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OSCILLATION AND NON-OSCILLATION OF NEUTRAL

DIFFERENCE EQUATIONS OF FIRST ORDER WITH
POSITIVE AND NEGATIVE COEFFICIENTS

Abstract: In this paper necessary and sufficient conditions have
been obtained so that every solution of the Neutral Delay Differ-
ence Equation (NDDE)

∆(yn − pnyn−m) + qnG(yn−k)− rnG(yn−`) = fn

where different symbols have there usual meaning, oscillates or
tends to zero as n → ∞ for different ranges of {pn}. This paper
generalizes some recent work. The results of this paper hold for
linear, sublinear or super linear equations and also for homoge-
neous equations, i.e. when fn ≡ 0.
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1. Introduction

During the last several years many research papers on the oscillatory
behaviour of solutions of neutral delay difference equations (NDDEs) have
appeared in the literature, as these equations occur as mathematical models
of some real world problems (see [2, 4]). In this paper we study oscillatory
and asymptotic behaviour of solutions of the first order NDDE

(1) ∆(yn − pnyn−m) + qnG(yn−k)− rnG(yn−`) = fn,

where ∆ is the forward difference operator given by ∆xn = xn+1−xn, {pn},
{qn}, {rn}, {fn} are infinite sequences of real numbers with qn ≥ 0, rn ≥ 0,
m, k, ` are non negative integers, G ∈ C(R, R) such that xG(x) > 0 for
x 6= 0 and G is non-decreasing. If we put rn = 0 for every n in (1) then (1)
takes the form

(2) ∆(yn − pnyn−m) + qnG(yn−k) = fn,

which is a NDDE of first order or a delay difference equation of (k + 1)-th
order (take pn = 0). In [6,8,9] the authors have obtained necessary and suf-
ficient conditions for the oscillatory and asymptotic behaviour of solutions
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of (2). In the present work an attempt is made to generalize the work of
[6,8,9] and find the necessary and sufficient conditions for the oscillatory
behaviour of solutions of (1). The motivation of the present problem came
from the fact that the study of difference equations and differential equa-
tions run parallel. But at times we may note that the oscillatory behaviour
of ordinary differential equation and their discrete analogues can be quite
different (see [6]). Although many authors (see [1, 5, 10-12]) have studied
the oscillatory behaviour of solutions of the corresponding neutral delay
differential equations with positive and negative coefficients

(3) (y(t)− p(t)y(t− τ))′ + Q(t)G(y(t− σ))−R(t)G(y(t− δ)) = f(t),

but most of these results have f(t) ≡ 0, G(u) = u, p(t) ≡ p and Q(t) ≡ q, p,
q are constants. Moreover, these results give information for the oscillatory
behaviour of only bounded solutions of (3). It seems that (1) which is the
discrete analogue of (3) is not studied yet. Also our work sufficiently indi-
cates that the work of [1, 5, 11, 12] can be improved substantially. Results
of this paper hold when G is linear, sublinear or superlinear and also for
fn ≡ 0.

In the present work we assume the following conditions for its use in the
sequel

(H1)
∞∑

n=0

qn = ∞,

(H2)
∞∑

n=0

rn < ∞,

(H3) There exists a sequence {Fn} such that ∆Fn = fn

and lim
n→∞ Fn = 0,

(H4) G is Lipschitzian in every interval of the form [a, b],
where 0 < a < b.

In this paper the following conditions are assumed for {pn}.
(A1) 0 ≤ pn ≤ b < 1, (A2) − 1 < −b ≤ pn ≤ 0,
(A3) −b2 ≤ pn ≤ −b1 < −1, (A4) 1 < b1 ≤ pn ≤ b2,
(A5) −b2 ≤ pn ≤ 0, (A6) 0 ≤ pn ≤ b2,

where b, b1, b2 are positive real numbers.
Let us choose a positive integer s > max{m, k, `}. By a solution of (1) on

[0,∞) we mean a sequence {yn} of real numbers which is defined for n ≥ −s
and which satisfies (1) (for n = 0, 1, 2, . . .). A solution {yn} of (1) on (0,∞)
is said to be oscillatory if for every positive integer N0 > 0, there exists
n ≥ N0 such that ynyn+1 ≤ 0, otherwise {yn} is said to be non-oscillatory.
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2. Main Results

First we quote a lemma from [8]

Lemma 2.1. Let {fn}, {qn} and {pn} be sequences of real numbers
defined for n ≥ N0 ≥ 0 such that

fn = qn − pnqn−m, n ≥ N0 + m

where m ≥ 0 is an integer. Suppose that there exists real numbers b, b1, b2

such that pn satisfies one of the conditions (A2), (A3) or (A6). If qn > 0
for n ≥ N0, lim inf

n→∞ qn = 0 and lim
n→∞ fn = L exists then L = 0.

Remark 1. The above lemma holds when pn satisfies one of the condi-
tions (A1) or (A4).

Theorem 2.2. Suppose that pn satisfies one of the conditions (A1), (A2)
or (A3). Let (H1)-(H3) hold. Then every solution of (1) oscillates or tends
to zero as n →∞.

Proof. Let {yn} be any non-oscillatory positive solution of (1) for n ≥
N0 > 0. Setting for n ≥ N > N0

(4) zn = yn − pnyn−m

and

(5) wn = zn +
∞∑

i=n

riG(yi−`)− Fn

we obtain

(6) ∆wn = −qnG(yn−k) ≤ 0.

Hence wn < 0 or wn > 0 for large n and lim
n→∞wn = L, where −∞ ≤ L < ∞.

We claim that {yn} is bounded. Otherwise, there exists a sequence {ynk
}

such that ynk
→ ∞ as k → ∞ and ynk

= max{yn : N ≤ n ≤ nk}. We may
choose nk large enough such that nk − s > N . Suppose that {pn} satisfies
(A1). Then using (H3) we obtain

(7) wnk
= ynk

− pnk
ynk−m +

∞∑

i=nk

riG(yi−`)− Fnk
≥ (1− b)ynk

− Fnk
→∞

a contradiction. If {pn} satisfies (A2) or (A3) then we use (H3) to obtain
the following inequality in place of (7)

wnk
> ynk

− Fnk
→ +∞ as k →∞.
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Thus we see that L = ∞, a contradiction. Hence our claim that {yn} is
bounded, holds and −∞ < L < ∞. Consequently lim

n→∞ zn = L by (H2) and

(H3). Next we claim lim inf
n→∞ yn = 0. Otherwise for n ≥ N1 > N we have

yn > α > 0 and since G is nondecreasing then (H1) yields

(8)
∞∑

n=N1+s

qnG(yn−k) > G(α)
∞∑

n=N1+s

qn = ∞.

However, taking summation in (6) we obtain

i−1∑

n=N1+s

qnG(yn−k) = −
i−1∑

n=N1+s

∆wn = −(wi − wN1+s).

Taking limit i →∞ in the above expression we obtain

∞∑

n=N1+s

qnG(yn−k) < ∞,

which contradicts (8). Hence lim inf
n→∞ yn = 0. Application of Lemma 2.1

yields L = 0. If {pn} satisfies (A1), then

0 = lim
n→∞ zn = lim sup

n→∞
(yn − pnyn−m)

≥ lim sup
n→∞

yn + lim inf
n→∞ (−pnyn−m) ≥ (1− b) lim sup

n→∞
yn,

which implies lim
n→∞ yn = 0. If {pn} satisfies (A2) or (A3) then the fact

yn ≤ zn implies lim
n→∞ yn = 0. The proof of the case yn < 0 for n ≥ N0 > 0

is similar. Thus the theorem is proved. ¥

From the proof of the above Theorem we note the following result as:

Corollary 2.3. Suppose all the conditions of Theorem 2.2 hold then
every unbounded solution of (1) oscillates.

Remark 2. (i) Theorem 2.2 holds when G is linear, sublinear or super-
linear. (ii) (H3) implies and implied by

∣∣∣∣∣
∞∑

n=0

fn

∣∣∣∣∣ < ∞.

(iii) In the paper [5] where the oscillatory behaviour of solutions of (3) is
studied the assumption σ > δ and Q(t) > R(t) seems redundant. The
discrete analogue of the above two conditions are k > ` and qn > rn. Since
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these conditions are not required for Theorem 2.2, therefore it seems the
above paper [5] can be improved with the technique and method of this pa-
per. Further, most of the work in [5] are for bounded solutions only whereas
Theorem 2.2 holds for both bounded and unbounded solutions of (1).

Theorem 2.4. Suppose that {pn} satisfies (A1) and (H2), (H3), (H4)
hold. If every solution of (1) oscillates or tends to zero as n →∞ than (H1)
holds.

Proof. If possible let

(9)
∞∑

n=0

qn < ∞.

From (9), (H2) and (H3), we can find N1 > 0 such that for n ≥ N1 implies

k
∞∑

i=n

qi <
1− b

20
, k

∞∑

i=n

rn <
1− b

20
and |Fn| < 1− b

20
,

where k = max{k1, G(1)}, k1 is the Lipschitz constant of G in [(1−b)/10, 1].
Let X = `N∞, Banach space of real bounded sequences x = {xn} with supre-
mum norm

‖x‖ = sup{ |xn| : n ≥ N1}.
Define

S =
{

x ∈ X :
1− b

10
≤ xn ≤ 1, n ≥ N1

}
.

Since S is a closed subset of X, Then S is a complete metric space, where
the metric is induced by the norm on X. For y ∈ S, define

T (y)n =





(Ty)N1+s , N1 ≤ n ≤ N1 + a = N2,

pnyn−m +
∞∑

i=n
qiG(yi−k)−

∞∑
i=n

riG(yi−`)

+Fn + (1− b)/5, n ≥ N2,

where a is any positive integer > max{m, k, `}. Clearly, T maps S into S
and ‖Tu − Tv‖ < µ‖u − v‖ where 0 < µ = (1 + 9b)/10 < 1. Hence T is
a contraction admitting a unique fixed point y = {yn} in S which is the
required positive solution of (1). Thus the theorem is proved. ¥

Corollary 2.5. Suppose that pn satisfies (A1). If (H2), (H3) and (H4)
hold then (H1) is both necessary and sufficient for every solution of (1) to
be oscillatory or tending to zero.

This follows from Theorem 2.2 and 2.4.
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Remark 3. If pn satisfies (A2) or (A3) then we can have similar results
like Theorem 2.4 and find positive solutions of (1) under condition (9).

Example. The NDDE

(10) ∆(yn − (1 + e)yn−1) + (e− 1)yn−1 =
(
2e2 + e−1 − 2− e

)
e−n,

n ≥ 0 has a positive unbounded solution y = en + e−n tending to ∞ as
n → ∞. Here pn satisfies (A4). It may be noted that (10) satisfies all the
conditions of Theorem 2.2 (axcept the bounds of pn).

The above example is a source of motivation for the following theorem.

Theorem 2.6. Suppose pn satisfies (A4). Let (H1), (H2), (H3) hold.
Then every bounded solution of (1) oscillates or tends to zero as n →∞.

Proof. Proceeding as in the proof of Theorem 2.2 and noting that 0 ≤
lim

n→∞ zn ≤ (1− b1) lim sup
n→∞

yn, we prove the theorem. ¥

Theorem 2.7. Suppose that pn satisfies (A4) and (H2), (H3), (H4) hold.
If every bounded solution of (1) oscillates or tends to zero as n → ∞ then
(H1) holds.

Proof. The proof here is similar to that of Theorem 2.4 with the following
changes:

k

∞∑

i=n

qi <
b1

α + b1
, k

∞∑

i=n

ri <
b1

α + b1
, |Fn| < b1

α + b1
,

where α > (3b1 + b1b2 + 2b2 − b2
1)/(b1 − 1). Suppose L = (α + 3b1 + b1b2 +

2b2)/b1(α + b1). It is clear that L < 1. Let S =
{

x ∈ `∞N : b1
α+b1

≤ x ≤ L
}

.
Let λ = (b1 + 2)b2/(α + b1). Define for y ∈ S

(Ty)n =





(Ty)N1+a for N1 ≤ n ≤ N1 + a,

yn+m

pn+m
− 1

pn+m

∞∑
i=n+m

qiG(yi−k) + 1
pn+m

∞∑
i=n+m

riG(yi−`)

−Fn+m

pn+m
+ λ

pn+m
, for n ≥ N1 + a.

‖Ty1 − Ty2‖ ≤ µ‖y1 − y2‖ where µ = α+3b1
b1(α+b1) . Hence the theorem is

proved. ¥

Corollary 2.8. Suppose that {pn} satisfies (A4). Let (H2), (H3) and
(H4) hold. Then every bounded solution of (1) oscillates or tends to zero as
n →∞ if and only if (H1) holds.

The proof follows from Theorem 2.6 and 2.7.
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Theorem 2.9. Suppose that {pn} satisfies (A5). Let (H2) and (H3) hold.
Suppose that

(H5)
∞∑

n=s

q∗n = ∞ where q∗n = min{qn, qn−m},

(H6) G(−u) = −G(u),

(H7) G(u)G(v) ≥ G(uv) and G(u) + G(v) ≥ δG(u + v) for u > 0, v > 0

and some constant δ > 0. Then every solution of (1) oscillates or tends to
zero as n →∞.

Proof. Let y = {yn} be an eventually positive solution of (1) for n ≥
N0 > 0. Then we proceed as in the proof of Theorem 2.2 and arrive at
(4), (5) and (6). Consequently lim

n→∞wn = L, where −∞ ≤ L < ∞. But

zn > 0 and zn − Fn = wn −
∞∑

i=n
riG(yi−`) ≤ wn. We claim {yn} is bounded.

Otherwise {zn} is unbounded and we can find a sequence {znk
} such that

nk →∞, znk
→∞ as k →∞ and znk

= max{zn : N1 ≤ n ≤ nk}. Then

wnk
= znk

+
∞∑

i=nk

riG(yi−`)− Fnk
≥ zn−k − Fnk

.

Taking limit k → ∞, we get L = ∞, a contradiction. Hence our claim
holds. Thus lim

n→∞ zn = lim
n→∞wn = L. Since zn > 0 therefore L ≥ 0. If L = 0

then lim
n→∞ yn = 0. If L > 0 then zn > λ > 0 for n ≥ N3 > N2. Using the

definition of q∗n, (H7) we obtain

0 = ∆wn + qnG(yn−k) + G(−pn−k){∆wn−m + qn−mG(yn−k−m)}
≥ ∆wn + G(b2)∆wn−m + δq∗nG(zn−k)
≥ ∆wn + G(b2)∆wn−m + δq∗nG(λ).

If we take sum form n = N2 to n = i − 1 and take limit i → ∞ and use
(H5) then we obtain the contradiction wi + G(b2)wi−m → −∞ as i → ∞.
The proof for the case yn < 0 for large n is similar. Thus the theorem is
proved. ¥

Remark 4. The prototype of G satisfying (H6) and (H7) is G(u) =
(β + |u|µ)|u|λsgnu where λ > 0, µ > 0, β ≥ 1.

Remark 5. (i) This paper generalizes all the results of [8]. (ii) If we
compare the above theorem with Theorems 4 and 6 of [5] then we see that
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we do not require the monotonicity of {qn} and {rn}. Also the authors of [5]
have assumed some other conditions which seem to be unnecessary to prove
that every bounded solution of (3) oscillates or tends to zero as t → ∞.
Thus the above theorem gives definite indication that the results of [5] can
be improved.
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