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APPROXIMATION BY FUNCTIONS IN C0
∞(Ω)

IN ORLICZ - SOBOLEV SPACES

Abstract: The results presented in this paper concern the iden-
tity of spaces W0

k ,M (Ω) and W k ,M (Ω), generated by ϕ-functions
M with parameter for some class domains Ω ⊂ Rn and they are
the extension of analogous results for clasical Sobolev spaces.

The problem of approximation of elements in W k ,M (Ω) by
smooth functions on various domains Ω ⊂ Rn were investigated
by different authors for classic Sobolev spaces with integer values
of k as well as for some generalization of Sobolev space to the case
of noninteger values k (see e.g. N. Meyers and J. Serrin [11] in the
case M(u) = up, p > 1; T. K. Donaldson and N. S. Trudinger [2],
when M is arbitrary N -function; H. Hudzik [3], [4], [5], [6], [7],
when M is N -function which depends on parameter; M. Liskowski
[9], [10] for some family of generalized Orlicz-Sobolev space, when
k is noninteger and M is N -function with parameter).

Key words: Orlicz-Sobolev space, dual of Orlicz-Sobolev space,
approximation by smooth function in generalized Sobolev spaces,
polar set.

1. Introduction

Let Ω be an open and nonempty set in Rn. A real-valued function M : Ω×
[0,∞) → [0,∞) which satisfies the conditions:

1. M(t, 0) = 0 for a.e. t ∈ Ω,

2. M is convex and continous at zero with respect to second variable for
a.e. t ∈ Ω,

3. M(t, u) is ameasurable function of t for every fixed u ≥ 0

is called a ϕ-function of the variable u with parameter t.

A ϕ-function M is called an N -function if satisfies the following condition

4. M(t,u)
u → 0 as u → 0 and M(t,u)

u →∞ as u →∞ for a.e. t ∈ Ω.
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The following conditions will be of importance:

5. there exists a constant u0 > 0 such that
∫
B M(t, u)dt < ∞ for every

compact set B ⊂ Ω and for all 0 ≤ u ≤ u0;

6. for every compact set B ⊂ Ω there exists a constant c > 0 and nonneg-
ative function g ∈ L1(B) such that u ≤ cM(t, u) + g(t) for all u ≥ 0
and for a.e. t ∈ Ω.

A function M satisfies the condition ∆2 if the following inequality holds

M(t, 2u) ≤ K M(t, u) + h(t)

for all u ≥ 0 and almost every t ∈ Ω, where h is a nonnegative integrable
function in Ω and K is a positive constant.

Let us denote by X the real space of all complex-valued and locally
integrable functions defined on Ω, with equality almost everywhere on Ω.
For any fixed integer number k > 0 and any ϕ-function M we define on X
a functional

I(f) =
∑
|α|≤k

∫
Ω

M (t, |Dαf(t)| ) dt,

where Dαf is the distributional derivative of f . The functional I is a convex
modular on X.

The Orlicz-Sobolev space is defined in the following manner (see e.g. [5])

W k,M (Ω) = { f ∈ X : I(af) < ∞ for some a > 0 } .

If a ϕ-function M satisfies additionally (5) and (6), then the space
W k,M (Ω) is a Banach space with respect to the Luxemburg norm ‖ ‖W k,M

(or briefly ‖ ‖k,M ) generated by the convex modular I (see [12]).
The Orlicz-Sobolev space W k,M (Ω) is a vector subspace of the Orlicz

space

LM (Ω) =
{

f ∈ X :
∫

Ω
M(t, c|f(t)|)dt < ∞ for some c > 0

}
.

In the sequel LM (Ω) will be considered with Luxemburg norm ‖ ‖LM gen-
erated by a convex modular

I0(f) =
∫

Ω
M (t, |f(t)|) dt.

Let C0
∞(Ω) be the set of all functions defined on Ω having derivatives of

any order on Ω whose supports are compact subset of Ω. If a ϕ-function M
satisfies (5), the inclusion

C0
∞(Ω) ⊂ W k,M (Ω)
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holds for every nonnegative and integer k. We denote by W0
k,M (Ω) the

closure in W k,M (Ω) of the set C0
∞(Ω) with respect to the norm ‖ ‖W k,M .

For a ϕ-function M satisfying (6) we have

LM (Ω) ⊂ L1
loc(Ω).

The condition (6) is sufficient and necessary for this inclusion (see [8]). Thus,
if (6) is satisfied, then for every function f ∈ LM (Ω) the functional Tf defined
by

Tf (ϕ) =
∫

Ω
f(t) ϕ(t)dt

for ϕ ∈ C0
∞(Ω) is a regular distribution and so W k,M (Ω) = LM (Ω) if k = 0.

2. Results

We start with general results concerning to Orlicz-Sobolev spaces.
Denote:

l =
∑
|α|≤k

1 and Ll
M (Ω) =

l∏
i=1

LM (Ω).

The space Ll
M (Ω) with the Luxemburg norm generated by a convex modular

of the form

ρ(f) =
l∑

i=1

I0(fi)

is a Banach space. On the space Ll
M (Ω) is defined also the Orlicz norm by

0‖f‖Ll
M = sup

{∣∣∣∣∣
l∑

i=1

∫
Ω
fi(t)gi(t)dt

∣∣∣∣∣ : ‖g‖Ll
N ≤ 1

}
,

where N is the complementary function to M in the sense of Young. The
Orlicz norm and the Luxemburg norm are equivalent.

Let us suppose that l multiindices α satisfying |α| ≤ k are linearly ordered
in some convenient fashion so that each f ∈ W k,M (Ω) we may associate the
well-defined vector Pf in Ll

M (Ω) of the norm

(1) Pf = (Dαf)|α|≤k

defining a mapping W k,M (Ω) onto a subspace of Ll
M (Ω). Since ‖f‖W k,M =

‖Pf‖Ll
M , so P is an isometric isomorphism of W k,M (Ω) onto PW k,M (Ω) ⊂

Ll
M (Ω). If k > 0, then PW k,M (Ω) is a closed proper subspace of Ll

M (Ω).
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If M is an N -function satisfying conditions (5), (6) and ∆2, then every
functional f∗ ∈ (W0

k,M (Ω))′ is an extension to W k,M (Ω) of some distribu-
tion T ∈ D′(Ω) of the form

(2) T =
∑
|α|≤k

(−1)|α|DαTfα ,

where f =
(
fα

)
|α|≤k

∈ Ll
N (Ω) is an element determining the functional f∗

of the form
f∗(g) =

∑
|α|≤k

∫
Ω

Dαg(t)fα(t)dt.

On the other hand if T is any element of D′(Ω) having the form (2) for
some f ∈ Ll

N (Ω) then T possesses a unique such extension to W0
k,M (Ω),

(see [7]). Thus there holds the following theorem.

Theorem 1. ([7]) If M is an N -function satisfying conditions (5), (6)
and ∆2, then the dual (W0

k,M (Ω))′ is the space consisting of those distrib-
utions T ∈ D′(Ω) satisfying (2) for some f = (fα)|α|≤k ∈ Ll

N (Ω), normed
by

(3) ‖T‖ = inf
{

0‖f‖Ll
N : f satisfies (2)

}
.

The space of distribution, which are discussed above theorem is denoted
by W−k,N (Ω). Thus W−k,N (Ω) is isometrically isomorphic to (W0

k,M (Ω))′

and the latter is isometrically isomorphic to Ll
N/R, where Ll

N/R is the
space of equivalence classes identifying those elements of Ll

N (Ω), which
determine the same linear bounded functional over W0

k,M (Ω).
The above remarks show that each element g ∈ LN (Ω) determines a

functional Tg ∈ (W0
k,M (Ω))′ by means of

Tg(f) =
∫

Ω
g(t)f(t)dt.

The space LN (Ω) may be normed in the following manner. We take the
norm ‖ ‖−k,N of g ∈ LN (Ω) as the norm of corresponding to the functional
Tg, that is

|g‖−k,N = ‖Tg‖(W0
k,M (Ω))′(4)

= sup
{
|Tg(f)| : f ∈ W0

k,M (Ω), ‖f‖W0
k,M ≤ 1

}
.

Then the set V = {Tg : g ∈ LN (Ω)} is dense in (W0
k,M (Ω))′, (see [7]). Hence

and from (4) follows that (W0
k,M (Ω))′ is a completion of V with respect to

the norm ‖ ‖−k,N .



Approximation by functions in C0
∞(Ω) . . . 77

Let H−k,N (Ω) denote the completion of LN (Ω) with respect to ‖ ‖−k,N .
Since V and LN (Ω) are isometrically isomorphic, then we obtain H−k,N (Ω)
is isometrically isomorphic to the space (W0

k,M (Ω))′.

Thus we have

Theorem 2. If M and N are complementary functions satisfying con-
ditions ∆2, (6) and M satisfies additionally (5), then the space H−k,N (Ω)
is isometrically isomorphic to W−k,N (Ω).

Throughout the following discussion we will indicate some class of do-
mains Ω ⊂ Rn for which is true that W k,M (Ω) = W0

k,M (Ω).
Let F be a closed subset of Rn. The closed set F is (k,N)-polar if the only

distribution T in W−k,N (Rn) having support in F is the zero distribution,
that is Tf = 0 for every f ∈ W0

k,M (Rn), ([1]).
For arbitrary nonnegative and integer number k there holds the embed-

ding
W k+1,M

0 (Rn) ⊂ W k,M
0 (Rn).

If M and N are complementary ϕ-functions, by the inequality ‖u‖k,M ≤
‖u‖k+1,M we obtain that any bounded linear functional on the W0

k,M (Rn)
is bounded on the W0

k+1,M (Rn) as well. Thus there holds the inclusion

(5) W−k,N (Rn) ⊂ W−k−1,N (Rn).

From above remarks it follows immediatelly

Lemma 1. For each N -function N any (k + 1, N)-polar set is also
(k, N)-polar set.

Proof. Let F ⊂ Rn be (k + 1, N)-polar and let T be any distrib-
ution in W−k,N (Rn) such that supp T ⊂ F. Hence and by (5) we get
T ∈ W−k−1,N (Rn). Since F is (k + 1, N)-polar, then T = 0. Thus F is
(k, N)-polar.

For any function f defined on the open set Ω ⊂ Rn we denote by f• zero
extension of f outside Ω

(6) f•(t) =

{
f(t) if t ∈ Ω
0 if t ∈ Ω′ = Rn − Ω

�

Lemma 2. Let both the function M and N complementary to M, satisfy
conditions (5), (6) and ∆2. Let f ∈ W0

k,M (Ω). Then for any |α| ≤ k there
exists distributional derivative of f• on Rn and
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Dαf•(t) =

{
Dαf(t) if t ∈ Ω

0 if t ∈ Ω′

Moreover, f• ∈ W k,M (Rn).

Proof. Let f ∈ W0
k,M (Ω). Then I

(
f

‖f‖k,M

)
≤ 1. For any |α| ≤ k we

have Dαf ∈ LM (Ω) and

I0

(
1

‖f‖k,M
Dαf

)
=

∫
Ω

M

(
t,

1
‖f‖k,M

|Dαf(t)|
)

dt ≤ I

(
1

‖f‖k,M
f

)
≤ 1.

Hence we obtain
‖Dαf‖LM ≤ ‖f‖k,M .

Let (un) be a sequence in C0
∞(Ω) converning to f in W0

k,M (Ω). Thus,
for any ϕ ∈ D(Rn) and |α| ≤ k we have∣∣∣∣∫

Ω
Dαf(t)ϕ(t)dt−

∫
Ω

Dαun(t)ϕ(t)dt

∣∣∣∣ ≤ c ‖f − un‖k,M .

Hence ∫
Rn

f•(t)Dαϕ(t)dt =
∫

Ω
f(t)Dαϕ(t)dt = lim

n→∞

∫
Ω
un(t)Dαϕ(t)dt

= (−1)|α| lim
n→∞

∫
Ω
Dαun(t)ϕ(t)dt = (−1)|α|

∫
Ω

Dαf(t)ϕ(t)dt

= (−1)|α|
∫

Rn

(Dαf)• (t)ϕ(t)dt.

Thus Dαf• = (Dαf)• in the distributional sense on Rn. Hence we obtain∫
Ω

M (t, |Dαf(t)|) dt =
∫

Rn

M (t, |(Dαf)•(t)|) dt

=
∫

Rn

M (t, |Dαf•(t)|) dt

for every |α| ≤ k. Thus ‖f‖W k,M (Ω) = ‖f•‖W k,M (Rn). By last equality we
conclude f• ∈ W k,M (Rn). �

The following theorem delivers a necessary and sufficient condition on Ω
that mapping (6) carry W0

k,M (Ω) isometrically onto W k,M (Rn).

Theorem 3. Let M be an N -function and let N be complementary to
M, both functions satisfies (5) , (6) and ∆2. C0

∞(Ω) is dense in W k,M (Rn)
if and only if the complement Ω′ = Rn − Ω is (k, N)-polar.
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Proof. The proof is similar to the proof of the respective theorem for
the space W k,p(Ω), p ≥ 1 (Theorem 3.23 in [1]).

Let us assume C0
∞(Ω) is dense in W k,M (Rn). Let T be any distribution

in W−k,N (Rn) such that supp T ⊂ Ω′. If f ∈ W k,M (Rn), then there exists
a sequence (un) ⊂ C0

∞(Ω) converning to f with respect to the norm of
W k,M (Rn). By continuity of T we obtain Tun → Tf, n →∞. Since T has
the support in Rn −Ω, so Tun = 0, n = 1, 2, ... and hence Tf = 0. Thus Ω′

is (k, N)-polar.
Now let us suppose C0

∞(Ω) is not dense in W k,M (Rn). Thus there exist
an element f ∈ W k,M (Rn) and a constant c > 0 such that ‖f−ϕ‖W k,M (Rn) ≥
c for every ϕ ∈ C0

∞(Ω) and the constant being independent of ϕ. By the
Hahn-Banach theorem there exists a functional T ∈ W−k,N (Rn) such that
Tϕ = 0 for all ϕ ∈ C0

∞(Ω) and Tf = 1. Thus we have supp T ⊂ Ω′ but
T 6= 0. Hence Ω′ cannot be (k, N)-polar. �

For differentiable functions is true that identical vanishing of first deriv-
atives over rectangle B ⊂ Rn implies constancy of this function on that
rectangle. This result has extension to functions possessing distributional
derivatives. There holds the following lemma.

Lemma 3. ([1]) Let

B = (a1, b1)× (a2, b2)× ... × (an, bn)

be an open rectangular box in Rn and let f possesses distributional deriv-
atives Dαf = 0 for all |α| = 1. Then there exists a constant c such that
f(t) = c almost everywhere in B.

Theorem 4. Let N -functions M and N satisfy the condition ∆2 and let
M satisfies (5) and (6).
1. If C0

∞(Ω) is dense in W k,M (Ω), then Ω′ = Rn − Ω is (k, N)-polar.

2. If Ω′ is both (1,M)-polar and (k, N)-polar, then C0
∞(Ω) is dense in

W k,M (Ω).

Proof. The idea of this proof is derived from the proof of the respective
theorem for the space W k,p(Ω), p ≥ 1 (Theorem 3.28 in [1]).

1. Let W k,M (Ω) = W0
k,M (Ω). We shall show that Ω′ has measure zero.

Let us suppose that Ω′ has a positive measure. Then there exists an open
rectangle P ⊂ Rn such that P ∩ Ω and P ∩ Ω′ are set of positive measure.

Denote by f the function which is the restriction to Ω of some function
g ∈ C0

∞(Rn) which is identically one on P ∩Ω. Then f ∈ W k,M (Ω) and so
f ∈ W0

k,M (Ω). By Lemma 2 we have f• ∈ W k,M (Rn) and Dαf• = (Dαf)•

in the distributional sense on Rn for |α| = 1. Since Dαf = 0 on P ∩Ω then
for the zero extension there holds (Dαf)• = 0 on P. Thus also Dαf• = 0
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on P for |α| = 1 as a distribution on P . By Lemma 3 f• must have a
constant value almost everywhere in P , a contradiction because f•(t) = 1
for t ∈ P ∩ Ω and f•(t) = 0 for t ∈ P ∩ Ω′. Thus Ω′ has measure zero.

Now, we will apply the above fact in order to prove density of C0
∞(Ω)

in W k,M (Ω). Let g ∈ W k,M (Rn) and let f be the restriction of g to Ω.
Then f ∈ W k,M (Ω) and hence f ∈ W0

k,M (Ω) Thus f can be approximated
by functions of C0

∞(Ω). By Lemma 2 f• ∈ W k,M (Rn) and f• can be
also approximated by elements of C0

∞(Ω). Since g(t) = f•(t) a.e. in Rn,
then g and f• have the same distributional derivatives and so coincide in
W k,M (Rn). Thus g can be approximated by elements C0

∞(Ω). Therefore
C0

∞(Ω) is dense in W k,M (Rn). By Theorem 3 the set Ω′ is (k, N)-polar.

2. Let f ∈ W k,M (Ω). Since f ∈ LM (Ω), then f• ∈ LM (Rn). Thus f•

generate a distribution Tf• as a locally integrable function in Rn and there
exists DαTf• , |α| = 1. Consequently, there exists∫

Rn

Dαf•(t)ϕ(t)dt

for any |α| = 1 and for all ϕ ∈ D(Rn). This integral ia a regular distrib-
ution generated by Dαf•. Thus DαTf• = TDαf• for |α| = 1 and TDαf• ∈
W−1,M (Rn).

We have Dαf ∈ LM (Ω) for any |α| = 1. Hence the zero extension (Dαf)•

is an element of LM (Rn). Since LM (Rn) ⊂ H−1,M (Rn), then T(Dαf)• ∈
W−1,M (Rn). Hence, we obtain

TDαf•−(Dαf)• = TDαf• − T(Dαf)• ∈ W−1,M (Rn)

for all |α| = 1. Moreover

Dαf•(t)− (Dαf)•(t) = 0

for every t ∈ Ω So supp TDαf•−(Dαf)• ⊂ Ω′ for all |α| = 1. Since Ω′ is
(1,M)-polar we obtain

TDαf•−(Dαf)•(ϕ) = 0

for all ϕ ∈ D(Rn). This implies Dαf• = (Dαf)• almost everywhere in Rn for
|α| = 1. Thus Dαf• ∈ LM (Rn) for |α| = 1 and we have f• ∈ W 1,M (Rn). Us-
ing the induction principle with respect |α|, we obtain that Dαf• = (Dαf)•

in the distributional sense, for |α| ≤ k.
Finally f• ∈ W k,M (Rn). By (k, M)-polarity of Ω′ and Theorem 3 we

obtain that C0
∞(Ω) is dense in W k,M (Rn). Thus we have the closure of

C0
∞(Ω) in norm ‖ ‖k,M is the space W k,M (Rn). Simultaneously this same
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closure is, by definition, the space W0
k,M (Ω). Since f• ∈ W k,M (Rn) and

f•(t) = f(t) for t ∈ Ω, then f ∈ W0
k,M (Ω). �

Let M1 and M2 be ϕ-functions. A function M2 is nonweaker than M1 if
the following condition holds

(7) M1(t, u) ≤ K1M2(t, K2u) + h(t)

for all u ≥ 0 and a.e. t ∈ Ω, where h is nonnegative, integrable function in
Ω and K1, K2 are positive constans.

The condition (7) we write M1 ≺ M2, (see [12]). If the inequality (7) is
satisfied for every u ≥ u0, where u0 > 0 is fixed, then we say that M2 is
nonweaker than M1 for large u.

If ϕ-functions M1 and M2 satisfy (6) and M1 ≺ M2, then the embedding

(8) W k,M2(Ω) ⊂ W k,M1(Ω)

holds for every nonnegative integer k. If Ω has finite measure, then embed-
ding (8) holds when M1 ≺ M2 for large u, (see [5]).

Lemma 4. Let an N -function M satisfies conditions (5), (6), ∆2 and
let N be a complementary function to M . The set F ⊂ Rn is (k, N)-polar
if and only if F ∩K is (k, N)-polar for every compact set K ⊂ Rn.

The proof is analogous as in the case, when M(t, u) = up, p > 1.

Lemma 5. Let M1 and M2 be N -functions satisfying (5), (6) and ∆2.
Let N1, N2 be complementary functions respectively. If M1 ≺ M2 for large
u and the set F ⊂ Rn is (k, N2)-polar, then F is also (k, N1)-polar.

Proof. Let K be a compact set in Rn and let F ⊂ Rn be (k, N2)-polar.
We will show that F ∩K is (k, N1)-polar. Let us denote by G an arbitrary
open and bounded set in Rn such that K ⊂ G. There holds the embedding
W0

k,M2(G) ⊂ W0
k,M1(G). Hence we have W−k,N1(G) ⊂ W−k,N2(G).

Let T ∈ W−k,N1(Rn) be such that supp T ⊂ F∩K. Then T ∈ W−k,N1(G)
and hence T ∈ W−k,N2(G). Since F ∩ K is (k, N2)-polar, so T = 0. Thus
F ∩K is (k, N1)-polar and, by Lemma 4, F is (k, N1)-polar. �

Theorem 5. Let M and N be complementary N -functions satisfying
the condition ∆2 and let M satisfies (5) and (6). Let furthermore M be
such that the complementary function N satisfies N ≺ M for large u. Then
W k,M (Ω) ⊂ W0

k,M (Ω) if and only if the set Ω′ is (k, N)-polar.

Proof. Let us suppose Ω′ is (k, N)-polar. Since N ≺ M then, by
Lemma 5, Ω′ is (k, M)-polar. Thus Ω′ is (1,M)-polar. The result now
follows by Theorem 4(1). �
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Examples.

1. Let M(t, u) = up(t), where 1 ≤ p(t) < ∞. If p(t) ≥ 2, then the
complementary function N is N(t, u) = uq(t), where 1

p(t) + 1
q(t) = 1 and

q(t) ≤ p(t) for every t ∈ Ω. So N ≺ M for u ≥ 1 and h = 0.

2. Let M(u) = eu − u − 1, u ≥ 0. Then the complementary function is
N(u) = (1 + u) ln(1 + u)− u satisfies N ≺ M for all u ≥ 0.
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