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ON SINGULAR INITIAL VALUE PROBLEM

FOR NONLINEAR FREDHOLM
INTEGRODIFFERENTIAL EQUATIONS

Abstract: There are given conditions for the solvability of the
singular initial value problem for Fredholm integrodifferential
equations. The continuous dependence of solutions on a para-
meter is investigated as well.
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1. Introduction

The most results concerning of behaviour of singular ordinary and in-
tegrodifferential equations were studied by means of modifications of the
Wazewki’s topological method and by fixed point theorems (see [1-7]). In
[4,5] there are investigated singular initial problems for Volterra integrodif-
ferential equations. However, in cases of Fredholm integrodifferential equa-
tions there is necessary to modify known results from the theory of Voltera
integrodifferential equations which is shown in this paper.

We give sufficient conditions of existence and uniqueness of solutions
of nonlinear singular Fredholm integrodifferential equations. Moreover, we
shall also investigate a problem of continuous dependence of solutions on a
parameter.

Consider the following initial value problem

(1) y′(t) = F
(

t, y(t),
∫ 1

0+

K(t, s, y(t), y(s))ds, µ

)
, y(0+, µ) = 0,

and suppose
(I) F : Ω → Rn, F ∈ C0(Ω),

Ω = {(t, u1, u2, µ) ∈ J × Rn × Rn × R : |u1| ≤ φ(t), |u2| ≤ ψ(t)},
J = (0, 1], , 0 < φ(t) ∈ C0(J), φ(0+) = 0, 0 < ψ(t) ∈ C0(J), | · |
denotes the usual norm in Rn. There exist constants Mi ≥ 0, i = 1, 2
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such that |F(t, u1, u2, µ) − F(t, u1, u2, µ)| ≤ M1|u1 − u1| + M2|u2 − u2|
for all (t, u1, u2, µ), (t, u1, u2, µ) ∈ Ω.

(II) K : Ω1 → Rn, K ∈ C0(Ω1),
Ω1 = {(t, s, v1, v2) ∈ J × J ×Rn ×Rn : |v1| ≤ φ(t) |v2| ≤ φ(t)}.
There exist constants Ni ≥ 0, i = 1, 2 such that
|K(t, s, v1, v2)−K(t, s, v1, v1| ≤ N1|v1 − v1|+ N2e

λ(t−s)|v2 − v2|
for all (t, s, v1, v2), (t, s, v1, v2) ∈ Ω1, λ > 0 is a sufficiently large constant
such that

(
M1+M2N1+M2N2

λ

)
< 1.

2. Main results

Theorem 2.1. Let the functions F(t, u1, u2, µ), K(t, s, v1, v2) satisfy
conditions (I), (II) and, moreover

|F| ≤ g1(t)|u1|+g2(t)|u2|, ; 0 < gi(t) ∈ C0(J), i = 1, 2,

∫ t

0+

g1(s)φ(s)ds ≤ αφ(t),

∫ t

0+

g2(s)ψ(s)ds ≤ βφ(t), α + β ≤ 1.

Then the problem (1) has a unique solution y(t, µ) for each µ ∈ R, t ∈ J .
Proof. Denote H the Banach space of continuous vector-valued functions

h : J0 → Rn, J0 = [0, 1], |h(t)| ≤ φ(t)

on J with the norm
||h||λ = max

t∈J0

{e−λt|h(t)|}.
The initial value problem (1)is equivalent to the system of integral equations

(2) y(t) =
∫ t

0+

F
(

s, y(s),
∫ 1

0+

K(s, w, y(s), y(w))dw, µ

)
ds

Define the operator T by the right-hand side of (2)

T (h) =
∫ t

0+

F
(

s, h(s),
∫ 1

0+

K(s, w, h(s), h(w))dw, µ

)
ds,

where h ∈ H. Let µ ∈ R be fixed. The transformation T maps H continu-
ously into itself because

|T (h)| ≤
∫ t

0+

∣∣∣∣F
(

s, h(s),
∫ 1

0+

K(s, w, h(s), h(w))dw, µ

)∣∣∣∣ ds

≤
∫ t

0+

[
g1(s)|h(s)|+ g2(s)

∣∣∣∣
∫ 1

0+

K(s, w, h(s), h(w))dw

∣∣∣∣
]

ds

≤
∫ t

0+

(g1(s)φ(s) + g2(s)ψ(s)) ds ≤ (α + β)φ(t) ≤ φ(t)
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for every h ∈ H. Using (I), (II) and the definition ||.||λ we have

|T (h2)− T (h1)| ≤
∫ t

0+

∣∣∣∣F
(

s, h2(s),
∫ 1

0+

K(s, w, h2(s), h2(w))dw, µ

)

− F
(

s, h1(s),
∫ 1

0+

K(s, w, h1(s), h1(w))dw, µ

)∣∣∣∣ ds

≤
∫ t

0+

(M1|h2(s)− h1(s)|

+M2

∫ 1

0+

|K(s, w, h2(s), h2(w))−K(s, w, h1(s), h1(w))|dw

)
ds

≤
∫ t

0+

(M1|h2(s)− h1(s)|

+M2

∫ 1

0+

(N1|h2(s)− h1(s)|+ N2e
λ(s−w)|h2(w)− h1(w)|)dw

)
ds

≤ M1||h2 − h1||λ
∫ t

0+

eλsds

+M2N1||h2 − h1||λ
∫ t

0+

eλsds + M2N2||h2 − h1||λ
∫ t

0+

∫ 1

0+

eλsdwds

= ||h2 − h1||λ
(

M1(
eλt

λ
− 1

λ
) + M2N1(

eλt

λ
− 1

λ
) + M2N2(

eλt

λ
− 1

λ
)
)

< ||h2 − h1||λ eλt

(
M1 + M2N1 + M2N2

λ

)
.

Thus

||T (h2)− T (h1)||λ = max
t∈J0

{e−λt|T (h2)− T (h1)|} ≤ q ||h2 − h1||λ,

where
q :=

1
λ

(M1 + M2N1 + M2N2) < 1.

By Banach theorem the operator T has a unique stationary point h∗ in the
space H , i.e. h∗(t) ≡ T (h∗(t)), t ∈ J0. Then y := h∗ is the desidered
solution of (1). ¥

Theorem 2.2. Let all assumptions of Theorem 2.1 be satisfied and let
there exist a constant L > 0 and an integrable function γ : J0 → J0 such
that

|F(t, u1, u2, µ2)−F(t, u1, u2, µ1)| ≤ γ(t)|µ2 − µ1|,
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where (t, u1, u2, µ1), (t, u1, u2, µ2) ∈ Ω and

max
t∈J0

{
e−λt

∫ t

0+

γ(s)ds

}
≤ L.

Then the solution y(t, µ) of (1) is continuous with respect to the variables
(t, µ) ∈ J ×R.

Proof. Define as above, for h ∈ H the transformation Tµ(h) by means
of the right-hand side (2) then we obtain

||Tµ(h)− Tµ(y)||λ ≤
(

M1 + M2N1 + M2N2

λ

)
||h− y||λ.

By the hypothesis of Theorem 2.2 we get

e−λt|Tµ2(h)− Tµ1(h)|

≤ e−λt

∫ t

0+

∣∣∣∣F(s, h(s),
∫ 1

0+

K(s, w, h(s), h(w))dw, µ2)

− F(s, h(s),
∫ 1

0+

K(s, w, h(s), h(w))dw, µ1)
∣∣∣∣ ds

≤ e−λt

∫ t

0+

γ(s)|µ2 − µ1|ds ≤ L|µ2 − µ1|.

Hence
||Tµ2(h)− Tµ1(h)||λ ≤ L|µ2 − µ1|.

From this and by Theorem 2.1 we obtain

||h(t, µ2)− h(t, µ1)||λ = ||Tµ2 [h(t, µ2)]
−Tµ2 [h(t, µ1)] + Tµ2 [h(t, µ1)]− Tµ1 [h(t, µ1)]||λ ≤ ||Tµ2 [h(t, µ2)]
−Tµ2 [h(t, µ1)]||λ + ||Tµ2 [h(t, µ1)]− Tµ1 [h(t, µ1)]||λ

≤
(

M1 + M2N1 + M2N2

λ

)
||h(t, µ2)− h(t, µ1)||λ + L|µ2 − µ1|.

Thus

||h(t, µ2)− h(t, µ1)||λ ≤
[
1−

(
M1 + M2N1 + M2N2

λ

)]−1

L|µ2 − µ1|.

Consequently the function h(t, µ) is uniformly continuous with respect to the
variable µ ∈ R ; so y(t, µ) is also continuous with respect to two variables
(t, µ) ∈ J ×R. The proof is complete. ¥
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Now we shall consider a special form of (1)

(3) pi(t)y′i − yi = Fi

(
t, y(t),

∫ 1

0+

K(t, s, y(t), y(s))ds, µ

)
, yi(0+, µ) = 0,

i = 1, . . . , n. A solution of (3) will be described by means of a solution of
an auxiliary system

(4) pi(t)y′i − yi = 0, i = 1, . . . , n.

Put

(5) ηi(t, Ci) = Ci exp

(∫ t

1

ds

pi(s)

)
, i = 1, . . . , n.

It is obvious that (5) is the general solution of (4). Denote

Y = (Y1, . . . , Yn), Yi(t, µ) =
yi(t, µ)− ηi(t, Ci)

ηi(t, Ci)
,

G = (G1, . . . , Gn), Gi

(
t, y(t),

∫ 1

0+

K(t, s, y(t), y(s))ds, µ

)

= (pi(t)ηi(t, Ci))−1Fi

(
t, y(t),

∫ 1

0+

K(t, s, y(t), y(s))ds, µ

)

η(t)(1 + Y (t)) = (η1(t, C1)(1 + Y1(t, µ)), . . . , ηn(t, Cn)(1 + Yn(t, µ)).

Then

Y ′
i =

(y′i(t, µ)− ηi(t,Ci)
pi(t)

)ηi(t, Ci)− (yi(t, µ)− ηi(t, Ci))
ηi(t,Ci)

pi(t)

ηi(t, Ci)2

=
pi(t)y′i(t, µ)− yi(t, µ)

pi(t)ηi(t, Ci)
, i = 1, 2, . . . , n.

Now, we can rewrite the equation (3) in the form

Y ′
i = Gi

(
t, η(t)(1 + Y (t)),

∫ 1

0+

K(t, s, η(t)(1 + Y (t)), η(s)(1 + Y (s))ds, µ

)
.

Denote

Gi

(
t, Y (t),

∫ 1

0+

K(t, s, Y (t), Y (s))ds, µ

)

= Gi

(
t, η(t)(1 + Y (t)),

∫ 1

0+

K(t, s, η(t)(1 + Y (t)), η(s)(1 + Y (s))ds, µ

)
.
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Then

(6) Y ′
i = Gi

(
t, Y (t),

∫ 1

0+

K(t, s, Y (t), Y (s))ds, µ

)
.

We suppose:
(i) G ∈ C0(Ω),

Ω = {(x, Y, u, µ) ∈ J ×Rn ×Rn ×R : |Y | ≤ φ(t), |u| ≤ ψ(t)},
|G(t, Y , u, µ)− G(t, Y , u, µ)| ≤ M1|Y − Y |+ M2|u− u|
for all (t, Y , u, µ), (t, Y (t), u) ∈ Ω.

(ii) K ∈ C0(Ω1), Ω1 = {(t, s, Y (t), Y (s)) ∈ J × J ×Rn ×Rn :
|Y (t)| ≤ φ(t), |Y (s)| ≤ φ(t)},
|K(t, s, Y (t), Y (s))−K(t, s, Y (t), Y (s)| ≤ N1|Y (t)− Y (t)|+ N2e

λ(t−s)

× |Y (s)− Y (s)| for all (t, s, Y (t), Y (s)), (t, s, Y (t), Y (s)) ∈ Ω1.
The functions φ(t), ψ(t) and the constants Mi, Ni, i = 1, 2, λ have the same
properties as in Theorem 2.1.

Theorem 2.3. Let the functions G(t, Y (t), µ), K(t, s, Y (t), Y (s)) satisfy
the conditions (i),(ii) and

|G| ≤ g1(t)|Y |+ g2(t)|u|, 0 < gj(t) ∈ C0(J), j = 1, 2,

∫ t

0+

g1(s)φ(s)ds ≤ αφ(t),
∫ t

0+

g2(s)ψ(s)ds ≤ βφ(t), α + β ≤ 1,

0 < pi(t) ∈ C0(J),
∫ 1

0+

dt

pi(t)
= ∞, i = 1, . . . , n.

Then there exists a unique solution y(t, µ) of (3) satisfying an inequality

|yi(t, µ)− ηi(t, Ci)| ≤ φ(t)|ηi(t, Ci)|,

on J, i = 1, . . . , n.
Proof. The equation (6) satisfies all assumptions of Theorem 2.1. Thus,

there exists a unique solution Y (t, µ) of (6) such that |Y (t, µ| ≤ φ(t). From
this and by the notations above, we have

|Yi(t, µ)| =
∣∣∣∣
yi(t, µ)− ηi(t, Ci)

ηi(t, Ci)

∣∣∣∣ ≤ φ(t) ⇒ |yi(t, µ)−ηi(t, Ci)| ≤ φ(t)|ηi(t, Ci)|.

The proof is complete. ¥
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[3] Dibĺık J., Ružičková M., Existence of positive solutions of a singular ini-
tial problem for a nonlinear system of differential equations, Rocky Mountain
Journal of Mathematics, 34(2004), 923–944.
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