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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF
IMPULSIVE DIFFERENTIAL EQUATIONS WITH

POSITIVE AND NEGATIVE COEFFICIENTS

Abstract: This paper is concerned with the impulsive delay dif-
ferential equations with positive and negative coefficients

x′(t) + p(t)x(t− τ)− q(t)x(t− σ) = 0, t ≥ t0, t 6= tk,

x(tk) = bkx(t−k ) + (1− bk)
(∫ tk

tk−τ
p(s + τ)x(s)ds

−
∫ tk

tk−σ
q(s + σ)x(s)ds

)
, k = 1, 2, 3, · · · .

Sufficient conditions are obtained for every solution of the above
equation tends to a constant as t →∞.
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1. Introduction and and Preliminaries

The theory of impulsive differential equations is now being recognized to
be not only richer than the corresponding theory of differential equations
without impulses but also represents a more natural framework for math-
ematical modelling of many real-world phenomena [1,2]. In recent years,
there is increasing interest on the oscillation and stability theory of impulsive
delay differential equations(see [3-10] and the references cited therein) and
many results are obtained. However, the asymptotic behavior of solutions
of impulsive delay differential equations is developing comparatively slowly
[5,9].

In this paper, we consider the asymptotic behavior of solutions of the
impulsive delay differential equation with positive and negative coefficients
of the form

(1)


x′(t) + p(t)x(t− τ)− q(t)x(t− σ) = 0, t ≥ t0, t 6= tk,

x(tk) = bkx(t−k ) + (1− bk)
(∫ tk

tk−τ p(s + τ)x(s)ds

−
∫ tk
tk−σ q(s + σ)x(s)ds

)
, k = 1, 2, 3, · · · ,
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where τ, σ ∈ [0,∞), p(t), q(t) ∈ C([t0,∞), [0,∞)), t0 < tk < tk+1 with
lim

k→∞
tk = ∞, and bk, k = 1, 2, · · · , are constants, x(t−k ) denotes the left-hand

limit of x(t) at t = tk.
With equation (1), one associates an initial condition of the form

(2) xt0 = ϕ(s), s ∈ [−ρ, 0], ρ = max{τ, σ},

where xt0 = x(t0 + s) for −ρ ≤ s ≤ 0 and ϕ ∈ C([−ρ, 0], R).
A function x(t) is said to be a solution of equation (1) satisfying the

initial value condition (2) if x(t) is defined on [t0 − ρ,∞) and satisfies
(i) x(t) = ϕ(t − t0) for t0 − ρ ≤ t ≤ t0, x(t) is continuous for t ≥ t0 and

t 6= tk (k = 1, 2, 3, · · · );
(ii) x(t) is continuously differentiable for t ≥ t0, t 6= tk, and x(t+k ) and x(t−k )

exist with x(t+k ) = x(tk) for k = 1, 2, 3 · · · ;
(iii) x(t) satisfies (1).

Using the methods of steps as in the case without impulses, one can
show the global existence and uniqueness of the solution of the initial value
problem (1) and (2).

As is customary, a solution of (1) is said to be nonoscillatory if it is even-
tually positive or eventually negative. Otherwise, it will be called oscillatory.

2. Main Results

Theorem 1. Assume that the following conditions hold:

(3) τ ≥ σ;

(4) p∗(t) = p(t)− q(t + σ − τ) > 0 for t ≥ T1 = t0 + τ − σ;

(5) lim
t→∞

∫ t−σ

t−τ
q(s + σ)ds = µ < 1;

lim sup
t→∞

(∫ t+τ

t−τ
p∗(s + τ)ds +

q(t + σ)
p∗(t + τ)

∫ t

t−τ
p∗(s + 2τ)ds(6)

+
∫ t−σ

t−τ
q(s + σ)ds

)
< 2;

(7) 0 < bk ≤ 1 for k = 1, 2, 3, · · · and
∞∑

k=1

(1− bk) < ∞.

Then every solution of (1) tends to a constant as t →∞.
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Proof. Let x(t) be any solution of (1). We shall prove that the limit
lim
t→∞

x(t) exists and is finite. For this purpose, we rewrite (1) in the form

(8)


[x(t)−

∫ t−σ
t−τ q(s + σ)x(s)ds−

∫ t
t−τ p∗(s + τ)x(s)ds]′

+ p∗(t + τ)x(t) = 0, t ≥ t0, t 6= tk,

x(tk) = bkx(t−k ) + (1− bk)
(∫ tk−σ

tk−τ q(s + σ)x(s)ds

+
∫ tk
tk−τ p∗(s + τ)x(s)ds

)
, k = 1, 2, 3, · · · .

Now we introduce three functionals as

V1(t) =
[
x(t)−

∫ t−σ

t−τ
q(s + σ)x(s)ds−

∫ t

t−τ
p∗(s + τ)x(s)ds

]2

,

V2(t) =
∫ t

t−τ
p∗(s + 2τ)

∫ t

s
p∗(u + τ)x2(u)duds,

and

V3(t) =
∫ t

t−τ
p∗(s + 2τ)

∫ t

s
q(u + σ)x2(u)duds.

In what follows, for the sake of convenience, when we write a functional
inequality without specifying its domain of validity, we mean that it holds
for all sufficiently large t.

As t 6= tk, calculating dV1
dt , dV2

dt and dV3
dt along the solution of (1), we have

dV1

dt
= 2

[
x(t)−

∫ t−σ

t−τ
q(s + σ)x(s)ds−

∫ t

t−τ
p∗(s + τ)x(s)ds

]
(9)

× (−p∗(t + τ)x(t))

= −p∗(t + τ)
[
2x2(t)−

∫ t−σ

t−τ
q(s + σ)(2x(t)x(s))ds

−
∫ t

t−τ
p∗(s + τ)(2x(t)x(s))ds

]
≤ −p∗(t + τ)

[
2x2(t)−

∫ t−σ

t−τ
q(s + σ)x2(t)ds

−
∫ t

t−τ
p∗(s + τ)x2(t)ds

−
∫ t−σ

t−τ
q(s + σ)x2(s)ds−

∫ t

t−τ
p∗(s + τ)x2(s)ds

]
,
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dV2

dt
=

d

dt

(∫ t

t−τ

(
p∗(s + 2τ)

∫ t

s
p∗(u + τ)x2(u)du

)
ds

)
(10)

=
∫ t

t−τ

∂

∂t

(
p∗(s + 2τ)

∫ t

s
p∗(u + τ)x2(u)du

)
ds

+ p∗(t + 2τ)
∫ t

t
p∗(u + τ)x2(u)du

− p∗(t + τ)
∫ t

t−τ
p∗(s + τ)x2(s)ds

= p∗(t + τ)x2(t)
∫ t

t−τ
p∗(s + 2τ)ds

− p∗(t + τ)
∫ t

t−τ
p∗(s + τ)x2(s)ds,

and

dV3

dt
= q(t + σ)x2(t)

∫ t

t−τ
p∗(s + 2τ)ds(11)

− p∗(t + τ)
∫ t

t−τ
q(s + σ)x2(s)ds

≤ q(t + σ)x2(t)
∫ t

t−τ
p∗(s + 2τ)ds

− p∗(t + τ)
∫ t−σ

t−τ
q(s + σ)x2(s)ds,

Let V (t) = V1(t) + V2(t) + V3(t), then, by (9)-(11), we get

dV

dt
=

dV1

dt
+

dV2

dt
+

dV3

dt
(12)

≤ −p∗(t + τ)
[
2x2(t)− x2(t)

∫ t+τ

t−τ
p∗(s + τ)ds

− q(t + σ)
p∗(t + τ)

x2(t)
∫ t

t−τ
p∗(s + 2τ)ds

−x2(t)
∫ t−σ

t−τ
q(s + σ)ds

]
= −p∗(t + τ)x2(t)

[
2− (

∫ t+τ

t−τ
p∗(s + τ)ds

+
q(t + σ)
p∗(t + τ)

∫ t

t−τ
p∗(s + 2τ)ds

+
∫ t−σ

t−τ
q(s + σ)ds)

]
, t 6= tk.
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As t = tk, we have

V (tk) =
[
x(tk)−

∫ tk−σ

tk−τ
q(s + σ)x(s)ds−

∫ tk

tk−τ
p∗(s + τ)x(s)ds

]2

(13)

+
∫ tk

tk−τ
p∗(s + 2τ)

∫ tk

s
p∗(u + τ)x2(u)duds

+
∫ tk

tk−τ
p∗(s + 2τ)

∫ tk

s
q(u + σ)x2(u)duds

= [bkx(t−k ) + (1− bk)
(∫ tk−σ

tk−τ
q(s + σ)x(s)ds

+
∫ tk

tk−τ
p∗(s + τ)x(s)ds

)
−

∫ tk−σ

tk−τ
q(s + σ)x(s)ds−

∫ tk

tk−τ
p∗(s + τ)x(s)ds]2

+
∫ tk

tk−τ
p∗(s + 2τ)

∫ tk

s
p∗(u + τ)x2(u)duds

+
∫ tk

tk−τ
p∗(s + 2τ)

∫ tk

s
q(u + σ)x2(u)duds

= b2
k

[
x(t−k )−

∫ tk−σ

tk−τ
q(s + σ)x(s)ds−

∫ tk

tk−τ
p∗(s + τ)x(s)ds

]2

+
∫ tk

tk−τ
p∗(s + 2τ)

∫ tk

s
p∗(u + τ)x2(u)duds

+
∫ tk

tk−τ
p∗(s + 2τ)

∫ tk

s
q(u + σ)x2(u)duds

≤
[
x(t−k )−

∫ tk−σ

tk−τ
q(s + σ)x(s)ds−

∫ tk

tk−τ
p∗(s + τ)x(s)ds

]2

+
∫ tk

tk−τ
p∗(s + 2τ)

∫ tk

s
p∗(u + τ)x2(u)duds

+
∫ tk

tk−τ
p∗(s + 2τ)

∫ tk

s
q(u + σ)x2(u)duds

= V (t−k ),

which, together with (6) and (12), implies

p∗(t + τ)x2(t) ∈ L1(t0,∞),
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and, hence, for any η ≥ 0 we have

(14) lim
t→∞

∫ t

t−η
p∗(s + τ)x2(s)ds = 0.

By (6) and (14), we have

V2(t) =
∫ t

t−τ
p∗(s + 2τ)

∫ t

s
p∗(u + τ)x2(u)duds

≤
∫ t

t−τ
p∗(s + 2τ)

∫ t

t−τ
p∗(u + τ)x2(u)duds

=
∫ t+τ

t
p∗(s + τ)

∫ t

t−τ
p∗(u + τ)x2(u)duds

≤ 2
∫ t

t−τ
p∗(u + τ)x2(u)du → 0, as t →∞,

and

V3(t) =
∫ t

t−τ

(
p∗(s + 2τ)

∫ t

s
q(u + σ)x2(u)du

)
ds

=
∫ t

t−τ

(∫ u

t−τ
p∗(s + 2τ)q(u + σ)x2(u)ds

)
du

=
∫ t

t−τ

(
q(u + σ)

∫ u

t−τ
p∗(s + 2τ)ds

)
x2(u)du

≤
∫ t

t−τ

(
q(u + σ)

∫ u

u−τ
p∗(s + 2τ)ds

)
x2(u)du

≤
∫ t

t−τ
2p∗(u + τ)x2(u)du → 0, as t →∞.

On the other hand, by (6), (12) and (13), we see that V (t) is eventu-
ally decreasing. Hence, the limit lim

t→∞
V (t) = α exists and is finite. So

lim
t→∞

V1(t) = α, that is,

(15) lim
t→∞

[
x(t)−

∫ t−σ

t−τ
q(s + σ)x(s)ds−

∫ t

t−τ
p∗(s + τ)x(s)ds

]2

= α.

Let

y(t) = x(t)−
∫ t−σ

t−τ
q(s + σ)x(s)ds−

∫ t

t−τ
p∗(s + τ)x(s)ds,
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then

y(tk) = x(tk)−
∫ tk−σ

tk−τ
q(s + σ)x(s)ds−

∫ tk

tk−τ
p∗(s + τ)x(s)ds

= bkx(t−k ) + (1− bk)
(∫ tk−σ

tk−τ
q(s + σ)x(s)ds +

∫ tk

tk−τ
p∗(s + τ)x(s)ds

)
−

∫ tk−σ

tk−τ
q(s + σ)x(s)ds−

∫ tk

tk−τ
p∗(s + τ)x(s)ds

= bk

[
x(t−k )−

∫ tk−σ

tk−τ
q(s + σ)x(s)ds−

∫ tk

tk−τ
p∗(s + τ)x(s)ds

]
= bky(t−k ),

moreover, in view of (8) and (15), we have

(16)
{

y′(t) + p∗(t + τ)x(t) = 0, t ≥ t0, t 6= tk,
y(tk) = bky(t−k ), k = 1, 2, 3, · · · ,

and

(17) lim
t→∞

y2(t) = α.

If α = 0, then lim
t→∞

y(t) = 0. If α > 0, then there exists a sufficiently large T2

such that y(t) 6= 0 for t ≥ T2. Otherwise, there is a sequence τ1, τ2, · · · , τk, · · ·
with lim

k→∞
τk = ∞ such that y(τk) = 0, so y2(τk) → 0 as k → ∞. It is a

contradiction with α > 0. Therefore, for any tk > T2, t ∈ [tk, tk+1) we
have y(t) > 0 or y(t) < 0 because y(t) is continuous on [tk, tk+1). Without
loss of generality, we assume that y(t) > 0 on [tk, tk+1), it follows that
y(tk+1) = bk+1y(t−k+1) > 0, thus y(t) > 0 on [tk+1, tk+2). By induction, we
can conclude that y(t) > 0 on [tk,∞). From (17), we have
(18)

lim
t→∞

y(t) = lim
t→∞

[
x(t)−

∫ t−σ

t−τ
q(s + σ)x(s)ds−

∫ t

t−τ
p∗(s + τ)x(s)ds

]
= β

must exist and is finite. In view of (16), we have∫ t

t−τ
p∗(s + τ)x(s)ds = y(t− τ)− y(t) +

∑
t−τ<tk<t

[y(tk)− y(t−k )]

= y(t− τ)− y(t)−
∑

t−τ<tk<t

(1− bk)y(t−k ).

We let t →∞ and note that
∞∑

k=1

(1− bk) < ∞, then we have

(19) lim
t→∞

∫ t

t−τ
p∗(s + τ)x(s)ds = 0.
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By (18) and (19), we have

(20) lim
t→∞

[x(t)−
∫ t−σ

t−τ
q(s + σ)x(s)ds] = β.

Next, we shall prove that

(21) lim
t→∞

x(t) =
β

1− µ
.

To this end, we first show |x(t)| is bounded. In fact, if |x(t)| is unbounded,
then there exists a sequence {sn} such that sn →∞, |x(s−n )| → ∞, as n →∞
and

(22) |x(s−n )| = sup
t0≤t≤sn

|x(t)|,

where, if sn is not impulsive point then x(s−n ) = x(sn). Thus, noticing (5)
and (22), we have

|x(s−n )−
∫ sn−σ

sn−τ
q(s + σ)x(s)ds| ≥ |x(s−n )| −

∫ sn−σ

sn−τ
q(s + σ)|x(s)|ds

≥ |x(s−n )| − |x(s−n )|
∫ sn−σ

sn−τ
q(s + σ)ds

= |x(s−n )|(1−
∫ sn−σ

sn−τ
q(s + σ)ds) →∞, as n →∞,

which contradicts (20). So |x(t)| is bounded. Set

lim sup
t→∞

x(t) = ω1, lim inf
t→∞

x(t) = ω2.

Choose two sequences {un} and {vn} such that un →∞, vn →∞ as n →∞
and

lim
n→∞

x(un) = ω1, lim
n→∞

x(vn) = ω2.

Since for δ > 0 sufficiently small,

x(un) = x(un)−
∫ un−σ

un−τ
q(s + σ)x(s)ds +

∫ un−σ

un−τ
q(s + σ)x(s)ds

≤ x(un)−
∫ un−σ

un−τ
q(s + σ)x(s)ds + (ω1 + δ)

∫ un−σ

un−τ
q(s + σ)ds,

it follows, by (20) and (5), that

ω1 = lim
n→∞

x(un) ≤ β + (ω1 + δ)µ.
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We let δ → 0 to obtain ω1 ≤ β + ω1µ, i.e., ω1 ≤ β
1−µ . Similarly, we can

prove ω2 ≥ β
1−µ . Therefore ω1 ≤ ω2, but clearly ω1 ≥ ω2, which implies that

ω1 = ω2 = β
1−µ . Thus (21) hold. The proof is complete. �

By Theorem 1, we have the following asymptotic behavior result imme-
diately.

Theorem 2. The conditions of Theorem 1 implies that every oscillatory
solution of (1) tends to zero as t →∞.

Proof. Let x(t) be any oscillatory solution of (1), by Theorem 1, x(t)
tends to a constant ω as t →∞ and x(t) is bounded. We let

lim sup
t→∞

x(t) = ω1, lim inf
t→∞

x(t) = ω2,

then ω1 = ω2 = ω. On the other hand, noting that x(t) is oscillatory, we
have ω1 ≥ 0 and ω2 ≤ 0. Thus, ω = ω1 = ω2 = 0. The proof of Theorem 2
is complete. �

In Theorem 1, taking q(t) ≡ 0, we have

Corollary 1. Assume that

lim sup
t→∞

∫ t+τ

t−τ
p(s + τ)ds < 2;

0 < bk ≤ 1 and

∞∑
k=1

(1− bk) < ∞.

Then every solution of the equation
x′(t) + p(t)x(t− τ) = 0, t ≥ t0, t 6= tk,

x(tk) = bkx(t−k ) + (1− bk)
∫ tk
tk−τ p(s + τ)x(s)ds,

k = 1, 2, 3, · · ·

tends to a constant as t →∞.

In Theorem 1, taking bk ≡ 1, we get

Corollary 2. Assume that the conditions (3)-(6) hold. Then every so-
lution of the equation

x′(t) + p(t)x(t− τ)− q(t)x(t− σ) = 0, t ≥ t0

tends to a constant as t →∞.
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Theorem 3. The conditions in Theorem 1 together with

(23)
∫ ∞

t0

p∗(t)dt = ∞

implies that every solution of (1) tends to zero as t →∞.

Proof. By theorem 2, we only have to prove that every nonoscillatory
solution of (1) tends to zero as t → ∞. Without loss of generality, let x(t)
be an eventually positive solution of (1), we shall prove lim

t→∞
x(t) = 0. As in

the proof of Theorem 1, we can rewrite (1) in the form of (16). Integrating
from t0 to t on both sides of (16) produces∫ t

t0

p∗(s + τ)x(s)ds = y(t0)− y(t)−
∑

t0<tk<t

(1− bk)y(t−k ).

By using (18) and
∞∑

k=1

(1− bk) < ∞, we have

∫ ∞

0
p∗(s + τ)x(s)ds < ∞,

which, together with (23), yields lim inf
t→∞

x(t) = 0. On the other hand, by

Theorem 1, we see that lim
t→∞

x(t) exists. Therefore, lim
t→∞

x(t) = 0. The proof
is complete. �

Example. The impulsive differential equation{
x′(t) + 2

(t−1)α x(t− 2)− 1
tα x(t− 1) = 0, t ≥ 2, t 6= k,

x(k) = kβ−1
kβ x(k−) + 1

kβ

(∫ k
k−2

2
(s+1)α x(s)ds−

∫ k
k−1

1
(s+1)α x(s)ds

)
, k = 3, 4, 5, · · · ,

where α > 1 and β > 1, satisfies all conditions of Theorem 1. Therefore,
every solution of this equation tends to a constant as t →∞.
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