
F A S C I C U L I M A T H E M A T I C I

Nr 37 2007

Adrian MichaÃlowicz

ON THE STRONG APPROXIMATION OF FUNCTIONS

BY THE BERNSTEIN POLYNOMIALS

Abstract: In this note we introduce the strong differences of
function and its Bernstein polynomials and give approximation
theorems for them.
This note is motivated by results on the strong summability of
trigonometric Fourier series given in [2] and by the paper [5].
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1. The Bernstein polynomials of function
of one variable

1.1. Let C(I) be the space of real-valued functions f continuous on the
interval I = [0, 1] with the norm

(1) ‖f‖ = max
x∈I

|f(x)|

It is know ([1],[3],[4]) that the Bernstein polynomials of f ∈ C(I) are
defined by the formula

(2) Bn(x; f) =
n∑

k=0

pn,k(x)f
(

k

n

)
, x ∈ I, n ∈ N = {1, 2, . . .},

where

(3) pn,k(x) =
(

n

k

)
xk(1− x)n−k, 0 ≤ k ≤ n.

From (2) and (3) it follows that

(4)
n∑

k=0

pn,k(x) = 1, x ∈ I, n ∈ N,

and

(5) Bn(x; f)− f(x) =
n∑

k=0

pn,k(x)
(

f

(
k

n

)
− f(x)

)
,
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for every f ∈ C(I), x ∈ I and n ∈ N. Moreover, it is known ([1]) that

(6) ‖Bn(f ; ·)− f(·)‖ ≤ 3
2
ω

(
f ;n−1/2

)
, n ∈ N,

for every f ∈ C(I), where ω(f ; ·) is the modulus of continuity of f defined
by

(7) ω(f ; t) = sup{|f(x)− f(y)| : x, y ∈ I, |x− y| ≤ t}, t ∈ I.

1.2. Similarly as in [2] and [5] we introduce the following strong difference
of f ∈ C(I) and Bn(f)

(8) Hq
n(f ; x) :=

(
n∑

k=0

pn,k(x)
∣∣∣∣f

(
k

n

)
− f(x)

∣∣∣∣
q
)1/q

, x ∈ I, n ∈ N.

It is obvious that Hq
n is well defined for every f ∈ C(I), x ∈ I, n ∈ N and

q > 0 and moreover by (1),(4),(5) and (8) we have

‖Hq
n(f)‖ ≤ 2‖f‖ , n ∈ N,

and

(9) ‖Bn(f ; x)− f(x)‖ ≤ ‖H1
n(x)‖ , n ∈ N.

Using the Hölder inequality and (4) we easily obtain the following.

Lemma 1. For every f ∈ C(I) and 0 < q < p < ∞ we have

Hq
n(f ; x) ≤ Hp

n(f ; x), x ∈ I, n ∈ N,

which implies
‖Hq

n(f)‖ ≤ ‖Hp
n(f)‖ for n ∈ N.

In this paper we shall apply the following auxiliary inequality.

Lemma 2. For every s ∈ N there exists a positive constants M1(s)
depending only on s such that

(10) max
x∈I

n∑

k=0

pn,k(x)
∣∣∣∣
k

n
− x

∣∣∣∣
s

≤ M1(s) · n−s/2 for n ∈ N.

Proof. In [4], p.248, was proved the following inequality

(11)

∣∣∣∣∣
n∑

k=0

pn,k(x)(k − nx)2s

∣∣∣∣∣ ≤ M2(s)ns, x ∈ I, n ∈ N,
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for every s ∈ N , where M2(s) is a positive constant depending only on s.
Applying the Hölder inequality, we get

n∑

k=0

pn,k(x)
∣∣∣∣
k

n
− x

∣∣∣∣
s

≤ n−s

(
n∑

k=0

(x)(k − nx)2s

)1/2( n∑

k=0

pn,k(x)

)1/2

,

which by (4) and (11) yields the inequality (10). ¥
1.3. Now we shall prove the main theorem.

Theorem 1. Suppose that q > 0 is a fixed number. Then there exists a
positive constant M3(q), depending only on q, such that for every f ∈ C(I)
and n ∈ N there holds

(12) ‖Hq
n(f ; ·)‖ ≤ M3(q)ω

(
f ; n−1/2

)
,

where ω(f ; ·) is defined by (7).

Proof. a) First let q ∈ N . Then by (7) and the inequality ω(f ; λt) ≤
(λ + 1)ω(f ; t) for λ, t ∈ I (see [4,5]) we have

∣∣∣∣f
(

k

n

)
− f(x)

∣∣∣∣ ≤ ω

(
f ;

∣∣∣∣
k

n
− x

∣∣∣∣
)
≤ ω

(
f ;n−1/2

)(√
n

∣∣∣∣
k

n
− x

∣∣∣∣ + 1
)

and by (8) and the Minikowski inequality we can write

Hq
n(f ; x) ≤ ω(f ; n−1/2)

[
n∑

k=0

pn,k(x)
(√

n

∣∣∣∣
k

n
− x

∣∣∣∣ + 1
)q

]1/q

≤ ω(f ; n−1/2)


√n

(
n∑

k=0

pn,k(x)
∣∣∣∣
k

n
− x

∣∣∣∣
q
)1/q

+

(
n∑

k=0

pn,k(x)

)1/q

 .

Applying (4) and Lemma 2, we immediately obtain the desired assertion
(12) for q ∈ N .

b) Let 0 < q /∈ N . Then 0 < q < [q] + 1, where [q] is the integral part of
q. Since ([q]+1) ∈ N , we have by Lemma 1 and (12) with the power [q]+1:

‖Hq
n(f)‖ ≤ ‖H [q]+1

n (f)‖ ≤ M3(q)ω(f ;n−1/2) for n ∈ N.

Thus the proof is completed. ¥
From Theorem 1 we derive the following two corollaries

Corollary 1. For every f ∈ C(I) and q > 0 there holds

lim
n→∞ ‖H

q
n(f)‖ = 0.



30 Adrian MichaÃlowicz

Corollary 2. For every f ∈ C(I) having the derivative f ′ bounded on I
and for every q > 0 we have

|Hq
n(f)‖ = O(n−1/2), n ∈ N.

Remark. The inequality (9) shows that Theorem 1 generalizes the re-
sult (6).

2. The Bernstein polynomials of function
of two variables

Considering functions of two variables we shall prove analogues of results
given in Section 1.

2.1. Let C(I2) be the space of all real-valued functions f continuous on
I2 = I × I with the norm

(13) ‖f‖ = max
(x,y)∈I2

|f(x, y)|.

For f ∈ C(I2) we define modulus of continuity ([6])

ω(f ; t, s) = sup{|f(x, y)− f(u, v)| : (x, y), (u, v) ∈ I2,(14)
|x− y| ≤ t, |y − v| ≤ s}

for t, s ∈ I. It is known ([6]) that lim t→0+
s→0+

ω(f ; t, s) = 0, for every f ∈ C(I2).

Moreover for every f ∈ C(I2) and 0 ≤ s1 < s2 < 1 , 0 ≤ t1 < t2 < 1 we
have

ω(f ; s1, t1) ≤ ω(f ; s2, t1) ≤ ω(f ; s2, t2),
ω(f ; s1, t1) ≤ ω(f ; s1, t2) ≤ ω(f ; s2, t2)

and

ω(f ; s, t) ≤ ω(f ; s, 0) + ω(f ; 0, t),
ω(f ;λ1s, λ2t) ≤ (λ1 + 1)ω(f ; 0, t) + (λ2 + 1)ω(f ; 0, t)

≤ (λ1 + λ2 + 2)ω(f ; s, t),

for λ1s, λ2t ∈ I.

2.2. We shall consider the following Bernstein polynomials of f ∈ C(I2):

(15) Bm,n(f ; x, y) =
m∑

j=0

n∑

k=0

pm,j(x)pn,k(y) f

(
j

m
,
k

n

)
,
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(x, y) ∈ I2, m,n ∈ N , where pm,j(x) and pn,k(y) are defined by (3) (see [3]).
By (4) and (15) we have

Bm,n(f ; x, y)− f(x, y)(16)

=
m∑

j=0

n∑

k=0

pm,j(x)pn,k(y)
[
f

(
j

m
,
k

n

)
− f(x, y)

]
,

for (x, y) ∈ I2 and m,n ∈ N . In [3] was proved that if f ∈ C(I2), then

(17) ‖Bn,n(f ; ·, ·)− f(·; ·)‖ ≤ 3ω(f ; n−1/2, n−1/2), n ∈ N.

From the proof of this inequality ([3]) we deduce that for Bm,n(f) and
f ∈ C(I2 there holds

‖Bm,n(f ; ·, ·)− f(·, ·)‖ ≤ 3ω(f ; m−1/2, n−1/2, m, n ∈ N.

2.3. Similarly to Section 1 we introduce strong differences of f ∈ C(I2)
and Bm,n(f):

(18) Hq
m,n(f ; x, y) :=




m∑

j=0

n∑

k=0

pm,j(x)pn,k(y)
∣∣∣∣f

(
j

m
,
k

n

)
− f(x, y)

∣∣∣∣
q



1/q

,

(x, y) ∈ I2,m, n ∈ N and q > 0. Applying (13),(16) and (18) and arguing
as in Section 1, we get

‖Hq
m,n(f)‖ ≤ 2‖f‖, q > 0

(19) ‖Bm,n(f)− f‖ ≤ ‖H1
m,n(f)‖

(20) ‖Hq
m,n(f)‖ ≤ ‖Hp

m,n(f)‖, 0 < q < p < ∞

for every f ∈ C(I2) and m,n ∈ N.

2.4. Now we shall prove an analogue of (13).

Theorem 2. Suppose that q > 0 is a fixed number. Then there exists a
positive constant M4(q), depending only on q, such that for every f ∈ C(I2)
and n ∈ N there holds

(21) ‖Hq
m,n(f)‖ ≤ M4(q)ω(f ; m−1/2, n−1/2),

where ω(f) is the modulus of continuity defined by (14).
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Proof. a) Let q ∈ N . By (14) and properties of the modulus of continuity
given in Section 2.1, we have

∣∣∣∣f
(

j

m
,
k

n

)
− f(x, y)

∣∣∣∣ ≤ ω

(
f ;

∣∣∣∣
j

m
− x

∣∣∣∣ ,

∣∣∣∣
k

n
− y

∣∣∣∣
)

≤ ω

(
f ;

∣∣∣∣
j

m
− x

∣∣∣∣ , 0
)

+ ω

(
f ; 0,

∣∣∣∣
k

n
− y

∣∣∣∣
)

≤ ω(f ;m−1/2, 0)
(√

m

∣∣∣∣
j

m
− x

∣∣∣∣ + 1
)

+

+ ω(f ; 0, n−1/2)
(√

n

∣∣∣∣
k

n
− y

∣∣∣∣ + 1
)

≤ ω(f ;m−1/2, n−1/2)
(√

m

∣∣∣∣
j

m
− x

∣∣∣∣ +
√

n

∣∣∣∣
k

n
− y

∣∣∣∣ + 2
)

Using the above inequality to (18) and by the Minikowski inequality, we get

Hq
n,n(f ;x, y) ≤ ω(f ; m−1/2, n−1/2)

{
√

m




m∑

j=0

n∑

k=0

pm,j(x)pn,k(y)
∣∣∣∣
j

m
− x

∣∣∣∣
q



1/q

+
√

n




m∑

j=0

n∑

k=0

pm,j(x)pn,k(y)
∣∣∣∣
k

n
− y

∣∣∣∣
q



1/q

+




m∑

j=0

n∑

k=0

pm,j(x)pn,k(y)




1/q }

:= ω(f ; m−1/2, n−1/2){Am,n,1(x, y) + Am,n,2(x, y) + Am,n,3(x, y)}
for (x, y) ∈ I2 and n ∈ N . But by (4) and Lemma 2 we can write

Am,n,1(x, y) =
√

m




m∑

j=0

pm,j(x)
∣∣∣∣
j

m
− x

∣∣∣∣
q



1/q(
n∑

k=0

pn,k(y)

)1/q

≤
√

M1(q),

Am,n,2(x, y) =
√

n




m∑

j=0

pm,j(x)




1/q(
n∑

k=0

pn,k(y)
∣∣∣∣
k

n
− y

∣∣∣∣
q
)1/q

≤
√

M1(q),

Am,n,3(x, y) = 1,

for all (x, y) ∈ I2 and m,n ∈ N . Combining these we obtain (21) for q ∈ N .

b) If 0 < q /∈ N, then by (20) and (21) for [q] + 1 (analogously as in the
proof of Theorem 1) we have

‖Hq
m,n(f)‖ ≤ ‖H [q]+1

m,n (f)‖ ≤ M4(q)ω
(
f ; m−1/2, n−1/2

)
, m, n ∈ N,



On the strong approximation of functions . . . 33

which completes the proof. ¥

Theorem 2 implies the following

Corollary 3. For every f ∈ C(I2) and q > 0 there holds

lim
m,n→∞ ‖H

q
m,n(f)‖ = 0.

If f ∈ C(I2) is function having partial derivatives f ′x and f ′y bounded on I2,
then

‖Hq
m,n(f)‖ = O

(
m−1/2 + n−1/2

)
as m,n ∈ N.

Finally we remark that inequality (19) and Theorem 2 with q = 1 yield

‖Bm,n(f)− f‖ ≤ M1(1)ω
(
f ; m−1/2, n−1/2

)
for f ∈ C(I2) , m, n ∈ N,

Hence we see that Theorem 2 generalizes the result (17).
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