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COMMON FIXED POINT OF MULTIVALUED

MAPPINGS WITHOUT CONTINUITY

Abstract: In this paper, we prove a common fixed point theo-
rem for single-valued and multivalued mappings on a metric space
using the minimal type commutativity condition. We show that
continuity of any mapping is not necessary for the existence of a
common fixed point.
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1. Introduction

Fixed point theory for single-valued and multivalued mappings have been
studied extensively and applied to diverse problems during the last few
decades. The interest on this subject was enhanced after the publication
of a paper by Nadler [9]. This theory provides techniques for solving a
variety of applied problems in mathematical sciences and engineering (e.g.
Kyzyska and Kubiaczyk [8], Sessa and Khan [16]).

Most of the fixed point theorems existing in the mathematical literature
deal with compatible and continuous mappings. So it would be natural ques-
tion: What about the mappings which are not compatible and continuous.
Also it is known that there are so many discontinuous functions which have
fixed point and the most surprising one is Dirichlet map defined on R (i. e.
fx = 1 if x ∈ Q and 0 otherwise, has 1 as a fixed point). These observa-
tions motivated several authors of the field to prove fixed point theorems for
noncompatible, discontinuous mappings.

Sessa [15] introduced the concept of weakly commuting maps. Jungck
[3] defined the notion of compatible maps in order to generalize the concept
of weak commutativity and showed that weakly commuting mappings are
compatible but the converse is not true.

Kaneko [5] extended the concept of weakly commuting mappings for mul-
tivalued set up. Kaneko and Sessa [6] extended the concept of compatibility
for single-valued mappings to the settings of single-valued and multivalued
mappings.
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Pant [10-13] initiated the study of noncompatible maps and introduced
pointwise R-weak commutativity of mappings in [10]. He also showed that
for single-valued mappings pointwise R-weak commutativity is equivalent to
weak compatibility at the coincidence points.

Shahzad and Kamran [17], Singh and Mishra [18] have independently
extended the idea of R-weak commutativity to the settings of single and
multivalued mappings.

Pathak, Cho and Kang [14] introduced the concept of R-weakly commut-
ing mappings of type Ag for single-valued mappings and showed that they
are not compatible.

Recently, Kamaran [4] extended the concept of R-weakly commuting
mappings of type Ag for multivalued mappings and introduced R-weakly
commuting mappings of type AT .

In their paper Kaneko [5] and Kaneko and Sessa [6] have assumed a pair
of single valued and a multivalued mappings which are continuous at X.
They have also remarked whether or not the continuity of the two mappings
is realy needed in the proof.

Asad and Ahmad [1] extended a result of Fisher [2] for a single-valued
mapping and two multivalued mappings under condition of weak commuta-
tivity or compatibility. They proved existence of a common fixed point by
assuming the continuity of single-valued mapping only.

In this paper, we prove a common fixed point theorem for two pairs of
single-valued and multivalued mappings by using the condition of R-weak
commutativity of type AT . We also show that existence of a common fixed
point can be proved without assuming continuity of any mapping. We im-
prove extend and generalize the results of Asad and Ahmad [1].

2. Preliminaries

Let (X, d) be a metric space and suppose that CB(X) denotes the set of
non-empty closed and bounded subsets of X.

For A, B in CB(X) we denote
D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}
D(x,A) = inf{d(x, a) : a ∈ A

H(A,B) = max{sup{D(a,B) : a ∈ A}, sup{D(A, b) : b ∈ B}}.
Kuratowski [7] showed that (CB(X),H) is a metric space with the dis-

tance function H, moreover (CB(X),H) is complete in the event that (X,
d) is complete.

Lemma 2.1. [9] Let A,B ∈ CB(X), then for ε > 0 and a ∈ A there
exists b ∈ B such that d(a, b) ≤ H(A,B)+ ∈. If A and B are compact then
one can find b ∈ B such that d(a, b) ≤ H(A,B).
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Definition 2.1. [5] Let (X, d) be a metric space, F : X → CB(X) and
T : X → X. Then the pair F, T is said to be weakly commuting if for each
x ∈ X, TF (x) ∈ CB(X) and H(FTx, TFx) ≤ D(Tx, Fx).

Definition 2.2. [6] Let (X, d) be a metric space, F : X → CB(X)
and T : X → X. Then the pair F, T is said to be compatible if and only if
TFx ∈ CB(X) for each x ∈ X and H(FTxn, TFxn) → 0 whenever {xn} is
a sequence in X such that Fxn → A ∈ CB(X) and Txn → t ∈ A.

Definition 2.3. [10] The mappings T : X → X and F : X → CB(X) are
said to be R-weakly commuting if, for given x ∈ X, TFx ∈ CB(X) and there
exists some positive real number R such that H(TFx, FTx) ≤ RD(Tx, Fx).

Definition 2.4. [4] The mappings T : X → X and F : X → CB(X) are
said to be R-weakly commuting of type AT at x ∈ X, if there exists some
positive real number R such that

D(TTx, FTx) ≤ RD(Tx, Fx)

. Here T and F are R-weakly commuting of type AT on X if the above
inequality holds for all x ∈ X. If F is a single-valued self mapping on X
this definition of R-weak commutativity reduces to that of Pathak, Cho and
Kang [14].

Example 2.1. Let X = [0, 1] and d be the usual metric on X. Define
T : X → X by Tx = x

2 for all x ∈ X and F : X → CB(X) by Fx = [0, x]
for all x ∈ X.
Let {xn} be a sequence in X such that xn → 0 as n →∞. Then lim

n→∞Txn =

0 ∈ {0} = limn→∞ Fxn and lim
n→∞H(TFxn, FTxn) = 0 so T and F are

compatible.
We have TTx = x

4 and FTx = [0, x
2 ]. Therefore T and F are R-weakly

commuting of type AT .

Example 2.2. Let X = [1,∞) and d be the usual metric on X. Define
T : X → X by Tx = 2x for all x ∈ X and F : X → CB(X) by Fx = [1, x]
for all x ∈ X.

Then TTx = 4x, FTx = [1, 2x]. Therefore D(TTx, FTX) = 2D(Tx, Fx)
for all x ∈ X and the mappings T and F are R-weakly commuting of type
AT on X.

Further there exists no sequence {xn}inX such that condition of com-
patibility is satisfied.

In view of Examples 2.1 and 2.2 we observe the following:

Remark 2.1. Compatible maps are R-weakly commuting of type AT

but converse is not true in general.
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Theorem A. [1] Let (X, d) be a complete metric space, F, G : X →
CB(X) and T : X → X such that the inequality

H(Fx,Gy) ≤ α
[D(Fx, Ty)]2 + [D(Gy, Tx)]2

D(Fx, Ty) + D(Gy, Tx)
+ β d(Tx, Ty)

holds for all x, y ∈ X, x 6= y, Fx 6= Fy, Gx 6= Gy; α, β ≥ 0, 2α + β <
1 whenever D(Fx, Ty) + D(Gy, Tx) 6= 0 and H(Fx, Gy) = 0 whenever
D(Fx, Ty) + D(Gy, Tx) = 0 and
(I) F (X) ∪G(X) ⊆ T (X),
(II) {F, T} and {G,T} are weakly commuting,
(III) T is continuous at X.
Then there exists a point z in X such that z = Tz ∈ Fz ∩Gz.

Theorem B. [1] Let F , G and T be the same as defined in Theorem A
and condition (II) is replaced by
(II’) {F, T} and {G,T} are compatible pairs.
Then there exists a point z in X such that z = Tz ∈ Fz ∩Gz.

3. Main Results

Theorem 3.1. Let (X, d) be a complete metric space. Let S, T : X → X
and F,G : X → CB(X) satisfying the following conditions:

(3.1) F (X) ⊆ S(X), G(X) ⊆ T (X),

(3.2) the pairs {F, T} and {G,S} are R− weakly commuting

of type AT at coincidence points in X,

(3.3) H(Fx,Gy) ≤ α
[D(Fx, Sy)]2 + [D(Gy, Tx)]2

D(Fx, Sy) + D(Gy, Tx)
+ βd(Tx, Sy),

x 6= y, Fx 6= Fy, Gx 6= Gy for all x, y ∈ X, α, β ≥ 0, 2α + β < 1, whenever
D(Fx, Sy) + D(Gy, Tx) 6= 0 and H(Fx, Gy) = 0, whenever D(Fx, Sy) +
D(Gy, Tx) = 0. Then there exists a point z in X such that z = Tz = Sz ∈
Fz ∩Gz.

Proof. Assume θ = α+β
1−α . Let x0 ∈ X and y1 be an arbitrary point in

Fx0. Choose x1 ∈ X such that y1 = Sx1. This is possible as F (X) ⊆ S(X).
By Lemma 2.1, we can find y2 ∈ Gx1 such that

d(y1, y2) ≤ H(Fx0, Gx1) +
1− α

1 + α
θ.

Choose x2 ∈ X such that y2 = Tx2. This is also possible as G(X) ⊆ T (X).
Also we can find y3 ∈ Fx2 such that

d(y2, y3) ≤ H(Fx2, Gx1) +
1− α

1 + α
θ2.
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Inductively, having selected y2n = Tx2n ∈ Gx2n−1, choose y2n+1 = Sx2n+1 ∈
Fx2n such that

d(y2n+1, y2n) ≤ H(Fx2n, Gx2n−1) +
1− α

1 + α
θ2n.

Then having selected y2n+1, choose y2n+2 = Tx2n+2 ∈ Gx2n+1 such that

d(y2n+1, y2n+2) ≤ H(Fx2n, Gx2n−1) +
1− α

1 + α
θ2n+1.

Thus for n ≥ 1, we have

d(y2n, y2n+1) ≤ H(Fx2n, Gx2n−1) +
1− α

1 + α
θ2n

≤ α
[D(Fx2n, Sx2n−1)]2 + [D(Gx2n−1, Tx2n)]2

D(Fx2n, Sx2n−1) + D(Gx2n−1, Tx2n)

+ βd(Tx2n, Sx2n−1) +
1− α

1 + α
θ2n,

≤ α[d(y2n, y2n+1) + d(y2n, y2n−1)] + βd(y2n, y2n−1) +
1− α

1 + α
θ2n.

So that

d(y2n, y2n+1) ≤ α + β

1− α
d(y2n, y2n−1) +

θ2n

1 + α
= θd(y2n, y2n−1) +

θ2n

1 + α
.

Similarly we can show that

d(y2n, y2n−1) ≤ θ d(y2n−1, y2n−2) +
θ2n−1

1 + α
.

Combining the above inequalities we have

d(yn+1, yn+2) ≤ θ2d(yn, yn−1) + 2
θn+1

1 + α
≤ ...... ≤ θnd(y1, y2) + n

θn+1

1 + α
.

Routine calculation shows that {yn} is a Cauchy sequence. Since X is
complete therefore there exists z ∈ X such that yn → z as n →∞ .

Since F (X) ⊆ S(X), there exists a point p ∈ X such that Sp = z. Since
z = lim

n→∞Sx2n+1 and Sx2n+1 ∈ Fx2n, therefore D(Fx2n, Sx2n+1) → 0 as

n →∞. By (3.3), we have

D(Gp, Sp) ≤ H(Fx2n, Gp) + D(Fx2n, Sp)

≤ α
[D(Fx2n, Sp)]2 + [D(Gp, Tx2n)]2

D(Fx2n, Sp) + D(Gp, Tx2n)]
+ βd(Tx2n, Sp) + D(Fx2n, Sp)

≤ α[D(Fx2n, Sx2n+1) + d(Sx2n+1, Sp) + D(Gp, Tx2n)]
+ βd(Tx2n, Sp) + D(Fx2n, Sx2n+1) + d(Sx2n+1, Sp).
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On letting n →∞ the above inequality yields D(Gp, z) ≤ αD(Gp, z), which
is a contradiction. Therefore z = Sp ∈ Gp that is p ∈ X is a coincidence
point of S and G. Since S and G are R weakly commuting of type AT

at coincidence point, therefore there exists some real number R such that
D(SSp, GSp) ≤ RD(Sp, Gp), which gives Sz ∈ Gz.

Since G(X) ⊆ T (X), there exists a point q ∈ X such that Tq = z. Since
z = lim

n→∞Tx2n and Tx2n ∈ Gx2n−1. Therefore D(Gx2n−1, Tx2n) → 0 as

n →∞. By (3.3), we have

D(Fq, Tq) ≤ H(Fq, Gx2n−1) + D(Gx2n−1, T q),

≤ α
[D(Fq, Sx2n−1)]2 + [D(Gx2n−1, T q)]2

D(Fq, Sx2n−1) + D(Gx2n−1, T q)
+ βd(Tq, Sx2n−1) + D(Gx2n−1, T q)

≤ α[D(Fq, Sx2n−1) + D(Gx2n−1, Tx2n) + d(Tx2n, T q)]
+ βd(Tq, Sx2n−1) + D(Gx2n−1, Tx2n) + d(Tx2n, T q).

On letting n →∞ the above inequality yields D(Fq, z) ≤ αD(Fq, z), which
is a contradiction. Therefore z = Tq ∈ Fq that is q ∈ X is a coincidence
point of T and F . Since T and F are R-weakly commuting of type AT

at coincidence point, therefore there exists some real number R such that
D(TTq, FTq) ≤ RD(Tq, Fq), which gives Tz ∈ Fz. By (3.3), we have

d(Sx2n+1, Sz) ≤ H(Fx2n, Gz)

≤ α
[D(Fx2n, Sz)]2 + [D(Gz, Tx2n)]2

D(Fx2n, Sz) + D(Gz, Tx2n)]
+ βd(Tx2n, Sz),

≤ α[D(Fx2n, Sz) + D(Gz, Tx2n)] + βd(Tx2n, Sz),
≤ α[d(y2n+1, Sz) + d(Sz, y2n)] + βd(y2n, Sz).

On letting n → ∞ the above inequality yields d(z, Sz) ≤ (2α + β)d(z, Sz),
contradiction giving there by Sz = z.

Now to show Tz = z, by (3.3), we have

d(Tz, Tx2n) ≤ H(Fz,Gx2n−1)

≤ α
[D(Fz, Sx2n−1)]2 + [D(Gx2n−1, T z)]2

D(Fz, Sx2n−1) + D(Gx2n−1, T z)
+ βd(Tz, Sx2n−1),

≤ α[D(Fz, Sx2n−1) + D(Gx2n−1, T z)] + βd(Tz, Sx2n−1),
≤ α[d(Tz, y2n−1) + d(y2n, T z)] + βd(Tz, y2n−1).

On letting n → ∞ the above inequality yields d(Tz, z) ≤ (2α + β)d(Tz, z),
which is a contradiction. So we have Tz = z. Combining the results we
have z = Tz = Sz ∈ Fz ∩Gz. This completes the proof. ¥
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Remark 3.1. Theorem 3.1 is extension, improvement and generalization
of Theorem A and Theorem B.

Remark 3.2. (i) For α = 0, we get an extension of the well known
Banach fixed point theorem.

(ii) For β = 0, we get a new result.

If we put S = T in Theorem 3.1, we have the following:

Corollary 3.2. Let (X, d) be a complete metric space. Let T : X → X
and F,G : X → CB(X) satisfying the following conditions:

(3.4) F (X) ⊆ T (X), G(X) ⊆ T (X),

(3.5) the pairs {F, T} and {G,S} are R− weakly commuting

of type AT at coincidence points in X,

(3.6) H(Fx, Gy) ≤ α
[D(Fx, Sy)]2 + [D(Gy, Tx)]2

D(Fx, Sy) + D(Gy, Tx)
+ βd(Tx, Sy),

x 6= y, Fx 6= Fy, Gx 6= Gy for all x, y ∈ X, α, β ≥ 0, 2α + β < 1, whenever
D(Fx, Sy) + D(Gy, Tx) 6= 0 and H(Fx, Gy) = 0, whenever D(Fx, Sy) +
D(Gy, Tx) = 0. Then there exists a point z in X such that z = Tz = Sz ∈
Fz ∩Gz.

Then there exists a point z in X such that z = Tz ∈ Fz ∩Gz.

Remark 3.3. Corollary 3.2 improves Theorem A and Theorem B in the
sense that compatibility of pairs {F, T} and {G,T} are replaced by a weaker
condition that is R-weak commutativity of type AT and the continuity of
any mapping is not required.

Remark 3.4. The condition in the hypothesis of Theorem 3.1 and Corol-
lary 3.2 x 6= y, Fx 6= Fy, Gx 6= Gy is necessary since the Theorem 3.1 and
Corollary 3.2 fail for F and G taken as constant mappings.
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