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Abstract: In this paper, sufficient conditions have been obtained
so that all oscillatory solutions of the n-th order differential equa-
tions with quasi derivatives tend to zero as t tends to infinity.
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1.

Recently Singh [3] obtained sufficient conditions to ensure that all oscil-
latory solutions of the general n-th order equation

(1) (r(t)y′(t))(n−1) + a(t)y(t− τ(t)) = f(t)

approach to zero as t → ∞, where a(t), r(t), τ(t) and f(t) are real valued
continuous functions on the whole real line with r(t) > 0, τ(t) > 0 and τ(t)
is bounded above by a real constant k > 0. He obtained the following result:

Theorem 1.1. Suppose that

(2)
∫ ∞

tn−2|f(t)| dt < ∞,

(3)
∫ ∞

tn−2|a(t)| dt < ∞

and
(4)

∫ ∞ 1
r(t)

dt < ∞.

Then all oscillatory solutions of (1) tend to zero as t →∞.

Theorem 1.1 does not cover an important class of differential equations
of the form (1) with

∫∞ 1
r(t) dt = ∞. It may be noted that the example cited
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in Singh [4] shows that the condition (4) on r(t) cannot be changed keeping
the conditions (2) and (3) intact in Theorem 1.1. Most probably, this is the
reason for which Singh [4] obtained a result with the same conclusion of this
theorem for the equations of the type (1) with

∫∞ 1
r(t) dt = ∞ by relaxing

the conditions (2) and (3). In [2], Chen and Yeh improved Singh’s result [4]
to a more general n-th order equation

(
1

rn−1(t)
(

1
rn−2(t)

(...(
x(t)
r0(t)

)′...)′)′)′ + f(t, x[g(t)]) = h(t), t ≥ 0, n ≥ 2,

where
∫∞

ri(t) dt = ∞, i = 1, 2, ..., n − 1. More recently, in the monograph
[1], Bainov and Mishev gave results concerning the asymptotic decay of the
oscillatory solutions of the operator differential equations of the form

(rn−1(t)(rn−2(t)(...(r1(t)x′(t))′...)′)′)′ + F (t, x(t), (A(x)))(t) = b(t),

where A is an operator with certain properties (see Theorem 3.3.3, [1]).

The motivation for the present work has come from Theorem 1.1 and
the paper by Chen and Yeh [2] and Theorem 3.3.3 in [1]. Our purpose is
to improve the conditions of Theorem 1.1 and extend the result to a more
general equation

(5) (rn−1(t)(rn−2(t)(...(r1(t)y′(t))′...)′)′)′ + p(t)h(y(g(t))) = f(t),

t ≥ 0, n ≥ 2, where ri(t) > 0, i = 1, 2, ..., n− 1; p, f and h ∈ (R, R), g(t) ≤ t
and g(t) → ∞ as t → ∞. Our result is stronger and more easily verifiable
than the results in [1, 2, 3, 4]. In [1], sufficient conditions are given for the
oscillation of (5).

We always assume that h satisfies the condition:

(6)
uh(u) > 0 for u 6= 0 and there exists a positive real m
and γ ∈ (0, 1] such that |h(u)| ≤ m|u|γ .

2.

Define

L0y(t) = y(t), Liy(t) = ri(t)
dLi−1y(t)

dt
, i = 1, 2, ..., n

and rn(t) = 1. Then (5) can be written in the form

Lny(t) + p(t)h(y(g(t))) = f(t).
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Theorem 2.1. Let

(7)
∫ ∞

0

1
r1(s1)

∫ ∞

s1

1
r2(s2)

...

∫ ∞

sn−2

1
rn−1(sn−1)

∫ ∞

sn−1

|p(sn)| dsn...ds2ds1 < ∞

and

(8)
∫ ∞

0

1
r1(s1)

∫ ∞

s1

1
r2(s2)

...

∫ ∞

sn−2

1
rn−1(sn−1)

∫ ∞

sn−1

|f(sn)| dsn...ds2ds1 < ∞

hold. Then all oscillatory solutions of (5) satisfy the property

(9) lim
t→∞(Liy)(t) = 0, i = 0, 1, 2, ..., n− 1.

Proof. From (7) and (8), it follows that there exist a T > 0 and a real
β > 0 such that
(10)∫ ∞

T

1
r1(s1)

∫ ∞

s1

1
r2(s2)

...

∫ ∞

sn−2

1
rn−1(sn−1)

∫ ∞

sn−1

|p(sn)| dsn...ds2ds1 <
β1−γ

m

and
(11)∫ ∞

T

1
r1(s1)

∫ ∞

s1

1
r2(s2)

...

∫ ∞

sn−2

1
rn−1(sn−1)

∫ ∞

sn−1

|f(sn)| dsn...ds2ds1 <
β

4
.

Suppose that y(t) is an oscillatory solution of (5). Since y(t) is oscillatory,
then Liy(t), i = 1, 2, ..., n is also oscillatory. Let T ≤ t0 < t1 < t2 <
... < tn−1 be the sequence of zeros of L0y(t), L1y(t), L2y(t), ..., Ln−1y(t)
respectively. We claim that y(t) is bounded. If not, then y(t) is unbounded.
Let M = max{|y(t)|; T ≤ t ≤ tn−1} > β. Integrating (5) from t(≥ T ) to
tn−1, we have

−Ln−1y(t) = −
∫ tn−1

t
p(sn)h(y(g(sn))) dsn +

∫ tn−1

t
f(sn) dsn,

that is

−(Ln−2y(t))′ = − 1
rn−1(t)

∫ tn−1

t
p(sn)h(y(g(sn))) dsn+

1
rn−1(t)

∫ tn−1

t
f(sn) dsn.
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repeating the integration of the above from t(≥ T ) to tn−2, tn−3, ..., t2 and
t1 respectively, we have

(−1)ny(t) = −
∫ t1

T

1
r1(s1)

∫ t2

s1

1
r2(s2)

...

∫ tn−2

sn−2

1
rn−1(sn−1)

∫ tn−1

sn−1

p(sn)h(y(g(sn))) dsn...ds2ds1

+
∫ t1

T

1
r1(s1)

∫ t2

s1

1
r2(s2)

...

∫ tn−2

sn−2

1
rn−1(sn−1)

∫ tn−1

sn−1

f(sn) dsndsn−1...ds2ds1.

Hence

|y(t)| =
∫ t1

T

1
r1(s1)

∫ t2

s1

1
r2(s2)

...

∫ tn−2

sn−2

1
rn−1(sn−1)

∫ tn−1

sn−1

|p(sn)||h(y(g(sn)))| dsn...ds2ds1

+
∫ t1

T

1
r1(s1)

∫ t2

s1

1
r2(s2)

...

∫ tn−2

sn−2

1
rn−1(sn−1)

∫ tn−1

sn−1

|f(sn)| dsndsn−1...ds2ds1.

Taking maximum y(t) in [T, tn−1] and using (6), we have

M ≤ mMγ

∫ t1

T

1
r1(s1)

∫ t2

s1

1
r2(s2)

...

∫ tn−2

sn−2

1
rn−1(sn−1)

∫ tn−1

sn−1

|p(sn)| dsn...ds2ds1

+
∫ t1

T

1
r1(s1)

∫ t2

s1

1
r2(s2)

...

∫ tn−2

sn−2

1
rn−1(sn−1)

∫ tn−1

sn−1

|f(sn)| dsndsn−1...ds2ds1

≤ mMγ

∫ ∞

T

1
r1(s1)

∫ ∞

s1

1
r2(s2)

...

∫ ∞

sn−2

1
rn−1(sn−1)

∫ ∞

sn−1

|p(sn)| dsn...ds2ds1

+
∫ ∞

T

1
r1(s1)

∫ ∞

s1

1
r2(s2)

...

∫ ∞

sn−2

1
rn−1(sn−1)

∫ ∞

sn−1

|f(sn)| dsndsn−1...ds2ds1,

that is,

1 ≤ m

M1−γ

∫ ∞

T

1
r1(s1)

∫ ∞

s1

1
r2(s2)

...

∫ ∞

sn−2

1
rn−1(sn−1)

∫ ∞

sn−1

|p(sn)| dsn...ds2ds1

+
1
M

∫ ∞

T

1
r1(s1)

∫ ∞

s1

1
r2(s2)

...

∫ ∞

sn−2

1
rn−1(sn−1)

∫ ∞

sn−1

|f(sn)| dsndsn−1...ds2ds1,

or,

1 ≤ m

β1−γ

∫ ∞

T

1
r1(s1)

∫ ∞

s1

1
r2(s2)

...

∫ ∞

sn−2

1
rn−1(sn−1)

∫ ∞

sn−1

|p(sn)| dsn...ds2ds1
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+
1
β

∫ ∞

T

1
r1(s1)

∫ ∞

s1

1
r2(s2)

...

∫ ∞

sn−2

1
rn−1(sn−1)

∫ ∞

sn−1

|f(sn)| dsndsn−1...ds2ds1.

Using (10) and (11), the above inequality yields a contradiction. Hence
our claim holds, that is, y(t) is bounded. Thus there exist a constant λ > 0
and a real T1 such that |y(t)| < λ and |y(g(t))| < λ for t ≥ T1. Then the
rest of the proof is same as in the lines of proof of Theorem 3.3.1 in [1].
However, for the sake of completeness, we give the proof.

Since y(t) is oscillatory, then Li(t) is oscillatory, i = 1, 2, ..., n. Let
{t′k}, t′k ≥ T1 be a sequence of numbers such that Ln−1y(t′k) = 0. Let
α′k ∈ (t′k, t

′
k+1) and

|Ln−1y(α′k)| = max{|Ln−1y(t)|; t′k ≤ t ≤ t′k+1}.
Integrating (5) from t′k to α′k, we see that

|Ln−1y(α′k)| ≤ mλγ

∫ α′k

t′k

|p(s)| ds +
∫ α′k

t′k

|f(s)| ds.

Taking sum with respect to k, we have

∞∑

k=1

|Ln−1y(α′k)| ≤ mλγ

∫ ∞

t′k

|p(s)| ds +
∫ ∞

t′k

|f(s)| ds.

Since (7) and (8) hold, then limk→∞ Ln−1y(α′k) = 0 and hence

lim
t→∞Ln−1y(t) = 0.

Then integrating (5) from t to ∞, we get

(12) Ln−1y(t) =
∫ ∞

t
p(s)h(y(g(s))) ds−

∫ ∞

t
f(s) ds.

Now we shall prove that limt→∞ Ln−2y(t) = 0. let {t′′k}, t′′k ≥ T1 be a se-
quence of numbers such that Ln−2y(t′′k) = 0. Let α′′k ∈ (t′′k, t

′′
k+1) and

|Ln−2y(α′′k)| = max{|Ln−2y(t)|; t′′k ≤ t ≤ t′′k+1}.
Integrating (12) from t′′k toα′′k, we have

|Ln−2y(α′′k)| ≤ mλγ

∫ α′′k

t′′k

1
rn−1(sn−1)

∫ ∞

sn−1

|p(sn)| dsndsn−1

+
∫ α′′k

t′′k

1
rn−1(sn−1)

∫ ∞

sn−1

|f(sn)| dsndsn−1.
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Now, summing the above integral inequality with respect to k, we obtain

∞∑

k=1

|Ln−2y(α′′k)| ≤ mλγ

∫ ∞

t′′k

1
rn−1(sn−1)

∫ ∞

sn−1

|p(sn)| dsndsn−1

+
∫ ∞

t′′k

1
rn−1(sn−1)

∫ ∞

sn−1

|f(sn)| dsndsn−1,

which in turn implies that

lim
t→∞Ln−2y(t) = 0.

Proceeding as above repeatedly, we see that

lim
t→∞L0y(t) = 0,

that is,
lim
t→∞ y(t) = 0.

Thus the theorem is proved. ¥

Remark. Our Theorem 2.1 is more general than Theorem 1.1. In
Theorem 2.1, one may consider either

∫∞ 1
ri(t)

dt = ∞ or
∫∞ 1

ri(t)
dt <

∞, i = 1, 2, ..., n − 1. However, in both these cases,
∫∞ |p(t)| dt < ∞ and∫∞ |f(t)| dt < ∞. Further our Theorem 2.1 cannot be comparable with the

results in Section 3.2-3.3 in [1]. The function H(t) cannot be reduced to a
constant.

The following example strengthens Theorem 2.1.

Example 2.2. Consider

(13)
(t(ty′(t))′)′ + 1

t2
y1/2( t

2) = −4 sin 2t
t2

− 18 cos 2t
t3

+ 16 sin t/2
t4

+ 21 sin 2t
t4

+16sin2t
t5

− 80(sin t)2

t6
,

t ≥ 1. By Theorem 2.1, all oscillatory solution of (13) satisfy the property
(9). In particular, y(t) = 1

t4
(sin t)2 is such a solution satisfying (9).

Remark. In Example 2.2, the case
∫∞ 1

ri(t)
dt = ∞, i = 1, 2 are satisfied.

In the following, we give an example for the case
∫∞ 1

ri(t)
dt < ∞, i = 1, 2.

Example 2.2 Consider

(et(ety′(t))′)′ + 2e−t(cos
t

2
)y(

t

2
)(14)

= 46e−3t cos t− 48e−3t sin t + e
−7t
2 sin t, t ≥ 1.



Asymptotic behaviour of oscillatory solutions of n-th . . . 55

All the conditions of Theorem 2.1 are satisfied and y(t) = e−5t sin t is a
solution of (14) satisfying (9).

The following example is of interest.

Example 2.3. Clearly y(t) = e−5t sin t is a solution of the equation

(e−t(ety′(t))′)′ + 2e−2t(cos
t

2
)y(

t

2
)

= 64e−5t cos t− 86e−5t sin t + e
−9t
2 sin t, t ≥ 1.

all the conditions of Theorem 2.1 are satisfied.

Remark. In the above example, one may observe that
∫∞ 1

r2(t) dt = ∞
and

∫∞ 1
r1(t) dt < ∞. Thus, the above remarks and examples ensure that

our Theorem 2.1 is more general than the results in [1, 2, 3, 4].
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