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1. Introduction

The notion of convex metric spaces was initially introduced by Takahashi
[31]. He and others gave some fixed point theorems for nonexpansive map-
pings in convex metric spaces ( Ding [5], Fu and Huang [8], Huang [13],Huang
and He [15], Li [23], Niampally, Singh and Whitfield [27], Rhoades, Singh
and Whitfield [28], Kalinde and Mishra [21]).

Machado [24], Tallman [32] Naimpally and Singh [26] Hadzic [10], [11],
[12], Anderson, Singh and Whitfield [1] Beg and Mishra [2], Huang and Cho
[14] and many others have studied convex metric spaces and fixed point
theorems

Jungck [16] proved a common fixed point theorem for commuting maps
generalizing the Banach’s fixed point theorem.

Sessa [29] defined a generalization of commutativity, which is called weak
commutativity and proved common fixed point theorem for weakly com-
muting mappings. Further, Jungck [17] introduced more generalized com-
mutativity, so called compatibility, which is more general than that of weak
commutativity. Since then various fixed point theorems for compatible map-
pings satisfying contractive type conditions and assuming continuity of at
least one of the mappings in the compatible pair in complete metric spaces,
have been obtained by many authors

It has been known from the paper of Kannan [22] that there exists maps
that have a discontinuity in the domain but which have fixed points. How-
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ever, in all the known cases the maps involved were continuous at the fixed
point.

In 1998, Jungck and Rhoades [20] introduced the notion of weakly com-
patible maps and showed that compatible maps are weakly compatible but
converse need not be true.

Recently, Singh and Mishra [30], Chugh and Kumar [3] proved some
interesting results in metric spaces for weakly compatible maps without
assuming any mapping continuous On the other hand Gregus [9] proved a
fixed point theorem in Banach spaces, which is called Gregus fixed point
theorem and then many authors have obtained some fixed point theorems
of Gregus type.

Huang and Cho [14] studied common fixed point theorems in convex
metric spaces. The main result of Huang and Cho [14] is as follows:

Theorem 1. Let I and T be compatible mappings of K into itself satis-
fying the following condition:

dp(Tx, Ty) ≤ adp(Ix, Iy) + bmax{dp(Tx, Ix), dp(Ty, Iy)}
+ cmax{dp(Ix, Iy), dp(Tx, Ix), dp(Ty, Iy)}

for all x, y ∈ K, where a, b, c > 0, p ≥ 1, a+b+c = 1 and max{ (1−b)2

a , b+c} <
(2−21−p )(2p−1)−1. If I is W -affine and continuous in K and T (K) ⊂ I(K),
then T and I have a unique common fixed point z in K and T is continuous
at z.

In this paper, we extend the results of Huang and Cho [14] for three
mappings. We improve the results of Huang and Cho [14] by relaxing the
compatibility to weak compatibility and by removing the assumption of
continuity in convex metric spaces. We also improve and generalize some
main results in [4], [6], [7], [8], [9] [18], [19], [23], [25].

2. Preliminaries

In this section, we give some definitions and a lemma for our main results.

Definition 1. Let (X, d) be a metric space and J = [0, 1]. A mapping
W : X ×X ×J → X is called a convex structure on X if for each (x, y, λ) ∈
X ×X × J and u ∈ X,

d(u, W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y).

A metric space X together with a convex structure W is called a convex
metric space.
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Definition 2. A nonempty subset K of X is said to be convex if, W (x, y, λ)
∈ K for all (x, y, λ) ∈ K ×K × J .

Obviously, a Banach space or any convex subset of a Banach space is a
convex metric space. But there are many examples of convex metric spaces
which are not embedded in any Banach spaces. For further information on
convex metric spaces, we refer to [31].

Definition 3. Let (X, d) be a convex metric space and let K be a convex
subset of X. A mapping S : K → K is said to be W -affine if

SW (x, y, λ) = W (Sx, Sy, λ)forall(x, y, λ) ∈ K ×K × J.

Definition 4 ([17]). Let (X, d) be a metric space and let S, T : X → X
be two mappings. S and T are said to be compatible if, whenever {xn} is a
sequence in X such that Sxn, Txn → t ∈ X, then d(STxn, TSxn) → 0.

Definition 5 ([19]). A pair of mappings S and T is called weakly com-
patible pair if they commute at coincidence points.

Example 1. Let X = [0, 2] with the metric d defined by d(x, y) = |x−y|,
for all x, y ∈ X.

Define S, T : X → X by Sx = x if x ∈ [0, 1
3), S(x) = 1

3 if x ≥ 1
3 and

Tx = x
1+x for all x ∈ [0, 2].

Consider the sequence {xn = 1
2 + 1

n : n ≥ 1}inX.
Then limn→∞ Sxn = 1

3 , limn→∞ Txn = 1
3 .

But limn→∞ d(STxn, TSxn) = |13 −
1
4 | 6= 0.

Thus S and T are noncompatible. But S and T are commuting at their
coincidence point x = 0, that is weakly compatible at x = 0.

Hence weakly compatible maps need not be compatible.

Lemma 1. Let a > 0, c > 0 and p ≥ 1. If a+ c < (3−31−p)(3p−1)−1,
then a1/p + c1/p < 1.

Proof. Let f(x) = xp for all xin(0,∞) and p ≥ 1. It follows from p ≥ 1
that

f((1/3)(x + y)) ≤ (1/3)f(x) + (1/3)f(y)

for all x, y > 0. Thus we have(
(1/3)

(
a1/p + c1/p

))p
≤ (1/3)(a + c) <

(
1− 3−p

)
(3p − 1)−1 ,

which implies that

a1/p + c1/p < (3p(1− 3−p)(3p − 1)1/p = 3p

{
(
3p − 1)

3p

1
(3p − 1)

}1/p

= 1.

This completes the proof. �
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3. Main Results

Throughout this section, we assume that X is a complete convex metric
space with a convex structure W and K is a nonempty closed convex subset
of X.

Theorem 2. Let A, B and S be three mappings of K into itself satisfying
the following conditions:

(1) S and B are W − affine,

(2) the pairs (S, A) and (S, B) are weakly compatible,

(3) A(K) ⊂ S(K), B(K) ⊂ S(K),

dp(Ax,By) ≤ adp(Sx, Sy) + b max{dp(Ax, Sx), dp(By, Sy)}(4)
+ cmax{dp(Sx, Sy), dp(Ax, Sx), dp(By, Sy)}

for all x, y in K, where a, b, c > 0, p ≥ 1, a+b+c = 1, (1−b)/2a < (3p+1)−1

and b + c < (3− 31−p)(3p − 1)−1.
Then A, B and S have a unique common fixed point in K.

Proof. Let x = x0 be an arbitrary point in K and choose four points
x1, x2, x3 and x4 in K such that

Sx1 = Ax, Sx2 = Bx1, Sx3 = Ax2, Sx4 = Bx3.

In general

Sx2r+1 = Ax2r, Sx2r+2 = Bx2r+1, for r = 0, 1.

This can be done since A(K) ⊂ S(K), B(K) ⊂ S(K). For r = 1 (4) leads to

dp(Ax2r, Bx2r−1) ≤ adp(Sx2r, Sx2r−1) + b max{dp(Ax2r, Sx2r),
dp(Bx2r−1, Sx2r−1)}+ cmax{dp(Sx2r, Sx2r−1),
dp(Ax2r, Sx2r), dp(Bx2r−1, Sx2r−1)}.

Therefore, we have

(5) dp(Ax2r, Bx2r−1) ≤ dp(Bx2r−1, Sx2r−1).

Letting z = W (x2, x4, 1/2) then z ∈ K and since S is W -affine, we have

(6) Sz = W (Sx2 , Sx4, 1/2) = W (Bx1, Bx3, 1/2).
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It follows from (6) and p ≥ 1 that

dp(Sz, Sx1) = dp(Sx1,W (Sx2, Sx4,
1
2

(7)

≤ (1/2)dp(Sx1, Sx2) + (1/2)dp(Sx1, Sx4)
≤ (1/2)dp(Ax, Sx) + (1/2)3pdp(Ax, Sx)
= (1/2)(3p + 1)dp(Ax, Sx)

and

dp(Sz, Sx3) = dp(Sx3,W (Sx2, Sx4, 1/2))(8)
≤ ((1/2)d(Sx3, Sx2) + (1/2)d(Sx3, Sx4))p

≤ dp(Ax, Sx).

By (4), (5), (7), (8) and p ≥ 1, we have

dp(Az, Sz) = dp(Az,W (Bx1, Bx3, 1/2))(9)
≤ (1/2)dp(Az, Bx1) + (1/2)dp(Az, Bx3)
≤ (1/2)(a/4)(3p + 1)dp(Ax, Sx) + b max{dp(Az, Sz), dp(Ax, Sx)}
+(c/4)(3p + 1)
+ (c/2) max{1/2(3p + 1)dp(Ax, Sx), dp(Az, Sz), dp(Ax, Sx)}
+(a/2)dp(Ax, Sx) + (b/2) max{dp(Az, Sz), dp(Ax, Sx)}
+(c/2) max{dp(Ax, Sx), dp(Az, Sz), dp(Ax, Sx)}
≤ (a/4)(3p + 1) + (a/2)dp(Ax, Sx) + b max{dp(Az, Sz), dp(Ax, Sx)}
+(c/4)(3p + 1) + (c/2) max{dp(Az, Sz), dp(Ax, Sx)}
≤ λ max{dp(Ax, Sx), dp(Ax, Sx)},

where λ = (a/4)(3p +1)+(a/2)+ b+(c/4)(3p +1)+ c. It is easy to see that
0 < λ < 1 since

(1− b)/2a < (3p + 1)−1

and λ = ((1− b)/4)(3p + 1) + 1− a/2. Hence (3.9) implies

(10) dp(Az, Sz) ≤ λdp(Ax, Sx).

Since x is an arbitrary point in K from (3.10) it follows that there exists a
sequence {zn} in K such that

dp(Az0, Sz0) ≤ λdp(Ax0, Sx0),

dp(Az1, Sz1) ≤ λdp(Az0, Sz0),

dp(Azn, Szn) ≤ λdp(Azn−1, Szn−1)
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which yield that dp(Azn, Szn) ≤ λn+1dp(Ax0, Sx0), and so we have

(11) lim
n→∞

d(Azn, Szn) = 0 .

Setting Kn1 = {x ∈ K : d(Ax, Sx) ≤ 1/n1} for n1 = 1, 2, ... then(3.11)
shows that Kn1 6= φ for n1 = 1, 2, ... and K1 ⊃ K2 ⊃ K3 ⊃ ... Obviously,
we have AKn1 6= φ and AKn1+1 ⊃ AKn1+1 for n1 = 1, 2, .... If we take
u = W (x1, x3, 1/2) and since B is W -affine we can see that

dp(Au, Bu) ≤ λ max{dp(Ax, Sx), dp(Ax, Sx)},

where the value of λ is same as given above. By the same way as shown
above we can find

(12) lim
n→∞

d(Aun, Bun) = 0.

Setting Kn2 = {x ∈ K : d(Ax,Bx) ≤ 1/n2} for n2 = 1, 2, ... then AKn2 6= φ
and AKn2 ⊃ AKn2+1 for n2 = 1, 2, ....

Using (4) and Minkowski’s inequality, we have

d(Ax,By) ≤ a1/pd(Sx, Sy) + b1/p max{d(Ax, Sx), d(By, Sy)}(13)
+ c1/p max{d(Sx, Sy), d(Ax, Sx), d(By, Sy)}

for all x, yinK. For any x, y ∈ Kn1 ∩Kn2 , by (3.13), we have

d(Ax,By) ≤ a1/pd(Sx, Sy) + (n−1
1 + n−1

2 )b1/p

+ c1/p max{d(Sx, Sy), (n−1
1 + n−1

2 )}
≤ a1/p(2n−1

1 + d(Ax,Ay)) + (n−1
1 + n−1

2 )b1/p

+ c1/p max{2n−1
1 + d(Ax,Ay), (n−1

1 + n−1
2 )}.

Let n = min(n1, n2), then

d(Ax,By) ≤ a1/p(2n−1 + d(Ax,Ay)) + 2n−1b1/p(14)
+ c1/p max{2n−1 + d(Ax,Ay)}.

Since (a/4){(a + c)3p + b + 3}+ (C/2) < λ < 1, we have

(1/4)((a + c)3p + b + 31−p) < 1

and hence a + c < (3− 31−p)(3p − 1)−1. It follows from (13) and Lemma 1,
that

d(Ax,By) ≤ 2 n−1(a1/p + b1/p + c1/p)(1− a1/p − c1/p)−1.
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Therefore, we have

d(Ax,Ay) ≤ d(Ax,By) + d(By,Ay)
≤ 2n−1(a1/p + b1/p + c1/p)(1− a1/p − c1/p)−1 + n−1

It follows that

lim
n→∞

diam(AKn1) = lim
n→∞

diam(AKn1) = 0.

Also lim
n→∞

diam(AKn2) = lim
n→∞

diam(AKn2) = 0. By Cantor’s theorem,
there exists a point v1 in K such that

∞⋂
n1=1

AKn1 = {v1}

Similarly there exists a point v2 in K such that
∞⋂

n2=1

AKn2 = {v2}

So there exists a point v in K such that
∞⋂

n=1

AKn = {v}.

Since v ∈ K for each n = 1, 2, ..., there exists a point yn ∈ AKn such that
d(yn, v) < n−1. Then there exists a point xn in Kn such that d(v,Axn) <
n−1 and so Axn → v as n →∞. Since xn ∈ Kn we also have d(Axn, Sxn) <
n−1 and d(Axn, Bxn) < n−1. So Sxn → v and Bxn → v as n → ∞. Since
A(K) ⊂ S(K), there exists a point u ∈ K such that v = Su. Then using
(4), we have

d(Au, v) ≤ d(Au, Bxn) + d(Bxn, v)
≤ a1/pd(Su, Sxn) + b1/p max{d(Au, Su), d(Bxn, Sxn)}

+ c1/p max{d(Su, Sxn), d(Au, Su), d(Bxn, Sxn)} + d(Bxn, v).

Taking the limit as n →∞ yields

d(Au, v) ≤ (b1/p + c1/p)d(Au, v).

By Lemma 1, we have Au = v. Therefore Au = Su = v. Since B(K) ⊂
S(K), there exists a point w ∈ X such that v = w.

d(v,Bw) = d(Axn, Bw) + d(Axn, v)
≤ a1/pd(Sxn, Sw) + b1/p max{d(Axn, Sxn), d(Bw, Sw)}

+ c1/p max{d(Sxn, Sw)d(Axn, Sxn), d(Bw, Sw)}+ d(Axn, v)
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Taking the limit as n →∞ yields

d(v,Bw) ≤ (b1/p + c1/p)d(Bw, v).

By Lemma 1, we have Bw = v. Therefore Bw = Sw = v. Since S
and A are weakly compatible maps then ASu = SAu i. e. Av = Sv. Let
z = Av = Sv. Again weak compatibility of A and S imply ASv = SAv i.e.
Az = Sz.

Similarly S and B are weakly compatible mappings then BSw = SBw
i.e. Bv = Sv. Therefore z = Av = Sv = Bv. Again weak compatibility of
S and B imply BSv = SBv i. e. Bz = Sz.

Now, we show that z is a fixed point of A. From (4), we have

dp(Az, z) = dp(Az,Bv)
≤ adp(Sz, Sv) + b max{dp(Az, Sz), dp(Bv, Sv)}

+ cmax{dp(Sz, Sv), dp(Az, Sz), dp(Bv, Sv)}
= (a + c)dp(Az, z).

Thus Az = z. Since a + c < 1. Therefore Az = Sz = z. Again from (4), we
have

dp(Az,Bz) = dp(Av,Bz)
≤ a dp(Sv, Sz) + b max{dp(Av, Sv), dp(Bz, Sz)}

+ cmax{dp(Sv, Sz), dp(Av, Sv), dp(Bz, Sz)}
= (a + c)dp(z,Bz).

Thus Bz = z, since a + c < 1. Therefore Az = Bz = Sz = z.
Finally, in order to prove the uniqueness of z suppose that z and z1 are

two common fixed points of A, B and S, where z is not equal to z1. Then
by (4), we obtain

dp(z, z1) = dp(Az, Bz1)
≤ a dp(Sz, Sz1) + b max{dp(Az, Sz), dp(Bz1, Sz1)}

+ cmax{dp(Sz, Sz1), dp(Az, Sz), dp(Bz1, Sz1)}
= (a + c)dp(z, z1).

Thus z = z1. Since a + c < 1. This completes the proof. �

From Theorem 2, the following corollaries can be obtained:

Corollary 1. Let A, B and S be three mappings of K into itself satisfying
the conditions (1) to (3) of Theorem 2 and

d(Ax,By) ≤ a d(Sx, Sy) + b max{d(Ax, Sx), d(By, Sy)}(15)
+ cmax{d(Sx, Sy), d(Ax, Sx), d(By, Sy)}



Discontinuity and weak compatibility in fixed point . . . 99

for all x, y in K, where a, b, c > 0, a + b + c = 1 and a + c < a1/2. Then A,
B and S have a unique common fixed point in K.

Corollary 2. Let A, B and S be three mappings of K into itself satisfying
the conditions (1) to (3) of Theorem 2 and

(16) d(Ax,By) ≤ a d(Sx, Sy) + (1− a) max{d(Ax, Sx), d(By, Sy)}

for all x, y in K, where 0 < a < 1. Then A and S have a unique common
fixed point in K.

Remark. (1) Corollary 2 is an extension of the Gregus fixed point the-
orem [9] in convex metric spaces.

(2) Theorem 2, Corollary 1 and Corollary 2 are improvement and gener-
alization of some main results in [4], [6]-[9], [14], [18], [19], [23] and [25].
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paper.
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