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APPROXIMATION BY FUNCTIONS IN Cy>(Q)
IN ORLICZ - SOBOLEV SPACES

ABSTRACT: The results presented in this paper concern the iden-
tity of spaces ng’M(Q) and WFM (), generated by o-functions
M with parameter for some class domains 2 C R™ and they are
the extension of analogous results for clasical Sobolev spaces.

The problem of approximation of elements in W% () by
smooth functions on various domains 2 C R"™ were investigated
by different authors for classic Sobolev spaces with integer values
of k as well as for some generalization of Sobolev space to the case
of noninteger values k (see e.g. N. Meyers and J. Serrin [11] in the
case M(u) = uP, p > 1; T. K. Donaldson and N. S. Trudinger [2],
when M is arbitrary N-function; H. Hudzik [3], [4], [5], [6], [7],
when M is N-function which depends on parameter; M. Liskowski
(9], [10] for some family of generalized Orlicz-Sobolev space, when
k is noninteger and M is N-function with parameter).

KEY wORDS: Orlicz-Sobolev space, dual of Orlicz-Sobolev space,
approximation by smooth function in generalized Sobolev spaces,
polar set.

1. Introduction

Let €2 be an open and nonempty set in R". A real-valued function M : 2 x
[0,00) — [0, 00) which satisfies the conditions:

1. M(t,0) =0 for a.e. t € Q,

2. M is convex and continous at zero with respect to second variable for
a.e. t € Q,

3. M(t,u) is ameasurable function of ¢ for every fixed u > 0

is called a (-function of the variable v with parameter t.

A p-function M is called an N-function if satisfies the following condition

—>0asu—>0andMHOO&SUHoofora.e.tEQ.

M(tw)
4. uu u



74 MARIAN LISKOWSKI

The following conditions will be of importance:

5. there exists a constant ug > 0 such that [5 M(t,u)dt < oo for every
compact set B C Q and for all 0 < u < ug;

6. for every compact set B C {2 there exists a constant ¢ > 0 and nonneg-
ative function g € L'(B) such that v < ¢ M (t,u) + g(t) for all u > 0
and for a.e. t € (2.

A function M satisfies the condition Ay if the following inequality holds
M(t,2u) < K M(t,u)+ h(t)

for all v > 0 and almost every t € ), where h is a nonnegative integrable
function in 2 and K is a positive constant.

Let us denote by X the real space of all complex-valued and locally
integrable functions defined on €2, with equality almost everywhere on ().
For any fixed integer number k£ > 0 and any @-function M we define on X
a functional

10 =Y [ Meipesla
o<k 7S
where D f is the distributional derivative of f. The functional I is a convex
modular on X.
The Orlicz-Sobolev space is defined in the following manner (see e.g. [5])

WkM(@Q) = {fe X : I(af) < oo for somea >0} .

If a p-function M satisfies additionally (5) and (6), then the space
WM (Q) is a Banach space with respect to the Luxemburg norm || ||y«
(or briefly || ||x,ar) generated by the convex modular I (see [12]).

The Orlicz-Sobolev space W*M(Q) is a vector subspace of the Orlicz
space

LM(Q) = {fEX: /M(t,c|f(t)|)dt<ooforsomec>0}.
Q

In the sequel LM () will be considered with Luxemburg norm || ||, » gen-
erated by a convex modular

Io(f) = /Q M (5, |£(2)]) dt.

Let Cp™>(£2) be the set of all functions defined on € having derivatives of
any order on ) whose supports are compact subset of €. If a p-function M
satisfies (5), the inclusion

Co>®(Q) ¢ WhM(Q)
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holds for every nonnegative and integer k. We denote by Wy5M (Q) the
closure in W*M(Q) of the set Cy™(Q) with respect to the norm || ||yyx.ar.
For a ¢-function M satisfying (6) we have

LM(Q) C L0e(9).

The condition (6) is sufficient and necessary for this inclusion (see [8]). Thus,
if (6) is satisfied, then for every function f € L™ () the functional Ty defined
by

Ty(p) = /Q £(t) p(t)dt

for p € Cy>(Q) is a regular distribution and so W*M(Q) = LM (Q) if k = 0.

2. Results

We start with general results concerning to Orlicz-Sobolev spaces.
Denote:

l
I=> 1 and LY(Q) = [[Z2M©@).
|| <k i=1

The space L; (Q) with the Luxemburg norm generated by a convex modular
of the form

!
p(f) = _I(fi)
i=1

is a Banach space. On the space L;™ () is defined also the Orlicz norm by

l
> [ Htmoe slgl,x < 1},

where N is the complementary function to M in the sense of Young. The
Orlicz norm and the Luxemburg norm are equivalent.

Let us suppose that [ multiindices « satisfying |a| < k are linearly ordered
in some convenient fashion so that each f € WM (Q) we may associate the
well-defined vector Pf in L;™(Q) of the norm

N fllpe = sup {

(1) Pf = (Df)ja<k

defining a mapping WM (Q) onto a subspace of L;™ (Q). Since || ||yt =
|Pfll,n, so P is an isometric isomorphism of WHFM(Q) onto PWEM(Q)
LM(Q). If k > 0, then PW*M(Q) is a closed proper subspace of L™ ().
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If M is an N-function satisfying conditions (5), (6) and Ay, then every
functional f* € (WoPM(Q)) is an extension to WM (Q) of some distribu-
tion T' € D'(2) of the form

(2) T =) (-1FlpTy,,

o<k

where f = ( fa)‘a| < € LN (Q) is an element determining the functional f*
of the form -

ROESY /QDag(t)fa(t)dt.

la|<k
On the other hand if T is any element of D’(Q) having the form (2) for

some f € L;N(Q) then T possesses a unique such extension to Wy (),
(see [7]). Thus there holds the following theorem.

Theorem 1. ([7]) If M is an N-function satisfying conditions (5), (6)
and A, then the dual (Wo*™M (Q)) is the space consisting of those distrib-
utions T € D'(Q) satisfying (2) for some f = (fa)ja|<k € LN (Q), normed
by

(3) IT| = inf{OHfHLlN . f satisfies (2)}.

The space of distribution, which are discussed above theorem is denoted
by W=EN(Q). Thus W% (Q) is isometrically isomorphic to (Wo™M (Q))
and the latter is isometrically isomorphic to L;V /R, where N /R is the
space of equivalence classes identifying those elements of L;V (©), which
determine the same linear bounded functional over Wy (€).

The above remarks show that each element g € LY (Q) determines a
functional T, € (Wo"*(2))" by means of

The space LY () may be normed in the following manner. We take the

norm || || n of g € LY () as the norm of corresponding to the functional
Ty, that is
(4) 9ll-ke,n = Tl ok @)y

= sup {ITy(1)]: £ € WohM(9), ||flyyer <1}

Then the set V = {T,: g € LN(Q)} is dense in (Wo*™ (Q)), (see [7]). Hence
and from (4) follows that (Wo*™(Q)) is a completion of V with respect to
the norm || ||_x -
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Let H=%N(Q) denote the completion of LY (£2) with respect to || ||_x.n-
Since V and LY (Q) are isometrically isomorphic, then we obtain H %" (Q)
is isometrically isomorphic to the space (Wo*M(Q))'.

Thus we have

Theorem 2. If M and N are complementary functions satisfying con-
ditions Aa, (6) and M satisfies additionally (5), then the space H—*N ()
is isometrically isomorphic to W 5N (Q).

Throughout the following discussion we will indicate some class of do-
mains Q C R" for which is true that W5 (Q) = WM (Q).

Let F be a closed subset of R™. The closed set F'is (k, N)-polar if the only
distribution 7" in W~%~(R") having support in F is the zero distribution,
that is Tf = 0 for every f € WoBM(R™), ([1]).

For arbitrary nonnegative and integer number k there holds the embed-
ding

wettMrRYy ¢ wpM(RM).
If M and N are complementary o-functions, by the inequality ||u|[x s <

||w|lxs1,07 We obtain that any bounded linear functional on the Wy (R™)
is bounded on the Wo**1"M (R") as well. Thus there holds the inclusion

(5) W—k’,N(Rn) C W_k_l’N(Rn).

From above remarks it follows immediatelly

Lemma 1. For each N-function N any (k + 1, N)-polar set is also
(k, N)-polar set.

Proof. Let FF C R"™ be (k + 1, N)-polar and let T be any distrib-
ution in W*N(R") such that supp T C F. Hence and by (5) we get
T ¢ W=FLN(R"). Since F is (k + 1, N)-polar, then T' = 0. Thus F is
(k, N)-polar.

For any function f defined on the open set 2 C R™ we denote by f*® zero
extension of f outside 2

g oA S e

Lemma 2. Let both the function M and N complementary to M, satisfy
conditions (5), (6) and Ag. Let f € Wob™M(Q). Then for any |a| < k there
exists distributional derivative of f® on R™ and
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Def(t) if teQ

DEF®) :{ 0 if teq

Moreover, f* € WEM(Rn).

Proof. Let f € Wo*M(Q). Then I (IIfIIJ:c M
have D*f € LM () and

1 N 1 o 1
(ufukMD f) /QM<t’ 7ear P f“)‘)dtg(ufuk,M f) =1

Hence we obtain

) < 1. For any |a| < k we

1D fllpar < [ fllk.0r-

Let (uy) be a sequence in Co™ () converning to f in W™ (Q). Thus,
for any ¢ € D(R") and |a| < k we have

Daf dt— / Daun dt‘ <c ”f — unHkM
Hence

f()DO‘ t)dt = /f ) D%p(t)dt = lim [ w,(t)D¥p(t)dt

n—oo

= (=Dl lim | D, (#)p(t)d O"/ Df(t)

n—oo Q
= (=Dl [ (D) (e(t)dt.
Rn
Thus D*f* = (D*f)* in the distributional sense on R™. Hence we obtain

/QM(tleaf(t)l)dt = M (¢, |(Df)*(t)]) di

R7L
= M (t,[D*f*(t)]) dt
R’I’L
for every |a| < k. Thus ||f|lwrm ) = [[f*llwrr(gny. By last equality we
conclude f* € WhM(RM). u

The following theorem delivers a necessary and sufficient condition on 2
that mapping (6) carry Wo*™(Q) isometrically onto W*M (R™).

Theorem 3. Let M be an N-function and let N be complementary to
M, both functions satisfies (5) , (6) and Ay. Co™ () is dense in WFM(RM)
if and only if the complement Q' = R™ — Q is (k, N)-polar.
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Proof. The proof is similar to the proof of the respective theorem for
the space W*P(Q), p > 1 (Theorem 3.23 in [1]).

Let us assume Cp>°(Q) is dense in WM (R™). Let T be any distribution
in W=%N(R") such that supp T C . If f € WM (R™), then there exists
a sequence (u,) C Cp™ () converning to f with respect to the norm of
WM (R™). By continuity of T we obtain Tu, — Tf, n — oco. Since T has
the support in R" — Q, so Tu, =0, n=1,2,... and hence T'f = 0. Thus '
is (k, N)-polar.

Now let us suppose Co™ () is not dense in WM (R™). Thus there exist
an element f € W*M(R™) and a constant ¢ > 0 such that 1f=ellwr(gny >
c for every ¢ € Cy™>(£2) and the constant being independent of ¢. By the
Hahn-Banach theorem there exists a functional T € W—*~(R") such that
Ty =0 for all p € Cx™(2) and Tf = 1. Thus we have supp T' C Q' but
T # 0. Hence Q' cannot be (k, N)-polar. [ |

For differentiable functions is true that identical vanishing of first deriv-
atives over rectangle B C R™ implies constancy of this function on that
rectangle. This result has extension to functions possessing distributional
derivatives. There holds the following lemma.

Lemma 3. ([1]) Let
B = (al,bl) X (ag,bg) X ... X (an,bn)

be an open rectangular box in R™ and let f possesses distributional deriv-
atives D*f = 0 for all |o| = 1. Then there exists a constant ¢ such that
f(t) = ¢ almost everywhere in B.

Theorem 4. Let N-functions M and N satisfy the condition As and let
M satisfies (5) and (6).
1. If Co>® () is dense in WM (Q), then Q' = R" — Q is (k, N)-polar.

2. If ' is both (1, M)-polar and (k, N)-polar, then Co>(Q2) is dense in
WhM(Q).

Proof. The idea of this proof is derived from the proof of the respective
theorem for the space W*P(Q), p > 1 (Theorem 3.28 in [1]).

1. Let WhM(Q) = WRM(Q). We shall show that Q' has measure zero.
Let us suppose that Q' has a positive measure. Then there exists an open
rectangle P C R™ such that PN and P N Q' are set of positive measure.

Denote by f the function which is the restriction to {2 of some function
g € Co>™(R™) which is identically one on PN Q. Then f € WM (Q) and so
f € WoBM(Q). By Lemma 2 we have f* € W*M(R") and Df* = (D*f)*
in the distributional sense on R"™ for |a] = 1. Since D*f =0 on P N then
for the zero extension there holds (D%f)®* = 0 on P. Thus also D*f®* =0
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on P for || = 1 as a distribution on P. By Lemma 3 f*® must have a
constant value almost everywhere in P, a contradiction because f*(t) = 1
fort e PNQ and f*(t) =0 for t € PN Q. Thus Q' has measure zero.
Now, we will apply the above fact in order to prove density of Cy>(2)
in WEM(Q). Let ¢ € WFM(R™) and let f be the restriction of g to Q.
Then f € WM (Q) and hence f € Wo*M(Q) Thus f can be approximated
by functions of Cx>(Q2). By Lemma 2 f* € W"M(R") and f* can be
also approximated by elements of Cp>(2). Since g(t) = f*(t) a.e. in R",
then g and f*® have the same distributional derivatives and so coincide in
WHkM(R™), Thus g can be approximated by elements Cy*>(£2). Therefore
Co™(R2) is dense in W*M (R"). By Theorem 3 the set Q' is (k, N)-polar.

2. Let f € WEM(Q). Since f € LM(Q), then f* € LM(R™). Thus f*
generate a distribution T'e as a locally integrable function in R™ and there
exists DTe, |a| = 1. Consequently, there exists

DF f* (1))
R

for any |a] = 1 and for all ¢ € D(R™). This integral ia a regular distrib-
ution generated by D®f*®. Thus D*Tte = Tpaye for || = 1 and Tpage €
WLM (R,

We have D®f € LM (Q) for any |a| = 1. Hence the zero extension (D f)®
is an element of LM(R™). Since LM(R™) ¢ H~M(R"), then T(papy €
W-LM(R™). Hence, we obtain

TDafc_(Daf). = TDcxfl — T(Daf). € W_I’M(Rn)
for all |a] = 1. Moreover
DO f*(t) — (D f)*(t) = 0

for every t € Q So supp Tpage_(page C ' for all |af = 1. Since Q' is
(1, M)-polar we obtain

TDaf._(Docf)o (SO) =0

for all ¢ € D(R"). This implies D f®* = (D“ f)® almost everywhere in R" for
la| = 1. Thus D*f* € LM(R") for |a| = 1 and we have f* € WLM(R?). Us-
ing the induction principle with respect |a|, we obtain that D*f® = (D* f)*®
in the distributional sense, for |a| < k.

Finally f* €¢ WEM(R™). By (k, M)-polarity of Q' and Theorem 3 we
obtain that Cy™(Q) is dense in W*M(R"). Thus we have the closure of
Co>®(Q) in norm || ||x.as is the space WHM(R™). Simultaneously this same
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closure is, by definition, the space Wo*™ (Q). Since f* € W*M(R") and
fo(t) = f(t) for t € Q, then f € WoFM(Q). [

Let M7 and Ms be p-functions. A function Ms is nonweaker than M if
the following condition holds

(7) My (t,u) < KlMg(t, KQ'LL) + h(t)

for all w > 0 and a.e. t € ), where h is nonnegative, integrable function in
Q) and K7, Ky are positive constans.

The condition (7) we write M; < Ma, (see [12]). If the inequality (7) is
satisfied for every u > wug, where ug > 0 is fixed, then we say that M, is
nonweaker than M for large u.

If p-functions M; and My satisfy (6) and M; < My, then the embedding

(8) Wk () c whM(q)

holds for every nonnegative integer k. If 2 has finite measure, then embed-
ding (8) holds when M; < M for large u, (see [5]).

Lemma 4. Let an N-function M satisfies conditions (5), (6), Az and
let N be a complementary function to M. The set F C R™ is (k, N)-polar
if and only if F N K s (k, N)-polar for every compact set K C R™.

The proof is analogous as in the case, when M (¢,u) = uP, p > 1.

Lemma 5. Let My and My be N-functions satisfying (5), (6) and Asg.
Let Ny, No be complementary functions respectively. If My < My for large
u and the set F C R™ is (k, Na)-polar, then F is also (k, N1)-polar.

Proof. Let K be a compact set in R" and let F' C R™ be (k, Na)-polar.
We will show that F'N K is (k, N1)-polar. Let us denote by G an arbitrary
open and bounded set in R™ such that K C G. There holds the embedding
WokM2(@Q) € W Mi(G). Hence we have W—5N1(G) ¢ W—FN2(@).

Let T € W=%Nt(R") be such that supp T C FNK. Then T € W—rN1(@Q)
and hence T € W=N2(@). Since F N K is (k, N3)-polar, so T = 0. Thus
FNK is (k, Ni)-polar and, by Lemma 4, F' is (k, Ny)-polar. |

Theorem 5. Let M and N be complementary N -functions satisfying
the condition Ag and let M satisfies (5) and (6). Let furthermore M be
such that the complementary function N satisfies N < M for large w. Then
WEM(Q) ¢ WoM(Q) if and only if the set ' is (k, N)-polar.

Proof. Let us suppose Q' is (k, N)-polar. Since N < M then, by
Lemma 5, Q' is (k, M)-polar. Thus Q' is (1, M)-polar. The result now
follows by Theorem 4(1). [ |
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Examples.

Let M(t,u) = uP®), where 1 < p(t) < oo. If p(t) > 2, then the
complementary function N is N(t,u) = u¢®, where ﬁ + q(lt) =1 and
q(t) < p(t) for every t € 2. So N < M for v > 1 and h = 0.

Let M(u) = € —u — 1, u > 0. Then the complementary function is
N(u) = (14 u)In(1 + u) — u satisfies N < M for all u > 0.
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