}(\mathbb{R}^n)$ having support in F is the zero distribution, that is Tf = 0 for every $f \in W_0^{k,M}(\mathbb{R}^n)$, ([1]).

For arbitrary nonnegative and integer number k there holds the embedding

$$W_0^{k+1,M}(R^n) \subset W_0^{k,M}(R^n).$$

If M and N are complementary φ -functions, by the inequality $||u||_{k,M} \leq ||u||_{k+1,M}$ we obtain that any bounded linear functional on the $W_0^{k,M}(\mathbb{R}^n)$ is bounded on the $W_0^{k+1,M}(\mathbb{R}^n)$ as well. Thus there holds the inclusion

(5)
$$W^{-k,N}(R^n) \subset W^{-k-1,N}(R^n).$$

From above remarks it follows immediately

Lemma 1. For each N-function N any (k + 1, N)-polar set is also (k, N)-polar set.

Proof. Let $F \subset \mathbb{R}^n$ be (k + 1, N)-polar and let T be any distribution in $W^{-k,N}(\mathbb{R}^n)$ such that supp $T \subset F$. Hence and by (5) we get $T \in W^{-k-1,N}(\mathbb{R}^n)$. Since F is (k + 1, N)-polar, then T = 0. Thus F is (k, N)-polar.

For any function f defined on the open set $\Omega \subset R^n$ we denote by f^{\bullet} zero extension of f outside Ω

(6)
$$f^{\bullet}(t) = \begin{cases} f(t) & \text{if } t \in \Omega \\ 0 & \text{if } t \in \Omega' = R^n - \Omega \end{cases}$$

Lemma 2. Let both the function M and N complementary to M, satisfy conditions (5), (6) and Δ_2 . Let $f \in W_0^{k,M}(\Omega)$. Then for any $|\alpha| \leq k$ there exists distributional derivative of f^{\bullet} on \mathbb{R}^n and

$$D^{\alpha}f^{\bullet}(t) = \begin{cases} D^{\alpha}f(t) & \text{if } t \in \Omega\\ 0 & \text{if } t \in \Omega' \end{cases}$$

Moreover, $f^{\bullet} \in W^{k,M}(\mathbb{R}^n)$.

Proof. Let $f \in W_0^{k,M}(\Omega)$. Then $I\left(\frac{f}{\|f\|_{k,M}}\right) \leq 1$. For any $|\alpha| \leq k$ we have $D^{\alpha}f \in L^M(\Omega)$ and

$$I_0\left(\frac{1}{\|f\|_{k,M}}D^{\alpha}f\right) = \int_{\Omega} M\left(t, \frac{1}{\|f\|_{k,M}} |D^{\alpha}f(t)|\right) dt \le I\left(\frac{1}{\|f\|_{k,M}}f\right) \le 1.$$

Hence we obtain

$$||D^{\alpha}f||_{L^{M}} \leq ||f||_{k,M}.$$

Let (u_n) be a sequence in $C_0^{\infty}(\Omega)$ conversing to f in $W_0^{k,M}(\Omega)$. Thus, for any $\varphi \in D(\mathbb{R}^n)$ and $|\alpha| \leq k$ we have

$$\left|\int_{\Omega} D^{\alpha} f(t)\varphi(t)dt - \int_{\Omega} D^{\alpha} u_n(t)\varphi(t)dt\right| \leq c \|f - u_n\|_{k,M}.$$

Hence

$$\int_{R^n} f^{\bullet}(t) D^{\alpha} \varphi(t) dt = \int_{\Omega} f(t) D^{\alpha} \varphi(t) dt = \lim_{n \to \infty} \int_{\Omega} u_n(t) D^{\alpha} \varphi(t) dt$$
$$= (-1)^{|\alpha|} \lim_{n \to \infty} \int_{\Omega} D^{\alpha} u_n(t) \varphi(t) dt = (-1)^{|\alpha|} \int_{\Omega} D^{\alpha} f(t) \varphi(t) dt$$
$$= (-1)^{|\alpha|} \int_{R^n} (D^{\alpha} f)^{\bullet}(t) \varphi(t) dt.$$

Thus $D^{\alpha}f^{\bullet} = (D^{\alpha}f)^{\bullet}$ in the distributional sense on \mathbb{R}^n . Hence we obtain

$$\int_{\Omega} M(t, |D^{\alpha}f(t)|) dt = \int_{R^n} M(t, |(D^{\alpha}f)^{\bullet}(t)|) dt$$
$$= \int_{R^n} M(t, |D^{\alpha}f^{\bullet}(t)|) dt$$

for every $|\alpha| \leq k$. Thus $||f||_{W^{k,M}(\Omega)} = ||f^{\bullet}||_{W^{k,M}(\mathbb{R}^n)}$. By last equality we conclude $f^{\bullet} \in W^{k,M}(\mathbb{R}^n)$.

The following theorem delivers a necessary and sufficient condition on Ω that mapping (6) carry $W_0^{k,M}(\Omega)$ isometrically onto $W^{k,M}(\mathbb{R}^n)$.

Theorem 3. Let M be an N-function and let N be complementary to M, both functions satisfies (5), (6) and Δ_2 . $C_0^{\infty}(\Omega)$ is dense in $W^{k,M}(\mathbb{R}^n)$ if and only if the complement $\Omega' = \mathbb{R}^n - \Omega$ is (k, N)-polar.

Proof. The proof is similar to the proof of the respective theorem for the space $W^{k,p}(\Omega)$, $p \ge 1$ (Theorem 3.23 in [1]).

Let us assume $C_0^{\infty}(\Omega)$ is dense in $W^{k,M}(\mathbb{R}^n)$. Let T be any distribution in $W^{-k,N}(\mathbb{R}^n)$ such that supp $T \subset \Omega'$. If $f \in W^{k,M}(\mathbb{R}^n)$, then there exists a sequence $(u_n) \subset C_0^{\infty}(\Omega)$ conversing to f with respect to the norm of $W^{k,M}(\mathbb{R}^n)$. By continuity of T we obtain $Tu_n \to Tf$, $n \to \infty$. Since T has the support in $\mathbb{R}^n - \Omega$, so $Tu_n = 0$, n = 1, 2, ... and hence Tf = 0. Thus Ω' is (k, N)-polar.

Now let us suppose $C_0^{\infty}(\Omega)$ is not dense in $W^{k,M}(\mathbb{R}^n)$. Thus there exist an element $f \in W^{k,M}(\mathbb{R}^n)$ and a constant c > 0 such that $||f - \varphi||_{W^{k,M}(\mathbb{R}^n)} \ge c$ for every $\varphi \in C_0^{\infty}(\Omega)$ and the constant being independent of φ . By the Hahn-Banach theorem there exists a functional $T \in W^{-k,N}(\mathbb{R}^n)$ such that $T\varphi = 0$ for all $\varphi \in C_0^{\infty}(\Omega)$ and Tf = 1. Thus we have $supp \ T \subset \Omega'$ but $T \neq 0$. Hence Ω' cannot be (k, N)-polar.

For differentiable functions is true that identical vanishing of first derivatives over rectangle $B \subset \mathbb{R}^n$ implies constancy of this function on that rectangle. This result has extension to functions possessing distributional derivatives. There holds the following lemma.

Lemma 3. ([1]) Let

$$B = (a_1, b_1) \times (a_2, b_2) \times \dots \times (a_n, b_n)$$

be an open rectangular box in \mathbb{R}^n and let f possesses distributional derivatives $D^{\alpha}f = 0$ for all $|\alpha| = 1$. Then there exists a constant c such that f(t) = c almost everywhere in B.

Theorem 4. Let N-functions M and N satisfy the condition Δ_2 and let M satisfies (5) and (6).

- **1.** If $C_0^{\infty}(\Omega)$ is dense in $W^{k,M}(\Omega)$, then $\Omega' = R^n \Omega$ is (k, N)-polar.
- **2.** If Ω' is both (1, M)-polar and (k, N)-polar, then $C_0^{\infty}(\Omega)$ is dense in $W^{k,M}(\Omega)$.

Proof. The idea of this proof is derived from the proof of the respective theorem for the space $W^{k,p}(\Omega)$, $p \ge 1$ (Theorem 3.28 in [1]).

1. Let $W^{k,M}(\Omega) = W_0^{k,M}(\Omega)$. We shall show that Ω' has measure zero. Let us suppose that Ω' has a positive measure. Then there exists an open rectangle $P \subset \mathbb{R}^n$ such that $P \cap \Omega$ and $P \cap \Omega'$ are set of positive measure.

Denote by f the function which is the restriction to Ω of some function $g \in C_0^{\infty}(\mathbb{R}^n)$ which is identically one on $P \cap \Omega$. Then $f \in W^{k,M}(\Omega)$ and so $f \in W_0^{k,M}(\Omega)$. By Lemma 2 we have $f^{\bullet} \in W^{k,M}(\mathbb{R}^n)$ and $D^{\alpha}f^{\bullet} = (D^{\alpha}f)^{\bullet}$ in the distributional sense on \mathbb{R}^n for $|\alpha| = 1$. Since $D^{\alpha}f = 0$ on $P \cap \Omega$ then for the zero extension there holds $(D^{\alpha}f)^{\bullet} = 0$ on P. Thus also $D^{\alpha}f^{\bullet} = 0$

on P for $|\alpha| = 1$ as a distribution on P. By Lemma 3 f^{\bullet} must have a constant value almost everywhere in P, a contradiction because $f^{\bullet}(t) = 1$ for $t \in P \cap \Omega$ and $f^{\bullet}(t) = 0$ for $t \in P \cap \Omega'$. Thus Ω' has measure zero.

Now, we will apply the above fact in order to prove density of $C_0^{\infty}(\Omega)$ in $W^{k,M}(\Omega)$. Let $g \in W^{k,M}(\mathbb{R}^n)$ and let f be the restriction of g to Ω . Then $f \in W^{k,M}(\Omega)$ and hence $f \in W_0^{k,M}(\Omega)$ Thus f can be approximated by functions of $C_0^{\infty}(\Omega)$. By Lemma 2 $f^{\bullet} \in W^{k,M}(\mathbb{R}^n)$ and f^{\bullet} can be also approximated by elements of $C_0^{\infty}(\Omega)$. Since $g(t) = f^{\bullet}(t)$ a.e. in \mathbb{R}^n , then g and f^{\bullet} have the same distributional derivatives and so coincide in $W^{k,M}(\mathbb{R}^n)$. Thus g can be approximated by elements $C_0^{\infty}(\Omega)$. Therefore $C_0^{\infty}(\Omega)$ is dense in $W^{k,M}(\mathbb{R}^n)$. By Theorem 3 the set Ω' is (k, N)-polar.

2. Let $f \in W^{k,M}(\Omega)$. Since $f \in L^M(\Omega)$, then $f^{\bullet} \in L^M(\mathbb{R}^n)$. Thus f^{\bullet} generate a distribution $T_{f^{\bullet}}$ as a locally integrable function in \mathbb{R}^n and there exists $D^{\alpha}T_{f^{\bullet}}$, $|\alpha| = 1$. Consequently, there exists

$$\int_{R^n} D^\alpha f^{\bullet}(t) \varphi(t) dt$$

for any $|\alpha| = 1$ and for all $\varphi \in D(\mathbb{R}^n)$. This integral is a regular distribution generated by $D^{\alpha}f^{\bullet}$. Thus $D^{\alpha}T_{f^{\bullet}} = T_{D^{\alpha}f^{\bullet}}$ for $|\alpha| = 1$ and $T_{D^{\alpha}f^{\bullet}} \in W^{-1,M}(\mathbb{R}^n)$.

We have $D^{\alpha}f \in L^{M}(\Omega)$ for any $|\alpha| = 1$. Hence the zero extension $(D^{\alpha}f)^{\bullet}$ is an element of $L^{M}(\mathbb{R}^{n})$. Since $L^{M}(\mathbb{R}^{n}) \subset H^{-1,M}(\mathbb{R}^{n})$, then $T_{(D^{\alpha}f)^{\bullet}} \in W^{-1,M}(\mathbb{R}^{n})$. Hence, we obtain

$$T_{D^{\alpha}f^{\bullet}-(D^{\alpha}f)^{\bullet}} = T_{D^{\alpha}f^{\bullet}} - T_{(D^{\alpha}f)^{\bullet}} \in W^{-1,M}(\mathbb{R}^n)$$

for all $|\alpha| = 1$. Moreover

$$D^{\alpha}f^{\bullet}(t) - (D^{\alpha}f)^{\bullet}(t) = 0$$

for every $t \in \Omega$ So $supp T_{D^{\alpha}f^{\bullet}-(D^{\alpha}f)^{\bullet}} \subset \Omega'$ for all $|\alpha| = 1$. Since Ω' is (1, M)-polar we obtain

$$T_{D^{\alpha}f^{\bullet}-(D^{\alpha}f)^{\bullet}}(\varphi) = 0$$

for all $\varphi \in D(\mathbb{R}^n)$. This implies $D^{\alpha} f^{\bullet} = (D^{\alpha} f)^{\bullet}$ almost everywhere in \mathbb{R}^n for $|\alpha| = 1$. Thus $D^{\alpha} f^{\bullet} \in L^M(\mathbb{R}^n)$ for $|\alpha| = 1$ and we have $f^{\bullet} \in W^{1,M}(\mathbb{R}^n)$. Using the induction principle with respect $|\alpha|$, we obtain that $D^{\alpha} f^{\bullet} = (D^{\alpha} f)^{\bullet}$ in the distributional sense, for $|\alpha| \leq k$.

Finally $f^{\bullet} \in W^{k,M}(\mathbb{R}^n)$. By (k, M)-polarity of Ω' and Theorem 3 we obtain that $C_0^{\infty}(\Omega)$ is dense in $W^{k,M}(\mathbb{R}^n)$. Thus we have the closure of $C_0^{\infty}(\Omega)$ in norm $\| \|_{k,M}$ is the space $W^{k,M}(\mathbb{R}^n)$. Simultaneously this same

closure is, by definition, the space $W_0^{k,M}(\Omega)$. Since $f^{\bullet} \in W^{k,M}(\mathbb{R}^n)$ and $f^{\bullet}(t) = f(t)$ for $t \in \Omega$, then $f \in W_0^{k,M}(\Omega)$.

Let M_1 and M_2 be φ -functions. A function M_2 is nonweaker than M_1 if the following condition holds

(7)
$$M_1(t,u) \leq K_1 M_2(t, K_2 u) + h(t)$$

for all $u \ge 0$ and a.e. $t \in \Omega$, where h is nonnegative, integrable function in Ω and K_1 , K_2 are positive constants.

The condition (7) we write $M_1 \prec M_2$, (see [12]). If the inequality (7) is satisfied for every $u \ge u_0$, where $u_0 > 0$ is fixed, then we say that M_2 is nonweaker than M_1 for large u.

If φ -functions M_1 and M_2 satisfy (6) and $M_1 \prec M_2$, then the embedding

(8)
$$W^{k,M_2}(\Omega) \subset W^{k,M_1}(\Omega)$$

holds for every nonnegative integer k. If Ω has finite measure, then embedding (8) holds when $M_1 \prec M_2$ for large u, (see [5]).

Lemma 4. Let an N-function M satisfies conditions (5), (6), Δ_2 and let N be a complementary function to M. The set $F \subset \mathbb{R}^n$ is (k, N)-polar if and only if $F \cap K$ is (k, N)-polar for every compact set $K \subset \mathbb{R}^n$.

The proof is analogous as in the case, when $M(t, u) = u^p$, p > 1.

Lemma 5. Let M_1 and M_2 be N-functions satisfying (5), (6) and Δ_2 . Let N_1 , N_2 be complementary functions respectively. If $M_1 \prec M_2$ for large u and the set $F \subset \mathbb{R}^n$ is (k, N_2) -polar, then F is also (k, N_1) -polar.

Proof. Let K be a compact set in \mathbb{R}^n and let $F \subset \mathbb{R}^n$ be (k, N_2) -polar. We will show that $F \cap K$ is (k, N_1) -polar. Let us denote by G an arbitrary open and bounded set in \mathbb{R}^n such that $K \subset G$. There holds the embedding $W_0^{k,M_2}(G) \subset W_0^{k,M_1}(G)$. Hence we have $W^{-k,N_1}(G) \subset W^{-k,N_2}(G)$.

Let $T \in W^{-k,N_1}(\mathbb{R}^n)$ be such that $supp T \subset F \cap K$. Then $T \in W^{-k,N_1}(G)$ and hence $T \in W^{-k,N_2}(G)$. Since $F \cap K$ is (k, N_2) -polar, so T = 0. Thus $F \cap K$ is (k, N_1) -polar and, by Lemma 4, F is (k, N_1) -polar.

Theorem 5. Let M and N be complementary N-functions satisfying the condition Δ_2 and let M satisfies (5) and (6). Let furthermore M be such that the complementary function N satisfies $N \prec M$ for large u. Then $W^{k,M}(\Omega) \subset W_0^{k,M}(\Omega)$ if and only if the set Ω' is (k, N)-polar.

Proof. Let us suppose Ω' is (k, N)-polar. Since $N \prec M$ then, by Lemma 5, Ω' is (k, M)-polar. Thus Ω' is (1, M)-polar. The result now follows by Theorem 4(1).

Examples.

- **1.** Let $M(t, u) = u^{p(t)}$, where $1 \le p(t) < \infty$. If $p(t) \ge 2$, then the complementary function N is $N(t, u) = u^{q(t)}$, where $\frac{1}{p(t)} + \frac{1}{q(t)} = 1$ and $q(t) \leq p(t)$ for every $t \in \Omega$. So $N \prec M$ for $u \geq 1$ and h = 0.
- **2.** Let $M(u) = e^u u 1$, $u \ge 0$. Then the complementary function is $N(u) = (1+u)\ln(1+u) - u$ satisfies $N \prec M$ for all $u \ge 0$.

References

- [1] ADAMS R.A., Sobolev spaces, Academic Press, New York San Francisco -London 1975.
- [2] DONALDSON T.K., TRUDINGER N.S., Orlicz-Sobolev spaces and imbedding theorems, J. Functional Analysis, 8(1971), 52–75.
- [3] HUDZIK H., On density of $C_0^{\infty}(\Omega)$ in Orlicz-Sobolev space $W_M^k(\Omega)$ for every open set $\Omega \subset \mathbb{R}^n$, Funct. et Approximatio, 5(1977), 113–128.
- [4] HUDZIK H., On problem of density of $C_0^{\infty}(\Omega)$ in generalized Orlicz-Sobolev space $W_M^k(\Omega)$ for every open set $\Omega \subset \mathbb{R}^n$, Comm. Mathematicae, 20(1977), 5 - 78.
- [5] HUDZIK H., On continuity of the imbedding operation from $W_{M_1}^k(\Omega)$ into $W_{M_2}^k(\Omega)$, Funct. et Approximatio, 6(1978), 111–118. [6] HUDZIK H., Density of $C_0^{\infty}(\mathbb{R}^n)$ in generalized Orlicz-Sobolev space
- $W_{M}^{k}(\mathbb{R}^{n})$, Funct. et Approximatio, 7(1979), 15–21.
- [7] HUDZIK H., The problems of separability, duality, reflexivity and of comparison for generalized Orlicz-Sobolev spaces $W^k_M(\Omega)$, Comm. Mathematicae, 21(1979), 315-324.
- [8] KOZEK A., Convex integral functionals in Orlicz spaces, Comm. Mathematicae, 21(1979), 109-135.
- [9] LISKOWSKI M., Density of $C_0^{\infty}(\mathbb{R}^n)$ in generalized Besov space $B^{k,\phi}(\mathbb{R}^n)$, Funct. et Approximatio, 15(1986), 185–193.
- [10] LISKOWSKI M., Approximation in Orlicz-Slobodecki space by functions in $C^{\infty}(\Omega)$, Fasciculi Mathematici, 29(1999), 43–54.
- [11] MEYERS N., SERRIN J., H = W, Proc. Nat. Acad. Sci., USA, 51(1964), 1055 - 1056.
- [12] MUSIELAK J., Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer, 1983.

MARIAN LISKOWSKI

INSTITUTE OF MATHEMATICS, POZNAŃ UNIVERSITY OF TECHNOLOGY PIOTROWO 3A, 60-965 POZNAŃ, POLAND e-mail: mliskows@math.put.poznan.pl

Received on 29.09.2004 and, in revised from, on 03.01.2005.