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ON THE BOUNDS FOR MEAN-VALUES

OF SOLUTIONS TO CERTAIN THIRD-ORDER

NON-LINEAR DIFFERENTIAL EQUATIONS

Abstract: In this paper, the issue of bounds for the mean-values
of solutions of some third-order differential equations with
non-linear terms is considered. It is shown that these bounds
are independent of the solutions for the considered equations.
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1. Introduction and Basic Notions

The stimulation of this work comes from the paper [7] of Barbǎlat and
Halanay, where bounds for the mean values of solutions as well as their first
two derivatives for Liénard and Rayleigh differential equations were consid-
ered when such solutions are bounded and globally exponentially stable.

The problem of interest here is to determine the bounds for the mean
values of solutions of third-order differential equations of the form:

(1)
...
x +aẍ + g(ẋ) + h(x) = q(t)

and

(2)
...
x +aẍ + g1(x)ẋ + h(x) = q(t)

where a > 0 and functions g, g1, h and q are continuous in their respective
arguments. A natural question arises: how these bounds affect the solutions
and the forcing term q(t) of the equations (1) and (2)? We shall later provide
answers to these questions under the condition that the solutions considered
are bounded and globally exponentially stable.

Already, it has been shown in [1], that subject to the functions g, g1 and
h satisfying

(3) b ≤ g(z)− g(z̄)
z − z̄

≤ b + µ1, z 6= z̄,
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(4) b ≤ 1
z

∫ z

0
g1(s)ds ≤ b + µ1, z 6= 0,

(5) c ≤ h(z)− h(z̄)
z − z̄

≤ c + µ2, z 6= z̄,

for some positive constants b, c and positive parameters µ1 and µ2, the
equations (1) and (2) have unique bounded solutions which are globally
exponentially stable if ab − c > µ2. In the generalized topological degree
methods developed by Mahwin [8], one of the key steps is to find bounds for
the mean values of solutions of differential equations. These bounds make
it possible to give interesting conclusions about the existence of periodic
solutions and even some other qualitative properties of such solutions (see
e.g [2-6] and references therein).

2. Notations

Let x(t) be a solution of the equation (1) and denote the mean-values of
x(t), ẋ(t), ẍ(t), and

...
x (t) for T > 0, by

(∗)

K2 = lim sup
T→∞

1
T

∫ T
0 x2(t)dt;

L2 = lim sup
T→∞

1
T

∫ T
0 ẋ2(t)dt;

M2 = lim sup
T→∞

1
T

∫ T
0 ẍ2(t)dt;

N2 = lim sup
T→∞

1
T

∫ T
0

...
x

2 (t)dt.

Moreover, if x(t) is a solution of equation (2), let us denote its mean-values
by

(∗∗)

K1
2 = lim sup

T→∞

1
T

∫ T
0 x2(t)dt;

L1
2 = lim sup

T→∞

1
T

∫ T
0 ẋ2(t)dt;

M1
2 = lim sup

T→∞

1
T

∫ T
0 ẍ2(t)dt;

N1
2 = lim sup

T→∞

1
T

∫ T
0

...
x

2 (t)dt.

3. Main Results

Before we state the main results of this paper, let us remark that if
equations (1) and (2) admit a bounded and globally exponentially stable
solution, then the mean values stated in Section Two do not depend on
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the solution considered, and hence represent general characteristics of the
equations.

Throughout this paper it is assumed that for every t ≥ 0 the solutions of
the equations (1) and (2) exist. Moreover, the functions g, g1, h and q are
real valued and continuous in their respective arguments. We now state our
main results.

Theorem 1. If the solutions of the equation (1) are bounded and globally
exponentially stable, then the mean-values K, L, M and N of any solution
x(t), are bounded independent of x(t), with bounds given by

(∗ ∗ ∗)

K ≤ A
c

(
1 +

[
µ1 + (ac)

1
2

]
ω
)

;
L ≤ Aω;
M ≤ A

2aω1; and

N ≤ A
2a

(
a +

[
a2 + 2(b + µ1)(ω1 + 2a(c + µ2)ω2)

] 1
2

)
;

where
A2 = lim supT→∞

1
T

∫ T
0 q2(t)dt;

ω =

 
a+[

c+µ2
a

]
1
2 +
h
a2+b+2(a(c+µ2))

1
2 +

3(ab−c−µ2)
a

i 1
2

!

2(ab−c−µ2) ; and
ω1 =

(
1 +

[
1 + 4a(c + µ2)ω2

])
.

Theorem 2. If the solutions of the equation (2) are bounded and globally
exponentially stable such that g1(x(t)) satisfies

b ≤ 1
x(t)

∫ x(t)

0
g1(s)ds ≤ b + µ1, x(t) 6= 0,

then the mean-values K1, L1, M1 and N1 of any solution x(t), are bounded
independent of x(t), with bounds given by

K1 ≤ A
2c

(
1 +

[
1 + 4acω2

] 1
2

)
;

L1 ≤ A ω;
M1 ≤ A

2a ω1; and

N1 ≤ A
2a

(
a +

[
a2 + 2(b + µ1)(ω1 + 2a(c + µ2)ω2)

] 1
2

)
;

where ω and ω1 are as given in Theorem 1.

4. Preliminary Results

Let us denote by αi(T ), βj(T ) and γ`(T ), (i = 1, . . . , 6; j = 1, . . . , 6; ` =
1, 2, 3), functions of T , T > 0, such that

lim
T→∞

αi(T ) = lim
T→∞

βj(T ) = lim
T→∞

γ`(T ) = 0.
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Suppose that the solution x(t) of the equation (1) is bounded and globally
exponentially stable, then we have the following results.

Lemma 1. For T > 0, the following identities are valid:

(i) 1
T

∫ T
0 ẍ(t)

...
x (t)dt = α1(T );

(ii) 1
T

∫ T
0 ẍ(t)ẋ(t)dt = α2(T );

(iii) 1
T

∫ T
0 ẋ(t)x(t)dt = α3(T );

(iv) 1
T

∫ T
0 x(t)

...
x (t)dt = α4(T ),

(v) 1
T

∫ T
0 ẋ(t)

...
x (t)dt = α5(T )− 1

T

∫ T
0 ẍ2(t)dt;

(vi) 1
T

∫ T
0 x(t)ẍ(t)dt = α6(T )− 1

T

∫ T
0 ẋ2(t)dt.

Proof. Identities (i), (ii) and (iii) follow easily, since

2
T

∫ T
0

...
x (t)ẍ(t)dt = 2

T

[
ẍ2(T )− ẍ2(0)

]
;

2
T

∫ T
0 ẍ(t)ẋ(t)dt = 1

T

[
ẋ2(T )− ẋ2(0)

]
;

2
T

∫ T
0 ẋ(t)x(t)dt = 1

T

[
x2(T )− x2(0)

]
.

Integrating by parts the product of 1
T and each of

∫ T
0 x(t)

...
x (t)dt,

∫ T
0 ẋ(t)

...
x

(t)dt and
∫ T
0 x(t)ẍ(t)dt, we obtain identities (iv), (v) and (vi) respectively. �

Lemma 2. Let g(ẋ(t)) = bẋ(t) + ĝ(ẋ(t)), where b > 0 and ĝ(ẋ(t)) is the
non-linear part of g(ẋ(t)) . Suppose that g satisfies inequalities (3), then,
for T > 0,
(i) 1

T

∫ T
0 ẍ(t)g(ẋ(t))dt = β1(T );

(ii) 1
T

∫ T
0 ẋ(t)g(ẋ(t))dt ≥ b

T

∫ T
0 ẋ2(t)dt;

(iii) 1
T

∫ T
0

...
x (t)g(ẋ(t))dt = β2(T )− 1

T

∫ T
0 ẍ(t)dĝ(ẋ(t))dt− b

T

∫ T
0 ẍ2(t)dt;

and

(iv) | 1T
∫ T
0 x(t)g(ẋ(t))dt| ≤ β3(T ) + µ1

(
1
T

∫ T
0 ẋ2(t)dt

) 1
2
(

1
T

∫ T
0 x2(t)dt

) 1
2 .

Proof. As in Lemma 1, identity (i) follows from

1
T

∫ T

0
ẍ(t)g(ẋ(t))dt =

1
T

[G(ẋ(T ))−G(ẋ(0))] where G(z) =
∫ z

0
g(s)ds.

Also if g(z) = bz + ĝ(z), b > 0, then ĝ satisfies

(6) ĝ(0) = 0 0 ≤ ĝ(z1)− ĝ(z2)
z1 − z2

≤ µ1, (z1 6= z2).

Thus ĝ satisfies
z(t)ĝ(z(t)) ≥ 0, for all z(t).
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We therefore have

1
T

∫ T

0
ẋ(t)g(ẋ(t))dt ≥ b

T

∫ T

0
ẋ2(t)dt,

and it is (ii).
In a similar way, we obtain identity (iii), if we integrate by parts and we

take into account the identity (v) of Lemma 1 and we put

β2(T ) = bα5(T ) +
ẍ(T )ĝ(ẋ(T ))− ẍ(0)ĝ(ẋ(0))

T
.

Finally, by the definition of g(z) and Schwarz’s inequality, we obtain (iv)
with β3(T ) = bα3(T ). �

Lemma 3. Let h(x(t)) = cx(t)+ ĥ(x(t)), where c > 0 and ĥ(x(t)) is the
non-linear part of h(x(t)). Suppose that h satisfies inequalities (5). Then,
(i) 1

T

∫ T
0 ẋ(t)h(x(t))dt = β4(T );

(ii) 1
T

∫ T
0 x(t)h(x(t))dt ≥ c

T

∫ T
0 x2(t)dt;

(iii) 1
T

∫ T
0 ẍ(t)h(x(t))dt = β5(T )− 1

T

∫ T
0 ẋ(t)dĥ(ẋ(t))dt− c

T

∫ T
0 ẋ2(t)dt;

and
(iv) 1

T

∫ T
0

...
x (t)h(x(t))dt = β6(T ).

Proof. This is similar to the proof of Lemma 2. We use the fact that
h(0) = 0 and for x1(t) 6= x2(t);

0 ≤ h(x1(t))− h(x2(t))
x1(t)− x2(t)

≤ µ2.

�

5. Proof of the Main Results

Proof of Theorem 1. We multiply the equation (1) by 1
T ẍ(t) and inte-

grate it from 0 to T , and we obtain

1
T

∫ T

0

...
x (t)ẍ(t)dt +

a

T

∫ T

0
ẍ(t)dt +

1
T

∫ T

0
ẍ(t)g(ẋ(t))dt

+
1
T

∫ T

0
ẍ(t)h(x(t))dt =

1
T

∫ T

0
ẍ(t)q(t)dt.

By Lemmas 1, 2, 3 and Schwarz’s inequality, we have

α1(T ) +
a

T

∫ T

0
ẍ2(t)dt + β1(T ) + β5(T ) ≤ c + µ2

T

∫ T

0
ẍ2(t)dt

+
(

1
T

∫ T

0
ẍ2(t)dt

) 1
2
(

1
T

∫ T

0
q2(t)dt

) 1
2

.
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Taking limits as T →∞, we have

(7) a M2 ≤ A M + (c + µ2)L2

where

A2 = lim sup
T→∞

(
1
T

)
∫ T

0
q2(t)dt

is the mean-value of q(t) and M , L are as given in Section Two. Next, we
multiply the equation (1) by 1

T ẋ(t) and integrate from 0 to T . Then, by
Lemmas 1, 2, 3 and Schwarz’s inequality, we obtain

α5(T ) + aα3(T ) +
b

T

∫ T

0
ẋ2(t)dt + β4(T )

≤ 1
T

∫ T

0
ẍ2(t)dt +

(
1
T

∫ T

0
ẋ2(t)dt

) 1
2
(

1
T

∫ T

0
q2(t)dt

) 1
2

.

Taking limits as T →∞, we have

(8) bL2 ≤ AL + M2.

From inequality (7), we obtain

M ≤ 1
2a

(
A +

[
A2 + 4a(c + µ2)L2

] 1
2

)
.

Substituting this in (8) and solving for L, we have

(9) L ≤ A ω

where

ω =

(
a + [ c+µ1

a ]
1
2 +

[
a2 + b + 2(a(c + µ2))

1
2 + 3(ab−c−µ2)

a

] 1
2

)
2(ab− c− µ2)

.

At Last, when this is put in M , we have

(10) M ≤ A

2a

(
1 +

[
1 + 4a(c + µ2)ω2

] 1
2

)
.

For the remaining part of the proof, we multiply the equation (1) by
1
T x(t) and we integrate from 0 to T ; and making use of Lemmas 1, 2, 3 and
Schwarz’s inequality, and this way we obtain

α4(T ) + aα6(T ) +
c

T

∫ T

0
x2(t)dt− a

T

∫ T

0
ẋ2(t)dt ≤ µ1

(
1
T

∫ T

0
x2(t)dt

) 1
2

×
(

1
T

∫ T

0
ẋ2(t)dt

) 1
2

+
(

1
T

∫ T

0
q2(t)dt

) 1
2
(

1
T

∫ T

0
x2(t)dt

) 1
2

+ β3(T ).
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Taking limits as T →∞, we have

(11) c K2 ≤ (A + µ1L)K + a L2

where K is as given in Section Two. Substituting for L from inequality (9),
we obtain

K ≤ A

2a

(
1 + µ1ω +

[
(1 + µ1ω)2 + 4acω2

] 1
2

)
(12)

≤ A

c

[
1 +

(
µ1 + (ac)

1
2

)
ω
]
.

Finally, to complete the proof of the theorem, we multiply the equation
(1) by 1

T

...
x (t) and integrate from 0 to T . By Lemmas 1, 2, 3 and Schwarz’s

inequality, we have

1
T

∫ T

0

...
x (t)dt + aα1(T ) + β2(T ) + β6(T ) ≤ b + µ1

T

∫ T

0
ẍ2(t)dt

+
(

1
T

∫ T

0

...
x

2 (t)dt

) 1
2
(

1
T

∫ T

0
q2(t)dt

) 1
2

.

Taking limits as T →∞, we obtain

(13) N2 ≤ AN + (b + µ1)M2

where N is as given in Section 2. Substituting for M from inequality (10),
and solving for N , we have

N ≤ A

2a

(
a +

[
a2 + 2(b + µ1)

(
ω1 + 2a(c + µ2)ω2

)] 1
2

)
,

and the theorem is proved. �

Proof of Theorem 2. Let x(t) be a bounded and globally exponentially
stable solution of equation (2) and∫ x(t)

0
g1(s)ds = bx(t) + ĝ1(x(t)), b > 0,

then from the inequality

b ≤ 1
x(t)

∫ x(t)

0
g1(s)ds ≤ b + µ1, x(t) 6= 0,

we have
0 ≤ ĝ1(x(t))

x(t)
≤ µ1, (x(t) 6= 0).
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Now

1
T

∫ T

0
x(t)ẋ(t)g1(x(t))dt =

b

2T

∫ T

0
d(x2(t)) +

1
T

∫ T

0
x(t)dĝ1(x(t))

=
b

2T

∫ T

0
d(x2(t)) +

[x(T )ĝ1(x(t))− x(0)ĝ1(x(0))]
T

−

[
Ĝ1(x(T ))− Ĝ1(x(0))

]
T

:= γ1(T ) where Ĝ1(z) =
∫ z

0
g1(s)ds.

From the inequality

b ≤ 1
x(t)

∫ x(t)

0
g1(s)ds ≤ b + µ1, x(t) 6= 0,

follows 1
T

∫ T
0 ẋ2(t)g1(x(t))dt ≥ b

T

∫ T
0 ẋ2(t)dt. Also since

1
T

∫ T

0
ẍ(t)ẋ(t)g1(x(t))dt =

b

T

∫ T

0
ẍ(t)ẋ(t)dt +

1
T

∫ T

0
ẍ(t)dĝ1(x(t))

≤ (b + µ1)α2(T ),

then, inequality 1
T

∫ T
0 ẍ(t)ẋ(t)g1(x(t))dt ≤ γ2(T ) follows with γ2 = (b +

µ1)α2(T ). Finally, by Lemma 1 and the definition of g1(x(t)), we have

1
T

∫ T

0

...
x (t)ẋ(t)g1(x(t))dt = bα5(T )− b

T

∫ T

0
ẍ2(t)dt+

1
T

∫ T

0

...
x (t)dĝ1(x(t)).

But by Lemma 1,∣∣∣∣ 1
T

∫ T

0

...
x (t)dĝ1(x(t))

∣∣∣∣ ≤ µ1α5(T )− µ1

T

∫ T

0
ẍ2(t)dt.

Thus

1
T

∫ T

0

...
x (t)ẋ(t)g1(x(t))dt ≤ γ3(T )− b + µ1

T

∫ T

0
ẍ2(t)dt,

where γ3(T ) = (b + µ1)α5(T ).
For the completion of the Proof of the Theorem 2, let us proceed as

in the proof of the Theorem 1; we first multiply the equation (2) in turns
by 1

T ẍ(t) and 1
T ẋ(t). Integrating the resulting equation from 0 to T and

applying Lemmas 1 and 3, and Schwarz’s inequality and finally taking limits
as T →∞, we obtain

(14) aM1
2 ≤ AM1 + (c + µ2)L1

2
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and

(15) bL1
2 ≤ AL1 + M1

2.

These are equivalent to inequalities (7) and (8), respectively. Hence when
solved in a similar manner, we have

(16) L1 ≤ Aω

and

(17) M1 ≤
A

2a
ω1.

Secondly, we multiply the equation (2) by 1
T x(t) and integrate from 0 to

T . Using Lemmas 1 and 3, and Schwarz’s inequality, we obtain on taking
the limits as T →∞,

(18) cK1
2 ≤ AK1 + aL1

2.

Substituting for L1 from inequality (17), and solving for K1, we have

(19) K1 ≤
A

2c

[
1 + (1 + 4acω2)

1
2

]
.

At last, we multiply the equation (2) by 1
T

...
x (t) and integrate from 0 to

T . Again, using Lemmas 1, 3, 6 and Schwarz’s inequality, we obtain when
taking the limits as T →∞,

(20) N1
2 ≤ AN1 + (b + µ1)M1

2.

Making use of the estimation (19) we have

(21) N1 ≤
A

2a

(
a +

[
a2 + 2(b + µ1)

(
ω1 + 2a(c + µ2)ω2

)] 1
2

)
as required. K1, L1, M1, N1 and ω1 are as given in Sections Two and Three
respectively. This completes the proof of the Theorem 2. �

6. Remarks

We note that from the Theorems 1 and 2, the bounds for the mean-values
of the solutions are independent of the considered solutions. However, they
all depend on the mean-value of the forcing term q(t). This dependence
makes it possible to give conclusions such as the periodicity of solutions
whenever q(t) is periodic and have mean-value zero (see [8]-[9]).
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