2007

$\rm Nr~37$

SUSHIL SHARMA AND ANIL BAGWAN

COMMON FIXED POINT THEOREM FOR SIX MAPPINGS IN MENGER SPACE

ABSTRACT: In this paper we prove common fixed point theorem for six mappings in Menger space under the condition of weak compatible mappings of type (α). Our theorem is an extension of some earlier results.

KEY WORDS: common fixed point, probabilistic metric space, compatible mappings of type (α) , weak compatible mappings of type (α) , complete Menger space.

1. Introduction

The concept of probabilistic metric space was first introduced and studied by Menger [15], which is a generalization of metric space and also the study of this space was expanded rapidly with the pioneering works of Schweizer and Sklar [19], [20]. The theory of probabilistic space is of fundamental importance in probabilistic functional analysis. The most interesting references in this direction are [9], [10], [19], [22], [23], [27] and [29]. Recently Bharucha-Reid [1], Bocsan [2], Chang [5], Ćirić [7], Hadzić [10-12], Hicks [13], Singh and Pant [24-26], Stojaković [28], [29], Cho et al. [6], Debeic and Sarapa [8], Radu [18], Cain and Kasriel [3], Chamola [4], Mishra [16], Walt [31], Sehgal [30] and many others have proved common fixed point theorems in probabilistic metric spaces and Menger spaces.

2. Preliminaries

Let R denote the set of reals and R^+ the non-negative reals. A mapping $F: R \to R^+$ is called a distribution function if it is non-decreasing and left continuous with $\inf F = 0$ and $\sup F = 1$. We will denote by L the set of all distribution functions. A probabilistic metric space is a pair (X, F), where X is a non empty set and F is a mapping from $X \times X$ to L. For $(u, v) \in X \times X$, the distribution function F(u, v) is denoted by Fu, v. The functions Fu, v are assumed to satisfy the following conditions:

- (P₁) Fu, v(x) = 1 for every x > 0 if and only if u = v,
- $(\mathbf{P}_2) \quad Fu, v(0) = 0 \text{ for every } u, v \in X,$
- (P₃) Fu,v(x) = Fu,v(x) for every $u, v \in X$,
- (P₄) if Fu,v(x) = 1 and Fv,w(y) = 1, then Fu,w(x+y) = 1
 - for all $u, v, w \in X$ and x, y > 0.

In a metric space (X, d), the metric d induces a mapping $F: X \times X \to L$ such that

$$F(u, v)(x) = Fu, v(x) = H(x - d(u, v)),$$

for every $u, v \in X$ and $x \in R$, where H is a distribution function defined by

$$H(x) = \begin{cases} 0, & x \le 0, \\ 1, & x > 0. \end{cases}$$

Definition 2.1. A Menger space is a triple (X, F, t), where (X, F) is a PM-space and t is T-norm with the following condition:

(P₅)
$$Fu,w(x+y) \ge t(Fu,v(x),Fv,w(y))$$

for every $u, v, w \in X$ and $x, y \in R^+$.

For topological preliminaries on a Menger space, Schweizer and Sklar [20] is an excellent reference.

Definition 2.2. [18] Let (X, F, t) is a Menger space with the continuous T-norm t.

(i) A sequence $\{p_n\}$ in X is said to be convergent to a point $p \in X$ if for every $\varepsilon > 0$ and $\lambda > 0$, there exists an integer $N = N(\varepsilon, \lambda)$ such that $p_n = \cup p(\varepsilon, \lambda)$ for all $n \ge N$, or equivalently, F_p , $p_n(\varepsilon) > 1 - \lambda$, for all $n \ge N$. We write $p_n \to p$ as $n \to \infty$ or $\lim_{n \to \infty} p_n = p$.

(ii) A sequence $\{p_n\}$ of points in X is said to be a Cauchy sequence if for every $\varepsilon > 0$ and $\lambda > 0$, there exists an integer $N = N(\varepsilon, \lambda) > 0$ such that F_{p_n} , $p_m(\varepsilon) > 1 - \lambda$, for all $n, m \ge N$.

(iii) The Menger space (X, F, t) is said to be complete if every Cauchy sequence in X is converges to a point in X.

3. Weak compatible mappings of type (α)

In this section we give some definitions of compatible mappings and weak compatible mappings of type (α) on Menger space. The concept of compatible mappings and weak compatible mappings of type (α) are equivalent under some conditions in metric space and Menger space ([14] and [6]).

Definition 3.1. Let (X, F, t) be a Menger space such that the *T*-norm *t* is continuous and *A*, *S* be mappings from *X* into itself. *A* and *S* are said to be compatible if

$$\lim_{n \to \infty} FASx_n, SAx_n(x) = 1$$

for all x > 0, whenever $\{x_n\}$ is a sequence in X such that

$$\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = z$$

for some $z \in X$.

Definition 3.2. Let (X, F, t) be a Menger space such that the *T*-norm *t* is continuous and *A*, *S* be mappings from *X* into itself. *A* and *S* are said to be compatible mappings of type (α) if

$$\lim_{n \to \infty} FSAx_n, AAx_n(x) = 1 \quad and \quad \lim_{n \to \infty} FASx_n, SSx_n(x) = 1,$$

for all x > 0, whenever $\{x_n\}$ is a sequence in X such that

$$\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = z$$

for some $z \in X$.

Definition 3.3. Let (X, F, t) be a Menger space such that the *T*-norm *t* is continuous and *A*, *S* be mappings from *X* into itself. *A* and *S* are said to be weak compatible mappings of type (α) if

$$\lim_{n \to \infty} FASx_n, SSx_n(x) \ge \lim_{n \to \infty} FSAx_n, AAx_n(x)$$

and

$$\lim_{n \to \infty} FSAx_n, SSx_n(x) \ge \lim_{n \to \infty} FASx_n, AAx_n(x)$$

for all x > 0, whenever $\{x_n\}$ is a sequence in X such that

$$\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = z$$

for some $z \in X$.

Proposition 3.1. [14] Let (X, F, t) be a Menger space such that the *T*-norm *t* is continuous and $t(x, x) \ge x$ for all $x \in [0, 1]$, and $A, S : X \to X$ be mappings. If *A* and *S* are weak compatible mappings of type (α) and Az = Sz for some $z \in X$, then AAz = ASz = SAz = SSz.

Proposition 3.2. [14] Let (X, F, t) be a Meneger space such that the *T*-norm *t* is continuous and $t(x, x) \ge x$ for all $x \in [0, 1]$, and $A, S : X \to X$

be mappings. Let A and S be weak compatible mappings of type (α) and $\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = z$ for some $z \in X$.

Then we have

- (i) $\lim SAx_n = Az$, if A is continuous,
- (ii) $\lim_{n \to \infty} ASx_n = Sz$, if S is continuous,
- (ii) ASz = SAz and Az = Sz, if A and S are continuous.

We need the following lemmas due to Schweizer and Skalr [20] and Singh and Pant [25], in the proof of the theorems.

Lemma 3.1. Let $\{x_n\}$ be a sequence in a Menger space (X, F, t), where t is a continuous T-norm and $t(x, x) \ge x$ for all $x \in [0, 1]$. If there exists a constant $k \in (0, 1)$ such that

$$Fx_n, x_{n+1}(kx) \ge Fx_{n-1}, x_n(x)$$

for all x > 0 and $n \in N$, the $\{x_n\}$ is a Chauchy sequence in X.

Remark 3.1. [17] The condition "the *T*-norm *t* is continuous and $(x, x) \ge x$ for all $x \in [0, 1]$ " can be replaced by " $t(x, y) = \min\{x, y\}$ for all $x, y \in [0, 1]$ ". In fact, since t(a, 1) = a and t(1, b) = b for all $a, b \in [0, 1]$, we have

 $t(a,b) \le \min\{t(a,1), t(1,b)\} = \min\{a,b\}$

for all $a, b \in [0, 1]$. On the other hand, we have

$$t(a,b) \le t(\min(a,b), \min\{a,b\}) = \min\{a,b\}$$

for all $a, b \in [0, 1]$, which implies $t(a, b) = \min\{a, b\}$.

4. Main result

Theorem 4.1. Let (X, F, t) be a complete Menger space with $t(x, y) = \min\{x, y\}$ for all $x, y \in [0, 1]$ and A, B, S, T, P and Q be mappings from X into itself such that

(4.1) $P(X) \subset ST(X)$ and $Q(X) \subset AB(X)$,

$$(4.2) PA = AP, PB = BP, AB = BA, ST = TS and QS = SQ,$$

- (4.3) the pairs $\{P, AB\}$ and $\{Q, ST\}$ are weak compatible of type (α) ,
- (4.4) P is continuous
- (4.5) $[FPu, Qv(kx)]^2 \ge \min\left\{ [FABu, STv(x)]^2, FABu, Pu(x). \right\}$

FSTv, Qv(x), FABu, STv(x). FABu, Pu(x), FABu, STv(x). FSTv, Qv(x), FABu, STv(x). FABu, Qv(2x), FABu, STv(x). FSTv, Pu(x), FABu, Qv(2x). FSTv, Pu(x), FABu, Pu(x). $FSTv, Pu(x), FABu, Qv(2x). FSTv, Qv(x) \}$

for all $u, v \in X$ and $x \ge 0$, where $k \in (0, 1)$. Then A, B, S, T, P and Q have a unique common fixed point.

Proof. For any point x_0 in X, there exists a point $x_1 \in X$, such that $Px_0 = STx_1$. For this point x_1 , we can choose a point x_2 in X, such that $Qx_1 = ABx_2$ and so on, in this manner we can define a sequence $\{y_n\}$ in X such that $y_{2n} = Px_{2n} = STx_{2n+1}$ and $y_{2n+1} = Qx_{2n+1} = ABx_{2n+2}$, for $n = 0, 1, 2, \ldots$

Now we shall prove $Fy_{2n}, y_{2n+1}(kx) \ge Fy_{2n-1}, y_{2n}(x)$ for all x > 0, where $k \in (0,1)$. Suppose that $Fy_{2n}, y_{2n+1}(kx) < Fy_{2n-1}, y_{2n}(x)$. Then by using (4.5) and $Fy_{2n}, y_{2n+1}(kx) \le Fy_{2n}, y_{2n+1}(x)$, we have

$$\begin{split} [Fy_{2n}, y_{2n+1}(kx)]^2 &= [FPx_{2n}, Qx_{2n+1}(kx)]^2 \\ &\geq \min\left\{ [Fy_{2n-1}, y_{2n}(x)]^2, Fy_{2n-1}, y_{2n}(x).Fy_{2n}, y_{2n+1}(x), \\ Fy_{2n-1}, y_{2n}(x).Fy_{2n-1}, y_{2n}(x), Fy_{2n-1}, y_{2n}(x)Fy_{2n}, y_{2n+1}(x), \\ Fy_{2n-1}, y_{2n}(x).Fy_{2n-1}, y_{2n+1}(2x), Fy_{2n-1}, y_{2n}(x).Fy_{2n}, y_{2n}(x), \\ Fy_{2n-1}, y_{2n+1}(2x).Fy_{2n}, y_{2n}(x), Fy_{2n-1}, y_{2n}(x).Fy_{2n}, y_{2n}(x), \\ Fy_{2n-1}, y_{2n+1}(2x).Fy_{2n}, y_{2n+1}(x) \} \\ &\geq \min\left\{ [Fy_{2n-1}, y_{2n}(x)]^2, Fy_{2n-1}, y_{2n}(x).Fy_{2n}, y_{2n+1}(x), \\ [Fy_{2n-1}, y_{2n}(x)]^2, Fy_{2n-1}, y_{2n}(x).Fy_{2n}, y_{2n+1}(x), \\ Fy_{2n-1}, y_{2n}(x).t (Fy_{2n-1}, y_{2n}(x).Fy_{2n}, y_{2n+1}(x)), Fy_{2n-1}, y_{2n}(x), \\ t (Fy_{2n-1}, y_{2n}(x), Fy_{2n}, y_{2n+1}(x)), Fy_{2n-1}, y_{2n}(x), \\ t (Fy_{2n-1}, y_{2n}(x), Fy_{2n}, y_{2n+1}(x)), Fy_{2n-1}, y_{2n}(x), \\ t (Fy_{2n-1}, y_{2n}(x), Fy_{2n}, y_{2n+1}(x)), Fy_{2n}, y_{2n+1}(x) \} \\ &\geq \min\left\{ [Fy_{2n}, y_{2n+1}(kx)]^2, [Fy_{2n}, y_{2n+1}(kx)]^2, [Fy_{2n}, y_{2n+1}(kx)]^2, \\ [Fy_{2n}, y_{2n+1}(kx)]^2, [Fy_{2n}, y_{2n+1}(kx)]^2, Fy_{2n}, y_{2n+1}(kx), \\ Fy_{2n}, y_{2n+1}(kx), Fy_{2n}, y_{2n+1}(kx), [Fy_{2n}, y_{2n+1}(kx)]^2 \\ &= [Fy_{2n}, y_{2n+1}(kx)]^2 \right\} \end{split}$$

which is a contradiction. Thus we have

$$Fy_{2n}, y_{2n+1}(kx) \ge Fy_{2n-1}, y_{2n}(x).$$

Similarly we can have $Fy_{2n+1}, y_{2n+2}(kx) \ge Fy_{2n}, y_{2n+1}(x)$. Therefore, for every $n \in N$,

$$Fy_n, y_{n+1}(kx) \ge Fy_{n-1}, y_n(x).$$

Therefore by Lemma 3.1, $\{y_n\}$ is a Cauchy sequence in X. Since the Menger space (X, F, t) is complete, $\{y_n\}$ converges to a point z in X, and the subsequences $\{Px_{2n}\}$, $\{Qx_{2n+1}\}$, $\{ABx_{2n}\}$ and $\{STx_{2n+1}\}$ of $\{y_{2n}\}$ also converges to z.

Now suppose that P is continuous, since P and AB are weak compatible of type (α), it follows from

$$(AB)Px_{2n} \to Pz$$
 and $PPx_{2n} \to Pz$ as $n \to \infty$.

Now putting $u = Px_{2n}$ and $v = x_{2n+1}$ in the equation (4.5), we have

$$\begin{split} [FPPx_{2n},Qx_{2n+1}(kx)]^2 &\geq \min\left\{ [F(AB)Px_{2n},STx_{2n+1}(x)]^2, \\ F(AB)Px_{2n},PPx_{2n}(x).FSTx_{2n+1},Qx_{2n+1}(x), \\ F(AB)Px_{2n},STx_{2n+1}(x).F(AB)Px_{2n},PPx_{2n}(x), \\ F(AB)Px_{2n},STx_{2n+1}(x).FSTPx_{2n+1},Qx_{2n+1}(x), \\ F(AB)Px_{2n},STx_{2n+1}(x).F(AB)Px_{2n},Qx_{2n+1}(2x), \\ F(AB)Px_{2n},STx_{2n+1}(x).FSTx_{2n+1},PPx_{2n}(x), \\ F(AB)Px_{2n},Qx_{2n+1}(2x).FSTx_{2n+1},PPx_{2n}(x), \\ F(AB)Px_{2n},PPx_{2n}(x).FSTx_{2n+1},PPx_{2n}(x), \\ F(AB)Px_{2n},Qx_{2n+1}(2x).FSTx_{2n+1},Qx_{2n+1}(x) \right\}. \end{split}$$

Taking the limit $n \to \infty$, we have

$$\begin{split} [FPz,z(kx)]^2 &\geq \min \{ [FPz,z(x)]^2, \ FPz,Pz(x)]^2, \ Fz,z(x), \\ FPz,z(x), \ FPz,Pz(x), \ FPz,z(x), \ Fz,z(x), \\ FPz,z(x), \ FPz,z(2x), \ FPz,z(x), \ Fz,Pz(x), \\ FPz,z(2x), \ Fz,Pz(x), \ FPz,Pz(x), \ Fz,Pz(x), \\ FPz,z(2x), \ Fz,z(x) \} &= [FPz,z(x)]^2 \end{split}$$

which is a contradiction. Thus we have Pz = z. Since $P(X) \subset ST(X)$, there exists a point $u \in X$ such that z = Pz = STp. Again putting $u = Px_{2n}$

and v = p in (4.5), we have

$$\begin{split} [FPPx_{2n}, Qp(kx)]^2 &\geq \min \{ [F(AB)Px_{2n}, STp(x)]^2, \\ F(AB)Px_{2n}, PPx_{2n}(x). \\ FSTp, Qp(x), F(AB)Px_{2n}, STp(x). F(AB)Px_{2n}, PPx_{2n}(x), \\ F(AB)Px_{2n}, STp(x). FSTp, Qp(x), F(AB)Px_{2n}, STp(x). \\ F(AB)Px_{2n}, Qp(2x), F(AB)Px_{2n}, STp(x). FSTp, PPx_{2n}(x), \\ F(AB)Px_{2n}, Qp(2x). FSTp, PPx_{2n}(x), F(AB)Px_{2n}, PPx_{2n}(x). \\ FSTp, PPx_{2n}, F(AB)Px_{2n}, Qp(2x). FSTp, Qp(x) \}. \end{split}$$

Taking the limit $n \to \infty$, we have

$$[Fz, Qp(kx)]^2 \ge [Fz, Qp(x)]^2$$

which is a contradiction, therefore z = Qp. Since Q and ST are weak compatible of type (α) and STp = Qp = z, by Proposition 3.1, (ST)Qp = Q(ST)p and hence STz = (ST)Qp = Q(ST)p = Qz. Again by putting $u = x_{2n}$ and v = z in (4.5), we have

$$\begin{split} [FPx_{2n},Qz(kx)]^2 &\geq \min \{ [FABx_{2n},STz(x)]^2, FABx_{2n},Px_{2n}(x), \\ FSTz,Qz(x), FABx_{2n},STz(x), FABx_{2n},Px_{2n}(x), \\ FABx_{2n},STz(x), FSTz,Qz(x), FABx_{2n},STz(x), \\ FABx_{2n},Qz(2x), FABx_{2n},STz(x), FSTz,Px_{2n}(x), \\ FABx_{2n},Qz(2x), FSTz,Px_{2n}(x), FABx_{2n},Px_{2n}(x), \\ FSTz,Px_{2n}, FABx_{2n},Qz(2x), FSTz,Qz(x) \}. \end{split}$$

Letting $n \to \infty$, we have

$$[Fz, Qz(kx)]^2 \ge [Fz, Qz(x)]^2$$

which is a contradiction, therefore we have Qz = z. Thus Qz = STz = z. Similarly since P and AB are weak compatible of type (α) and by Proposition 3.1, we have ABz = Pz = z. Now we prove Az = z. Suppose that $Az \neq z$ then by putting u = Az and v = z in (4.5), we have

$$\begin{split} [FPAz,Qz(kx)]^2 &\geq \min \left\{ [F(AB)Az,STz(x)]^2, \ F(AB)Az,PAz(x), \\ FSTz,Qz(x), \ F(AB)Az,STz(x). \ F(AB)Az,PAz(x), \\ F(AB)Az,STz(x). \ FSTz,Qz(x), \ F(AB)Az,STz(x). \\ F(AB)Az,Qz(2x), \ F(AB)Az,STz(x). \ FSTz,PAz(x), \\ F(AB)Az,Qz(2x). \ FSTz,PAz(x), \ F(AB)Az,PAz(x), \\ FSTz,PAz(x), \ F(AB)Az,Qz(2x). \ FSTz,Qz(x). \\ \end{split}$$

which yields

$$[FAz, z(kx)]^2 \ge [FAz, z(x)]^2$$

which is a cotradication, there fore we have Az = z. Similarly if we put u = Bz and y = z in (4.5), we have

$$\begin{split} [FPBz,Qz(kx)]^2 &\geq \min \left\{ [F(AB)Bz,STz(x)]^2, \ F(AB)Bz,PBz(x), \\ FSTz,Qz(x), \ F(AB)Bz,STz(x), \ F(AB)Bz,PBz(x), \\ F(AB)Bz,STz(x), \ FSTz,Qz(x), \ F(AB)Bz,STz(x), \\ F(AB)Bz,Qz(2x), \ F(AB)Bz,STz(x), \ FSTz,PBz(x), \\ F(AB)Bz,Qz(2x), \ FSTz,PBz(x), \ F(AB)Bz,PBz(x), \\ FSTz,PBz(x), \ F(AB)Bz,Qz(2x), \ FSTz,Qz(x) \rbrace \end{split}$$

which gives

$$[FBz, z(kx)]^2 \ge [FBz, z(x)]^2$$

which is a cotradication, therefore we have Bz = z. So Az = Bz = z. Finally we show that Sz = z. By using (4.5), we have

$$\begin{split} [Fz, QSz(kx)]^2 &\geq \min \{ [Fz, (ST)Sz(x)]^2, Fz, z(x). \\ &\quad F(ST)Sz, QSz(x), Fz, (ST)Sz(x). Fz, z(x), Fz, (ST)Sz(x). \\ &\quad F(ST)Sz, QSz(x), Fz, (ST)Sz(x). Fz, QSz(2x), \\ &\quad Fz, (ST)Sz(x). F(ST)Sz, z(x), Fz, QSz(2x). \\ &\quad F(ST)Sz, z(x), Fz, z(x). F(ST)Sz, z(x), \\ &\quad Fz, QSz(2x). F(ST)Sz, QSz(x) \} \end{split}$$

which gives

$$[Fz, Sz(kx)]^2 \ge [Fz, Sz(x)]^2$$

which is a contradiction, therefore we have Sz = z. So Sz = Tz = z. Thus combining the results, we have Pz = Qz = Az = Bz = Sz = Tz = z. Thus z is a common fixed point of A, B, S, T, P and Q.

For uniqueness let $w \ (z \neq w)$ be another common fixed point of A, B, S, T, P and Q, then by (4.5), we have

$$\begin{split} [Fz,w(kx)]^2 &= [FPz,Qw(kx)]^2 \geq \min \{ [Fz,w(x)]^2, \ Fz,z(x). \ Fw,w(x), \\ Fz,w(x). \ Fz,z(x), \ Fz,w(x). \ Fw,w(x), \\ Fz,w(x). \ Fz,w(2x), \ Fz,w(x). \ Fw,z(x), \\ Fz,w(2x). \ Fw,z(x), \ Fz,z(x). \ Fw,z(x), \\ Fz,w(2x). \ Fw,w(x) \} = [Fz,w(x)]^2 \end{split}$$

which is a contradiction, therefore z = w. Hence z is a unique common fixed point of A, B, S, T, P and Q.

If we put B = T = I (*I* is identity mapping on *X*) in Theorem 4.1., we obtain the following result due to Pathak et al. [17].

Corollary 4.1. Let (X, F, t) be a complete Menger space with $t(x, y) = \min\{x, y\}$ for all $x, y \in [0, 1]$ and P, Q, A and S be mappings from X into itself such that

- $(4.6) \quad P(X) \subset S(X) \quad and \quad Q(X) \subset A(X),$
- (4.7) the pairs $\{P, A\}$ and $\{Q, S\}$ are weak compatible of type (α)

(4.8) P is continuous,

 $(4.9) \quad [FPu, Qv(kx)]^2 \ge \min\left\{FAu, Sv(x)\right\}^2, FAu, Pu(x), FSv, Qv(x),$

$$FAu, Sv(x). FAu, Pu(x), FAu, Sv(x).$$

$$FSv, Qv(x), FAu, Sv(x). FAu, Qv(2x), FAu, Sv(x).$$

$$FSv, Pu(x), FAu, Qv(2x). FSv, Pu(x), FAu, Pu(x)$$

$$FSv, Pu(x), FAu, Qv(2x). FSv, Qv(x)\}$$

for all $u, v \in X$ and $x \ge 0$, where $k \in (0, 1)$. Then P, Q, A and S have a unique common fixed point.

If we put A = B = S = T = I (*I* is identity mapping on *X*) in Theorem 4.1, we have the following:

Corollary 4.2. Let (X, F, t) be a complete Menger space with $t(x, y) = \min\{x, y\}$ for all $x, y \in [0, 1]$ and P and Q be mappings from X into itself such that

 $(4.10) \qquad P(X) \subset Q(X),$

(4.11) *P* is continuous,

- $(4.12) \quad [FPu, Qv(kx)]^2 \ge \min\{Fu, v(x)\}^2, Fu, Pu(x), Fv, Qv(x),$
 - Fu, v(x). Fu, Pu(x), Fu, v(x). Fv, Qv(x) Fu, v(x). Fu, Qv(2x), Fu, v(x). Fv, Pu(x), Fu, Qv(2x). Fv, Pu(x), Fu, Pu(x). Fv, Pu(x), $Fu, Qv(2x), Fv, Qv(x) \}$

for all $u, v \in X$ and $x \ge 0$, where $k \in (0, 1)$. Then P and Q have a unique common fixed point.

References

- BHARUCHA-REID A.T., Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc., 82(1976), 641–657.
- [2] BOCSAN G., On some fixed point theorems in probabilistic metric spaces, Math. Balkanica, 4(1974), 67–70.
- [3] CAIN G.L., KASRIEL R.H., Fixed and periodic points of local contraction mappings on probabilistic metric spaces, *Math. System Theory*, 9(1976), 289–297.
- [4] CHAMOLA K.P., Fixed points of mappings satisfying a new contraction condition in Random Normed spaces, *Math. Japonica*, 33(1988), 821–825.
- [5] CHANG S.S., On some fixed point theorems in probabilistic metric spaces and its application, Z. Wahrsch. Verw. Gebiete, 63(1983), 463–474.
- [6] CHO Y.J., MURTHY P.P., STOJAKOVIC M., Compatible mappings of type (A) and common fixed points in Meneger spaces, Comm. of Karean Math. J., 7(1992), 325–339.
- [7] CIRIC L.B., On fixed points of generalized contractions on probabilistic metric spaces, *Publ. Inst. Math. Beograd*, 18(32)(1975), 71–78.
- [8] DEBEIC R., SARAPA N., A common fixed point theorem for three mappings on Meneger spaces, *Math. Japonica*, 34(1989), 919–923.
- [9] EGBERT R.J., Products and quotients of probabilitic metric space, *Pacific J. Math.*, 24(1968), 437–455.
- [10] HADZIC O., On the (ε, λ) topology of LPC-space, *Glasnik Math.*, 13(1978), 293–297.
- [11] HADZIC O., A fixed point theorem in probabilistic localy convex spaces, Rev. Roum. Math. Pures Appl., 23(1978), 735–744.
- [12] HADZIC O., Some theorems on the fixed point in probabilistic metric space and Random normed spaces, *Ball. Un. Mat. Ital.*, 13(5)18(1981), 1–11.
- [13] HICKS T.L., Fixed point theory in probabilistic metric spaces, Review of Research, Fasc. Sci Math. Series, Univ. of Novi. Sad, 13(1983), 63–72.
- [14] JUNGCK G., MURTHY P.P., CHO Y.J, Compatible mappings of type (A) and common fixed points, Math. Japonica, 38(1983), 381–390.
- [15] MENGER K., Statistical metric, Proc. Nat. Acad. Sci. U.S.A, 28(1942), 535–537.
- [16] MISHRA S.N., Common fixed point of compatible mappings in probabilistic metric space, *Math. Japonica*, 36(1991), 283–289.
- [17] PATHAK H.K., KANG S.M., J.H. BEAK, Weak compatible mppings of type (A) and common fixed points in Meneger spaces, Comm. Korean Math. Soc., 10(1)(1995), 67–83.
- [18] RADU V., On some contraction type mappings in Menger space, An. Univ. Timisora, Stiinte Math., 22(1-2)(1984), 83–88.
- [19] SCHWEIZER B., SKLAR A., Statistical metric space, Pacific J. Math., 10(1960), 313–334.
- [20] SCHWEIZER B., SKLAR A., Probabilistic metric space, Vol. 5, North-Holland series in probability and Applied Math., 1983.
- [21] SERSTNEV A.N., The notion of the Random normed space, Dolk. Akad. Nauk. USSR, 149(1963), 280–283.

- [22] SHERWOOD H., On the completion of probabilistic metric space, Z. Wahrsch. Verw. Gebiete, 6(1966), 62–64.
- [23] SHERWOOD H., Complete probabilistic metric space, Z. Wahrsch. Verw. Gebiete, 20(1971), 117–128.
- [24] SINGH S.L., PANT B.D., Fixed point theorems for commuting mappings in probabilistic metric space, *Honam Math. J.*, 5(1983), 139–150.
- [25] SINGH S.L., PANT B.D., Common fixed point theorems in probabilistic metric spaces and extension to uniform spaces, *Honam Math. J. Phy.*, 6(1984), 1–12.
- [26] SINGH S.L., PANT B.D., Concidence and fixed point theorems for a family of mappings on Menger space and extension of Uniform space, *Math. Japonica*, 33(1988), 957–973.
- [27] SPACEK A., Note on K. Meneger probabilistic geometry, Czechoslovak Math. J., 6(1956), 72–74.
- [28] STOJAKOVIC M., Fixed point theorem in probabilistic metric space, Kobe J. Math., 2(1985), 1–9.
- [29] STOJAKOVIC M., A common fixed point theorems in probabilistic metric space and its application, *Glasnik Math.*, 23(1988), 203–211.
- [30] SEHGAL V.M., BHARUCH-READ A.T., Fixed point of contraction mappings on probabilistics metric spaces, *Math. Systems Theory*, 6(1972), 72–102.
- [31] WALD A., A on a statistical generalization of metric space, Proc. Nat. Acad. Sci. U.S.A., 29(1943), 196–197.

ANIL BAGWAN DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE MADHAV SCIENCE COLLEGE UJJAIN (M.P.)-456010, INDIA *e-mail:* anil_bagwan2000@yahoo.co.in

Sushil Sharma Department of Mathematics, Madhav Vigyam Mahavidyalaya Vikram University, Ujjain-45600, India *e-mail:* sksharma2005@yahoo.com

Received on 07.03.2001 and, in revised form, on 25.10.2004.