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Abstract: In the present paper we study the existence, unique-
ness and other properties of soltions of a certain higher order
Volterra-Fredholm integrodifferential equation. The well known
Banach fixed point theorem coupled with Bilecki type norm and
the new integral inequality with explicit estimate are used to es-
tablish the results.
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1. Introduction

Consider the initial value problem (IVP for short) for higher order
Volterra-Fredholm integrodifferential equation of the form

(1.1) x(n) (t) = F
(
t, x (t) , x′ (t) , ..., x(n−1) (t) , (Ax) (t) , (Bx) (t)

)
,

for t ∈ I = [t0, b] , 0 ≤ t0 < b, with the given initial conditions

(1.2) x(k) (t0) = ck, k = 0, 1, ..., n− 1,

where

(1.3) (Ax) (t) =

t∫

t0

k1 (t, τ)h1

(
τ, x (τ) , x′ (τ) , ..., x(n−1) (τ)

)
dτ,

(1.4) (Bx) (t) =

b∫

t0

k2 (t, τ)h2

(
τ, x (τ) , x′ (τ) , ..., x(n−1) (τ)

)
dτ.

In (1.1)-(1.4), F ∈ C
(
I ×Rn+2, R

)
; for i = 1, 2 and t0 ≤ τ ≤ t, ki ∈

C
(
I2, R

)
, hi ∈ C (I ×Rn, R) are given functions and ck are given real con-

stants. The equation (1.1) considered in this paper is in the general sprit
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of the investigations in [4, 5, 7-9, 12, 14]. In particular, if we impose on F
various meanings, it is apparent that the equation (1.1) has a great diversity.

The problems of existence, uniqueness and other properties of solutions
of special forms of IVP (1)-(2) and its variants have been studied by many
authors under a variety of hypotheses by using different techniques, see
[4,5,7-9, 12-15] and some of the references cited therein. Our main objective
here is to study the existence, uniqueness and other properties of solutions of
IVP (1)-(2). The analysis used in the proofs is based on the applications of
the well known Banach fixed point theorem (see [3,6]) coupled with Bilecki
type norm (see [1]) and the new integral inequality with explicit estimate,
recently established by the present author in (see [11], Theorem 1.5.3, part
(c2), p.47).

2. Existence and uniqueness

Let E = R× ...×R (n times) be the product space. For continuous func-

tions u(j) (t) : I → R (j = 0, 1, ..., n− 1) we denote |u (t)|E =
n−1∑
j=0

∣∣u(j) (t)
∣∣,

for
(
u (t) , u′ (t) , ..., u(n−1) (t)

) ∈ E, t ∈ I. Let G be a space of those func-
tions

(
u (t) , u′ (t) , ..., u(n−1) (t)

) ∈ E which are continuous for t ∈ I and
fulfil the condition

(2.1) |u (t)|E = o (exp (λt)) , t ∈ I,

where λ is a positive constant. In the space G we define the norm (see [1])

(2.2) |u|G = sup
t∈I

{ |u (t)|E exp (−λt)} .

It is easy to see that G with norm defined by (2.2) is a Banach space. We
note that the condition (2.1) implies that there exists a constant N0 ≥ 0
such that

|u (t)|E ≤ N0 exp (λt) .

Using this fact in (6), we observe that

(2.3) |u|G ≤ N0.

It is easy to observe that the solution x(t) of IVP (1.1)-(1.2) and its deriv-
atives are equivalent to the integral equations

(2.4) x(j) (t) =
n−1∑

i=j

ci (t− t0)
i−j

(i− j)!
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+

t∫

t0

(t− s)n−j−1

(n− j − 1)!
F

(
s, x (s) , x′ (s) , ..., x(n−1) (s) , (Ax) (s) , (Bx) (s)

)
ds,

for 0 ≤ j ≤ n− 1.
Our result on the existence of a unique solution of IVP (1)-(2) is embodied

in the following theorem.

Theorem 1. Assume that
(i) the functions F, hi (i = 1, 2) satisfy the conditions

(2.5) |F (t, u0, u1, ..., un−1, v1, v2)− F (t, w0, w1, ..., wn−1, z1, z2)|

≤ p (t)




n−1∑

j=0

|uj − wj |+ |v1 − z1|+ |v2 − z2|

 ,

(2.6) |hi (t, u0, u1, ..., un−1)− hi (t, w0, w1, ..., wn−1)|

≤ qi (t)
n−1∑

j=0

|uj − wj |,

where p, qi ∈ C (I,R+) ;R+ = [0,∞) ,
(ii) there exists a constant α such that 0 ≤ α < 1 and

(2.7)
n−1∑

j=0

t∫

t0

(t− s)n−j−1

(n− j − 1)!
p (s) [exp (λs) + h∗1 (s) + h∗2 (s)] ds ≤ α exp (λt) ,

for t ∈ I, where

(2.8) h∗1 (t) =

t∫

t0

|k1 (t, τ)|q1 (τ) exp (λτ) dτ,

h∗2 (t) =

b∫

t0

|k2 (t, τ)|q2 (τ) exp (λτ) dτ,

and λ is as given in (2.1),
(iii) there exists a nonnegative constant P such that

(2.9) h (t) +
n−1∑

j=0

t∫

t0

(t− s)n−j−1

(n− j − 1)!
|F (s, 0, 0, ..., 0, (A0) (s) , (B0) (s))| ds

≤ P exp (λt) ,
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where

(2.10) h (t) =
n−1∑

j=0




n−1∑

i=j

|ci| (t− t0)
i−j

(i− j)!


,

and λ is as given in (2.1).

Then the IVP (1.1)-(1.2) has a unique solution x(t) in G on I.

Proof. Let x ∈ G and define the operator

(2.11) (Tx) (t) =
n−1∑

i=0

(t− t0)
i

i!

+

t∫

t0

(t− s)n−1

(n− 1)!
F

(
s, x (s) , x′ (s) , ..., x(n−1) (s) , (Ax) (s) , (Bx) (s)

)
ds.

Differentiating both sides of (2.11) with respect to t , it is easy to observe
that

(2.12) (Tx)(j) (t) =
n−1∑

i=j

ci (t− t0)
i−j

(i− j)!

+

t∫

t0

(t− s)n−j−1

(n− j − 1)!
F

(
s, x (s) , x′ (s) , ..., x(n−1) (s) , (Ax) (s) , (Bx) (s)

)
ds,

for 0 ≤ j ≤ n − 1. Evidently, (Tx)(j) (t) are continuous on I . Now, we
shall show that T maps G into itself. We verify that (2.1) is fulfilled. From
(2.12), (2.9), (2.5) we have

(2.13) |(Tx) (t)|E =
n−1∑

j=0

∣∣∣(Tx)(j) (t)
∣∣∣

≤ h (t) +
n−1∑

j=0

t∫

t0

(t− s)n−j−1

(n− j − 1)!
|F (s, 0, 0, ..., 0, (A0) (s) , (B0) (s))| ds

+
n−1∑

j=0

t∫

t0

(t− s)n−j−1

(n− j − 1)!

∣∣∣F
(
s, x (s) , x′ (s) , ..., x(n−1) (s) , (Ax) (s) , (Bx) (s)

)

− F (s, 0, 0, ..., 0, (A0) (s) , (B0) (s))| ds

≤ P exp (λt) +
n−1∑

j=0

t∫

t0

(t− s)n−j−1

(n− j − 1)!
p (s) [|x (s)|E
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+ |(Ax) (s)− (A0) (s)|+ |(Bx) (s)− (B0) (s)|] ds

≤ P exp (λt) +
n−1∑

j=0

t∫

t0

(t− s)n−j−1

(n− j − 1)!
p (s) [exp (λs) |x|G

+ |(Ax) (s)− (A0) (s)|+ |(Bx) (s)− (B0) (s)|] ds.

From (1.3), (2.6) and (2.8) we observe that

(2.14) |(Ax) (s)− (A0) (s)| ≤
s∫

t0

|k1 (s, τ)|

×
∣∣∣h1

(
τ, x (τ) , x′ (τ) , ..., x(n−1) (τ)

)
− h1 (τ, 0, 0, ..., 0)

∣∣∣ dτ

≤
s∫

t0

|k1 (s, τ)|q1 (τ) [exp (λτ) |x (τ)|E exp (−λτ)] dτ

≤
s∫

t0

|k1 (s, τ)|q1 (τ) [exp (λτ) |x|G] dτ = |x|G h∗1 (s) .

Similarly, from (1.4), (2.6) and (2.8) we observe that

(2.15) |(Bx) (s)− (B0) (s)| ≤ |x|G h∗2 (s) .

From (2.13), (2.14), (2.15) and (2.3), (2.7) we observe that

(2.16) |(Tx) (t)|E ≤ P exp (λt)

+
n−1∑

j=0

t∫

t0

(t− s)n−j−1

(n− j − 1)!
p (s) [exp (λs) + h∗1 (s) + h2 (s)] |x|G ds

≤ P exp (λt) + N0α exp (λt) = [P + N0α] exp (λt) .

From (2.16) it follows that Tx ∈ G. This proves that T maps G into itself.

Now, we shall show that the operator T is a contraction map. Let
x, y ∈ G. From (2.12) and (2.5) we have

(2.17) |(Tx) (t)− (Ty) (t)|E =
n−1∑

j=0

∣∣∣(Tx)(j) (t)− (Ty)(j) (t)
∣∣∣

≤
n−1∑

j=0

t∫

t0

(t− s)n−j−1

(n− j − 1)!

∣∣∣F
(
s, x (s) , x′ (s) , ..., x(n−1) (s) , (Ax) (s) , (Bx) (s)

)
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−F
(
s, y (s) , y′ (s) , ..., y(n−1) (s) , (Ay) (s) , (By) (s)

)∣∣∣ ds

≤
n−1∑

j=0

t∫

t0

(t− s)n−j−1

(n− j − 1)!
p (s) [|x (s)− y (s)|E

+ |(Ax) (s)− (Ay) (s)|+ |(Bx) (s)− (By) (s)|] ds

≤
n−1∑

j=0

t∫

t0

(t− s)n−j−1

(n− j − 1)!
p (s) [exp (λs) |x− y|G

+ |(Ax) (s)− (Ay) (s)|+ |(Bx) (s)− (By) (s)|] ds.

Following the proofs of (2.14) and (2.15) we obtain

(2.18) |(Ax) (s)− (Ay) (s)| ≤ |x− y|G h∗1 (s) ,

and

(2.19) |(Bx) (s)− (By) (s)| ≤ |x− y|G h∗2 (s) .

Using (2.18), (2.19) in (2.17) and the condition (2.7) we get

(2.20) |(Tx) (t)− (Ty) (t)|E

≤ |x− y|G
n−1∑

j=0

t∫

t0

(t− s)n−j−1

(n− j − 1)!
p (s) [exp (λs) + h∗1 (s) + h∗2 (s)]ds

≤ |x− y|G α exp (λt) .

Consequently, from (2.20) we have

|Tx− Ty|G ≤ α |x− y|G .

Since α < 1 , it follows from the Banach fixed point theorem (see [3, p.37])
that T has a unique fixed point in G . The fixed point of T is however a
solution of IVP (1.1)-(1.2). The proof is complete. ¥

Remark 1. We note that, the norm | . |G defined by (2.2) was first used
by Bielecki [1] (see [2] for developments related to this topic), and has the
role of improving the length of the interval on which the existence is assured.
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3. Properties of solutions

We need the following new inequality, recently established in [11, p.47] to
study various properties of solutions of IVP (1.1)-(1.2). We shall state and
prove it in the following lemma for completeness. For a detailed account on
such inequalities, see [10, 11].

Lemma (Pachpatte [11]). Let u (t) , f (t) , g (t) , h (t) ∈ C (I,R+) and
suppose

(3.1) u (t) ≤ c +

t∫

t0

f (s)


u (s) +

s∫

t0

g (σ) u (σ) dσ +

b∫

t0

h (σ) u (σ) dσ


ds,

for t ∈ I , where c ≥ 0 is a constant. If

(3.2) d =

b∫

t0

h (σ) exp




σ∫

t0

[f (τ) + g (τ)] dτ


 dσ < 1,

then

(3.3) u (t) ≤ c

1− d
exp




t∫

t0

[f (s) + g (s)] ds


 ,

for t ∈ I.
Proof. Define a function z(t) by the right side of (3.1). Then z (t0) = c,

u (t) ≤ z (t) and

z′ (t) = f (t)


u (t) +

t∫

t0

g (σ)u (σ) dσ +

b∫

t0

h (σ)u (σ) dσ




≤ f (t)


z (t) +

t∫

t0

g (σ)z (σ) dσ +

b∫

t0

h (σ)z (σ) dσ


 ,

for t ∈ I. Define a function v(t) by

v (t) = z (t) +

t∫

t0

g (σ)z (σ) dσ +

b∫

t0

h (σ)z (σ) dσ,

then we observe that z (t) ≤ v (t), z′ (t) ≤ f (t) v (t),

(3.4) v (t0) = c +

b∫

t0

h (σ)z (σ) dσ,
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and

v′ (t) = z′ (t) + g (t) z (t) ≤ f (t) v (t) + g (t) z (t) ≤ [f (t) + g (t)] v (t) ,

which implies

(3.5) v (t) ≤ v (t0) exp




t∫

t0

[f (s) + g (s)] ds


 ,

for t ∈ I. Using the fact that z (t) ≤ v (t) and (3.5) on the right side of (3.4)
and in view of (3.2), it is easy to observe that

(3.6) v (t0) ≤ c

1− d
.

Using (3.6) in (3.5) and the fact that u (t) ≤ z (t) we get the desired inequal-
ity in (3.3). ¥

Remark 2. If we take (i) g(t) = 0, (ii) h(t) = 0, then we get the new
inequalities which can be used conveniently in certain situations.

The following theorem deals with the estimate on the solution of IVP
(1.1)-(1.2).

Theorem 2. Assume that the functions F , ki, hi (i = 1, 2) satisfy the
conditions

(3.7) |F (t, u0, u1, ..., un−1, v1, v2)| ≤ p (t)




n−1∑

j=0

|uj |+ |v1|+ |v2|

 ,

(3.8) |ki (t, s)| ≤ Mi,

(3.9) |hi (t, u0, u1, ..., un−1)| ≤ qi (t)
n−1∑

j=0

|uj | ,

where Mi ≥ 0 are constants and p, qi ∈ C (I,R+). Let

(3.10) d′ =

b∫

t0

M2q2 (σ) exp




σ∫

t0

[Np (s) + M1q1 (s)] ds


 dσ < 1,

where

(3.11) N =
n−1∑

j=0

1
(n− j − 1)!

(b− t0)
n−j−1 .



On higher order Volterra-Fredholm . . . 43

If x(t) is any solution of IVP (1.1)-(1.2), then

(3.12)
n−1∑

j=0

∣∣∣x(j) (t)
∣∣∣ ≤ M

1− d′
exp




t∫

t0

[Np (s) + M1q1 (s)] ds


 ,

for t ∈ I , where

(3.13) M =
n−1∑

j=0




n−1∑

i=j

|ci| (b− t0)
i−j

(i− j)!


.

Proof. The solution x(t) of IVP (1.1)-(1.2) and its derivatives satisfy

the equivalent integral equations in (2.4). Let u(t) =
n−1∑
j=0

|x(j)(t)| , t ∈ I.

Then from (2.4) and the hypotheses, we observe that

(3.14) u(t) ≤
n−1∑

j=0




n−1∑

i=j

|ci|(t− t0)i−j

(i− j)!


 +

n−1∑

j=0

t∫

t0

(t− s)n−j−1

(n− j − 1)!

× |F (s, x(s), x′(s), ..., x(n−1)(s), (Ax)(s), (Bx)(s))|ds

≤
n−1∑

j=0




n−1∑

i=j

|ci| (b− t0)
i−j

(i− j)!




+
n−1∑

j=0

t∫

t0

(b− t0)
n−j−1

(n− j − 1)!
p (s)




n−1∑

j=0

∣∣∣x(j) (s)
∣∣∣ + |(Ax) (s)|+ |(Bx) (s)|


ds

≤ M +

t∫

t0

Np (s)


u (s) +

s∫

t0

M1q1 (τ)u (τ) dτ +

b∫

t0

M2q2 (τ)u (τ) dτ


ds.

Now, in view of hypotheses (3.10), an application of Lemma to (3.14)
yields (3.12). The proof is complete. ¥

Remark 3. We note that the inequality (3.12) gives the bounds in terms
of known functions, which majorizes the solution x(t) of IVP (1.1)-(1.2) as
well as its derivatives x(j) (t) (j = 1, ..., n − 1) for t ∈ I. If the right side
in (3.12) is finite, then the solution x(t) as well as its derivatives x(j) (t) are
bounded in I .

Next, by applying Lemma we establish the uniqueness of solutions of IVP
(1.1)-(1.2).
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Theorem 3. Assume that the functions F, hi (i = 1, 2) satisfy the con-
ditions (2.5), (2.6) and the functions ki (i = 1, 2) satisfy (3.8). Let d′ be as
in (3.10). Then the IVP (1.1)-(1.2) has at most one solution on I .

Proof. Let x(t) and y(t) be two solutions of IVP (1.1)-(1.2) on I and

v (t) =
n−1∑
j=0

∣∣x(j) (t)− y(j) (t)
∣∣ . Then it is easy to observe that

(3.15) v (t) ≤
n−1∑

j=0

t∫

t0

(t− s)n−j−1

(n− j − 1)!

×
∣∣∣F

(
s, x (s) , x′ (s) , ..., x(n−1) (s) , (Ax) (s) , (Bx) (s)

)

− F
(
s, y (s) , y′ (s) , ..., y(n−1) (s) , (Ay) (s) , (By) (s)

)∣∣∣ ds

≤
n−1∑

j=0

t∫

t0

(t− s)n−j−1

(n− j − 1)!
p (s)




n−1∑

j=0

∣∣∣x(j) (s)− y(j) (s)
∣∣∣

+ |(Ax) (s)− (Ay) (s)|+ |(Bx) (s)− (By) (s)|] ds

≤
t∫

t0

Np (s)


v (s) +

s∫

t0

M1q1 (τ)v (τ) dτ +

b∫

t0

M2q2 (τ)v (τ) dτ


ds.

A suitable application of Lemma (with c = 0) to (3.15) yields v (t) ≤ 0
and consequently x(t) = y(t) , i.e. there is at most one solution of IVP
(1.1)-(1.2) on I. ¥

The following theorem shows the dependency of solutions of (1.1) on
given initial data.

Theorem 4. Let x(t) and y(t) be solutions of (1.1) with initial data

(3.16) x(k) (t0) = ck, k = 0, 1, ..., n− 1,

and

(3.17) y(k) (t0) = dk, k = 0, 1, ..., n− 1,

respecively, where ck, dk are real constants. Suppose that the functions F ,
ki, hi (i = 1, 2) be as in Theorem 3. Let d′ be as in (3.10). Then

(3.18)
n−1∑

j=0

∣∣∣x(j) (t)− y(j) (t)
∣∣∣ ≤ M̄

1− d′
exp




t∫

t0

[Np (s) + M1q1 (s)] ds


 ,
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for t ∈ I , where

(3.19) M̄ =
n−1∑

j=0




n−1∑

i=j

(b− t0)
i−j

(i− j)!


 |ci − di| ,

and N is given by (3.11).

Proof. Let v (t) =
n−1∑
j=0

∣∣x(j) (t)− y(j) (t)
∣∣, t ∈ I. Using the facts that x(t)

and y(t) are the solutions of IVP (1.1)-(3.16) and (1.1)-(3.17), respectively,
and the hypotheses we have

(3.20) v (t) ≤
n−1∑

j=0




n−1∑

i=j

(t− t0)
i−j

(i− j)!
|ci − di|


 +

n−1∑

j=0

t∫

t0

(t− s)n−j−1

(n− j − 1)!

×
∣∣∣F

(
s, x (s) , x′ (s) , ..., x(n−1) (s) , (Ax) (s) , (Bx) (s)

)

− F
(
s, y (s) , y′ (s) , ..., y(n−1) (s) , (Ay) (s) , (By) (s)

)∣∣∣ ds

≤
n−1∑

j=0




n−1∑

i=j

(b− t0)
i−j

(i− j)!
|ci − di|




+
n−1∑

j=0

t∫

t0

(b− t0)
n−j−1

(n− j − 1)!
p (s)




n−1∑

j=0

∣∣∣x(j) (s)− y(j) (s)
∣∣∣

+ |(Ax) (s)− (Ay) (s)|+ |(Bx) (s)− (By) (s)|] ds

≤ M̄ +

t∫

t0

Np (s)


v (s) +

s∫

t0

M1q1 (τ)v (τ) dτ +

b∫

t0

M2q2 (τ)v (τ) dτ


ds.

Now, an application of Lemma to (3.20) yields (3.18), which shows the
dependency of solutions of IVP (1.1)-(3.16) and IVP (1.1)-(3.17) on given
initial data. ¥

We next consider the following initial value problems

(3.21) x(n) (t) = H
(
t, x (t) , x′ (t) , ..., x(n−1) (t) , (Ax) (t) , (Bx) (t) , µ

)
,

(3.22) x(k) (t0) = ck, k = 0, 1, ..., n− 1,
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and

(3.23) x(n) (t) = H
(
t, x (t) , x′ (t) , ..., x(n−1) (t) , (Ax) (t) , (Bx) (t) , µ0

)
,

(3.24) x(k) (t0) = ck, k = 0, 1, ..., n− 1,

where H ∈ C
(
I ×Rn+3, R

)
, (Ax) (t), (Bx) (t) are as in (1.3), (1.4), ck are

real constants and µ, µ0 are real parameters.
The following theorem shows the dependency of solutions of IVP (3.21)-

(3.22) and IVP (3.23)-(3.24) on parameters.

Theorem 5. Assume that the functions ki, hi (i = 1, 2) satisfy the con-
ditions (3.8), (2.6), respectively, and the function H satisfies the conditions

(3.25) |H (t, u0, u1, ..., un−1, v1, v2, µ)−H (t, w0, w1, ..., wn−1, z1, z2, µ)|

≤ p (t)




n−1∑

j=0

|uj − wj |+ |v1 − z1|+ |v2 − z2|

 ,

(3.26) |H (t, u0, u1, ..., un−1, v1, v2, µ)−H (t, u0, u1, ..., un−1, v1, v2, µ0)|

≤ r (t) |µ− µ0| ,
where p, r ∈ C (I, R+) and

(3.27)

t∫

t0

Nr (s) ds ≤ Q,

where Q is a nonnegative constant and N is given by (3.11). Let d′ be as in
(3.10). Let x1 (t) and x2 (t) be the solutions of IVP (3.21)-(3.22) and IVP
(3.23)-(3.24). Then

(3.28)
n−1∑

j=0

∣∣∣x(j)
1 (t)− x

(j)
2 (t)

∣∣∣ ≤ Q |µ− µ0|
1− d′

× exp




t∫

t0

[Np (s) + M1q1 (s)] ds


 ,

for t ∈ I.
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Proof. Let z (t) =
n−1∑
j=0

∣∣∣x(j)
1 (t)− x

(j)
2 (t)

∣∣∣, t ∈ I. From the hypotheses it

is easy to observe that

(3.29) z (t) ≤
n−1∑

j=0

t∫

t0

(t− s)n−j−1

(n− j − 1)!

×
∣∣∣H

(
s, x1 (s) , x′1 (s) , ..., x

(n−1)
1 (s) , (Ax1) (s) , (Bx1) (s) , µ

)

− H
(
s, x2 (s) , x′2 (s) , ..., x

(n−1)
2 (s) , (Ax2) (s) , (Bx2) (s) , µ

)∣∣∣ ds

+
n−1∑

j=0

t∫

t0

(t− s)n−j−1

(n− j − 1)!

×
∣∣∣H

(
s, x2 (s) , x′2 (s) , ..., x

(n−1)
2 (s) , (Ax2) (s) , (Bx2) (s) , µ

)

− H
(
s, x2 (s) , x′2 (s) , ..., x

(n−1)
2 (s) , (Ax2) (s) , (Bx2) (s) , µ0

)∣∣∣ ds

≤
n−1∑

j=0

t∫

t0

(b− t0)
n−j−1

(n− j − 1)!
p (s)




n−1∑

j=0

∣∣∣x(j)
1 (s)− x

(j)
2 (s)

∣∣∣

+ |(Ax1) (s)− (Ax2) (s)|+ |(Bx1) (s)− (Bx2) (s)|] ds

+
n−1∑

j=0

t∫

t0

(b− t0)
n−j−1

(n− j − 1)!
r (s) |µ− µ0| ds

≤ Q |µ− µ0|+
t∫

t0

Np (s)


z (s) +

s∫

t0

M1q1 (τ) z (τ) dτ +

b∫

t0

M2q2 (τ) z (τ) dτ


ds.

Now an application of Lemma to (3.29) yields (3.28), which shows the depen-
dency of solutions of IVP (3.21)-(3.22) and IVP (3.23)-(3.24) on parameters
µ, µ0 . ¥
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