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1. Introduction and notation

On the interval [a, b], we consider two–dimensional differential system

(1.1) u′i(t) = σi1 `i1(u1)(t) + σi2 `i2(u2)(t) + qi(t) (i = 1, 2)

with the initial conditions

(1.2) u1(a) = c1, u2(a) = c2 ,

where `ik : C([a, b];R) → L([a, b];R) are linear nondecreasing operators,
σik ∈ {−1, 1}, qi ∈ L([a, b];R), and ci ∈ R (i, k = 1, 2). Under a solution
of the problem (1.1), (1.2) is understood an absolutely continuous vector
function u = (u1, u2)T : [a, b] → R2 satisfying (1.1) almost everywhere on
[a, b] and verifying also the initial conditions (1.2).

The problem on the solvability of the Cauchy problem for linear func-
tional differential equations and their systems has been studied by many
authors (see, e.g., [1, 2, 3, 4, 5, 7, 10, 11, 12, 13, 14, 15, 16, 18] and refer-
ences therein). There are a lot of interested results but only a few efficient
conditions is known at present. Furthermore, most of them is available
for the one-dimmensional case only or for the systems with the so–called
Volterra operators (see, e.g., [3, 4, 5, 13, 10, 7]). Let us mention that the
efficient conditions guaranteeing the unique solvability of the initial value
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problem for n-dimensional systems of linear functional differential equations
are given, e.g., in [12, 2, 15, 14, 11].

In this paper, we establish new efficient conditions sufficient for the
unique solvability of the problem (1.1), (1.2) with σ11σ22 = −1. The cases,
where σ11 = σ22 = 1 and σ11 = σ22 = −1 are studied in [9] and [17],
respectively.

The integral conditions given in Theorems 2.1–2.6 are optimal in a certain
sense which is shown by counter–examples constructed in the last part of
the paper.

The following notation is used throughout the paper:

(1) R is the set of all real numbers, R+ = [0, +∞[ .
(2) C([a, b];R) is the Banach space of continuous functions u : [a, b] → R

equipped with the norm

‖u‖C = max
{
|u(t)| : t ∈ [a, b]

}
.

(3) L([a, b];R) is the Banach space of Lebesgue integrable functions h :
[a, b] → R equipped with the norm

‖h‖L =

b∫

a

|h(s)|ds.

(4) L
(
[a, b];R+

)
=

{
h ∈ L([a, b];R) : h(t) ≥ 0 for a.a. t ∈ [a, b]

}
.

(5) An operator ` : C([a, b];R) → L([a, b];R) is said to be nondecreasing if
the inequality

`(u1)(t) ≤ `(u2)(t) for a.a. t ∈ [a, b]

holds for every functions u1, u2 ∈ C([a, b];R) such that

u1(t) ≤ u2(t) for t ∈ [a, b].

(6) Pab is the set of linear nondecreasing operators ` : C([a, b];R) → L([a, b];R).

In what follows, the equalities and inequalities with integrable functions
are understood to hold almost everywhere.

2. Main results

In this section, we present the main results of the paper. The proofs are
given later, in Section 3. Theorems formulated below contain the efficient



On the initial value problem for two–dimensional systems . . . 89

conditions sufficient for the unique solvability of the problem (1.1), (1.2)
with σ11σ22 = −1. Recall that the operators `ik are supposed to be linear
and nondecreasing, i.e., such that `ik ∈ Pab for i, k = 1, 2.

Put

(2.1) Aik =

b∫

a

`ij(1)(s)ds for i, k = 1, 2

and

(2.2) ϕ(s) =

{
1 for s ∈ [0, 1[
1− 1

4 (s− 1)2 for s ∈ [1, 3[
.

2.1. The case σ12σ21 > 0. At first, we consider the case, where σ11 = 1
and σ22 = −1.

Theorem 2.1. Let σ11 = 1, σ22 = −1, and σ12σ21 > 0. Let, moreover,

(2.3) A11 < 1, A22 < 3,

and

(2.4) A12A21 < (1−A11)ϕ(A22),

where the numbers Aik (i, k = 1, 2) are defined by (2.1) and the function ϕ
is given by (2.2). Then the problem (1.1), (1.2) has a unique solution.

Remark 2.1. Neither one of the strict inequalities in (2.3) and (2.4) can be
replaced by the nonstrict one (see Examples 4, 4, 4, and 4).

Remark 2.2. Let H1 be the set of triplets (x, y, z) ∈ R3
+ satisfying

x < 1, y < 3, z < (1− x)ϕ(y)

(see Fig. 2.1). According to Theorem 2.1, the problem (1.1), (1.2) is uniquely
solvable if `ik ∈ Pab (i, k = 1, 2) are such that




b∫

a

`11(1)(s)ds ,

b∫

a

`22(1)(s)ds ,

b∫

a

`12(1)(s)ds

b∫

a

`21(1)(s)ds


 ∈ H1 .

The next statement concerning the case, where σ11 = −1 and σ22 = 1,
follows immediately from Theorem 2.1.
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Fig. 2.1.

Theorem 2.2. Let σ11 = −1, σ22 = 1, and σ12σ21 > 0. Let, moreover,

(2.5) A11 < 3, A22 < 1,

and
A12A21 < (1−A22)ϕ(A11),

where the numbers Aik (i, k = 1, 2) are defined by (2.1) and the function ϕ
is given by (2.2). Then the problem (1.1), (1.2) has a unique solution.

2.2. The case σ12σ21 < 0
At first, we consider the case, where σ11 = 1 and σ22 = −1.

Theorem 2.3. Let σ11 = 1, σ22 = −1, and σ12σ21 < 0. Let, moreover,
the condition (2.3) be satisfied and

(2.6) A12A21 < (1−A11)(3−A22),

where the numbers Aik (i, k = 1, 2) are defined by (2.1). Then the problem
(1.1), (1.2) has a unique solution.

Remark 2.3. The strict inequalities (2.3) cannot be replaced by the nonstrict
ones (see Examples 4 and 4). Furthermore, the strict inequality (2.6) cannot
be replaced by the nonstrict one provided A22 > 1 (see Example 4).
Remark 2.4. Let H2 be the set of triplets (x, y, z) ∈ R3

+ satisfying

x < 1, y < 3, z < (1− x)(3− y)

(see Fig. 2.2). According to Theorem 2.3, the problem (1.1), (1.2) is uniquely
solvable if `ij ∈ Pab (i, j = 1, 2) are such that




b∫

a

`11(1)(s)ds ,

b∫

a

`22(1)(s)ds ,

b∫

a

`12(1)(s)ds

b∫

a

`21(1)(s)ds


 ∈ H2 .
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Fig. 2.2.

Example 4 shows that Theorem 2.3 is optimal whenever 1 < A22 < 3. If
A22 ≤ 1 then the theorem mentioned can be improved. For example, the
next theorem improves Theorem 2.3 if A22 is close to zero.

Theorem 2.4. Let σ11 = 1, σ22 = −1, and σ12σ21 < 0. Let, moreover,

(2.7) A11 < 1, A22 < 1,

and

(2.8) A12A21 <
ω(1−A11)

[
1 + A22(1−A22)

]

1−A11 + ωA22
,

where

(2.9) ω = 4
√

1−A11 +

(
1 +

√
(1−A11)(1−A22)

)2

and the numbers Aik (i, k = 1, 2) are defined by (2.1). Then the problem
(1.1), (1.2) has a unique solution.

Remark 2.5. If A22 = 0 then the inequality (2.8) can be rewritten as

A12A21 < 4
√

1−A11 +
(
1 +

√
1−A11

)2
,

which coincides with the assumptions of Theorem 2.2 in [9].
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Remark 2.6. Let H3 be the set of triplets (x, y, z) ∈ R3
+ satisfying

x < 1, y < 1, z <
ω0(1− x)

[
1 + y(1− y)

]

1− x + ω0y
,

where

ω0 = 4
√

1− x +

(
1 +

√
(1− x)(1− y)

)2

(see Fig. 2.3). According to Theorem 2.4, the problem (1.1), (1.2) is uniquely
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Fig. 2.3.

solvable if `ik ∈ Pab (i, k = 1, 2) are such that



b∫

a

`11(1)(s)ds ,

b∫

a

`22(1)(s)ds ,

b∫

a

`12(1)(s)ds

b∫

a

`21(1)(s)ds


 ∈ H3 .

The next statements concerning the case, where σ11 = −1 and σ22 = 1,
follow immediately from Theorems 2.3 and 2.4.

Theorem 2.5. Let σ11 = −1, σ22 = 1, and σ12σ21 < 0. Let, moreover,
the condition (2.5) be satisfied and

A12A21 < (1−A22)(3−A11),
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where the numbers Aik (i, k = 1, 2) are defined by (2.1). Then the problem
(1.1), (1.2) has a unique solution.

Theorem 2.6. Let σ11 = −1, σ22 = 1, and σ12σ21 < 0. Let, moreover,
the condition (2.7) be satisfied and

A12A21 <
ω̃(1−A22)

[
1 + A11(1−A11)

]

1−A22 + ω̃A11
,

where

ω̃ = 4
√

1−A22 +

(
1 +

√
(1−A11)(1−A22)

)2

and the numbers Aij (i, j = 1, 2) are defined by (2.1). Then the problem
(1.1), (1.2) has a unique solution.

3. Proofs of the Main Results

In this section, we shall prove the statements formulated above. Recall
that the numbers Aik (i, k = 1, 2) are defined by (2.1) and the function ϕ is
given by (2.2).

It is well–known from the general theory of boundary value problems for
functional differential equations (see, e.g., [12, 8, 11, 16]) that the following
lemma is true.

Lemma 3.1. The problem (1.1), (1.2) is uniquely solvable if and only if
the corresponding homogeneous problem

u′i(t) = σi1 `i1(u1)(t) + σi2 `i2(u2)(t) (i = 1, 2),(3.1)
u1(a) = 0, u2(a) = 0(3.2)

has only the trivial solution.

In order to simplify the discussion in the proofs below, we formulate the
following obvious lemma.

Lemma 3.2. (u1, u2)T is a solution of the problem (3.1), (3.2) if and
only if (u1,−u2)T is a solution of the problem

v′i(t) = (−1)i−1σi1 `i1(v1)(t) + (−1)iσi2 `i2(v2)(t) (i = 1, 2),(3.3)
v1(a) = 0, v2(a) = 0 .(3.4)

Lemma 3.3 ([6, Remark 1.1]). Let ` ∈ Pab be such that

b∫

a

`(1)(s)ds < 1.
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Then every absolutely continuous function u : [a, b] → R such that

u′(t) ≥ `(u)(t) for t ∈ [a, b], u(a) ≥ 0

satisfies u(t) ≥ 0 for t ∈ [a, b].

Now we are in position to prove Theorems 2.1–2.6.

Proof of Theorem 2.1. According to Lemmas 3.1 and 3.2, in order to prove
the theorem it is sufficient to show that the system

u′1(t) = `11(u1)(t) + `12(u2)(t),(3.5)
u′2(t) = `21(u1)(t)− `22(u2)(t)(3.6)

has only the trivial solution satisfying (3.2).
Suppose that, on the contrary, (u1, u2)T is a nontrivial solution of the

problem (3.5), (3.6), (3.2). For i = 1, 2, we put

(3.7) Mi = max
{
ui(t) : t ∈ [a, b]

}
, mi = −min

{
ui(t) : t ∈ [a, b]

}
.

Choose αi, βi ∈ [a, b] (i = 1, 2) such that the equalities

(3.8) u1(α1) = M1 , u1(β1) = −m1

and

(3.9) u2(α2) = M2 , u2(β2) = −m2 .

are satisfied. Obviously, (3.2) guarantees

Mi ≥ 0, mi ≥ 0 for i = 1, 2.

Furthermore, for i, k = 1, 2, we denote

(3.10) Bik =

min{αi,βi}∫

a

`ik(1)(s)ds, Dik =

max{αi,βi}∫

min{αi,βi}

`ik(1)(s)ds.

It is clear that

(3.11) Bik + Dik ≤ Aik for i, k = 1, 2.

The integrations of (3.5) from a to α1 and from a to β1, in view of (3.7),
(3.8), and the assumptions `11, `12 ∈ Pab, yield
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(3.12) M1 =

α1∫

a

`11(u1)(s)ds +

α1∫

a

`12(u2)(s)ds ≤

≤ M1

α1∫

a

`11(1)(s)ds + M2

α1∫

a

`12(1)(s)ds ≤ M1A11 + M2A12

and

(3.13) m1 = −
β1∫

a

`11(u1)(s)ds−
β1∫

a

`12(u2)(s)ds ≤

≤ m1

β1∫

a

`11(1)(s)ds + m2

β1∫

a

`12(1)(s)ds ≤ m1A11 + m2A12 .

Now we shall divide the discussion into the following two cases.
(a) The function u2 is of a constant sign. Then, without loss of generality
we can assume that u2(t) ≥ 0 for t ∈ [a, b].

(b) The function u2 changes its sign.
Case (a): u2(t) ≥ 0 for t ∈ [a, b]. In view of (2.3) and the assumption
`12 ∈ Pab, Lemma 3.3 implies u1(t) ≥ 0 for t ∈ [a, b]. Consequently,

(3.14) M1 ≥ 0, M2 ≥ 0, M1 + M2 > 0.

The integration of (3.6) from a to α2, on account of (3.7), (3.9), and the
assumption `21, `22 ∈ Pab, yields
(3.15)

M2 =

α2∫

a

`21(u1)(s)ds−
α2∫

a

`22(u2)(s)ds ≤ M1

α2∫

a

`21(1)(s)ds ≤ M1A21 .

According to (2.3) and (3.14), it follows from (3.12) and (3.15) that

(3.16) 0 ≤ M1(1−A11) ≤ M2A12 , 0 ≤ M2 ≤ M1A21.

Using (2.3) and (3.14) once again, the last relations imply M1 > 0, M2 > 0,
and

A12A21 ≥ 1−A11 ≥ (1−A11)ϕ(A22),

which contradicts (2.4).

Case (b): u2 changes its sign. It is clear that

(3.17) M2 > 0, m2 > 0.
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We can assume without loss of generality that β2 < α2. The integrations of
(3.6) from a to β2 and from β2 to α2, in view of (3.7), (3.9), (3.10), and the
assumptions `21, `22 ∈ Pab, result in

(3.18) m2 = −
β2∫

a

`21(u1)(s)ds +

β2∫

a

`22(u2)(s)ds ≤

≤ m1

β2∫

a

`21(1)(s)ds + M2

β2∫

a

`22(1)(s)ds = m1B21 + M2B22

and

(3.19) M2 + m2 =

α2∫

β2

`21(u1)(s)ds−
α2∫

β2

`22(u2)(s)ds ≤

≤ M1

α2∫

β2

`21(1)(s)ds + m2

α2∫

β2

`22(1)(s)ds = M1D21 + m2D22 .

On the other hand, using (2.3) and (3.17), from (3.12) and (3.13) we get

(3.20)
M1

M2
≤ A12

1−A11
,

m1

m2
≤ A12

1−A11
.

If we take the assumption (2.4) into account, (3.20) yields

m1

m2
B21 ≤ A12A21

1−A11
< 1,

M1

M2
D21 ≤ A12A21

1−A11
< 1.

Consequently, it follows from (3.18) and (3.19) that

0 < 1− m1

m2
B21 ≤ M2

m2
B22 , 0 < 1− M1

M2
D21 ≤ m2

M2
(D22 − 1),

whence we get D22 > 1 and
(

1− m1

m2
B21

)(
1− M1

M2
D21

)
≤ B22

(
D22 − 1

)
.

Therefore,

1− m1

m2
B21 − M1

M2
D21 ≤ 1

4
(
B22 + D22 − 1

)2 ≤ 1
4
(
A22 − 1

)2
,
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which, together with (3.20), results in

ϕ(A22) = 1− 1
4
(
A22 − 1

)2 ≤ m1

m2
B21 +

M1

M2
D21 ≤

≤ A12

1−A11
(B21 + D21) ≤ A12A21

1−A11
.

But this contradicts (2.4).
The contradictions obtained in (a) and (b) prove that the problem (3.5),

(3.6), (3.2) has only the trivial solution.

Proof of Theorem 2.2. The validity of the theorem follows immediately from
Theorem 2.1.

Proof of Theorem 2.3. According to Lemmas 3.1 and 3.2, in order to prove
the theorem it is sufficient to show that the system

u′1(t) = `11(u1)(t) + `12(u2)(t),(3.21)
u′2(t) = −`21(u1)(t)− `22(u2)(t)(3.22)

has only the trivial solution satisfying (3.2).
Suppose that, on the contrary, (u1, u2)T is a nontrivial solution of the

problem (3.21), (3.22), (3.2). It is clear that one of the following items is
satisfied.

(a) The function u2 is of a constant sign. Then, without loss of generality,
we can assume that u2(t) ≥ 0 for t ∈ [a, b].

(b) The function u2 changes its sign.
Case (a): u2(t) ≥ 0 for t ∈ [a, b]. In view of (2.3) and the assumption
`12 ∈ Pab, Lemma 3.3 implies u1(t) ≥ 0 for t ∈ [a, b]. Therefore, by virtue
of the assumptions `21, `22 ∈ Pab, (3.22) yields u′2(t) ≤ 0 for t ∈ [a, b].
Consequently, u2 ≡ 0 and Lemma 3.3 once again results in u1 ≡ 0, which is
a contradiction.

Case (b): u2 changes its sign. Define the numbers Mi,mi (i = 1, 2) by (3.7)
and choose αi, βi ∈ [a, b] (i = 1, 2) such that the equalities (3.8) and (3.9)
are satisfied. Furthermore, let the numbers Bij , Dij (i, j = 1, 2) be given by
(3.10). It is clear that

M1 ≥ 0, m1 ≥ 0, M2 > 0, m2 > 0.

We can assume without loss of generality that β2 < α2. The integrations of
(3.22) from a to β2 and from β2 to α2, in view of (3.7), (3.9), (3.10), and
the assumptions `21, `22 ∈ Pab, yield
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(3.23) m2 =

β2∫

a

`21(u1)(s)ds +

β2∫

a

`22(u2)(s)ds ≤

≤ M1

β2∫

a

`21(1)(s)ds + M2

β2∫

a

`22(1)(s)ds = M1B21 + M2B22

and

(3.24) M2 + m2 = −
α2∫

β2

`21(u1)(s)ds−
α2∫

β2

`22(u2)(s)ds ≤

≤ m1

α2∫

β2

`21(1)(s)ds + m2

α2∫

β2

`22(1)(s)ds = m1D21 + m2D22 .

By virtue of (3.11) and (3.17), it follows from (3.23) and (3.24) that

(3.25) 3−A22 ≤ 1 +
m2

M2
+

M2

m2
−B22 −D22 ≤ M1

M2
B21 +

m1

m2
D21 .

On the other hand, the integrations of (3.21) from a to α1 and from a to β1,
on account of (3.7), (3.8), and the assumptions `11, `12 ∈ Pab, yield (3.12)
and (3.13), respectively. Using (2.3) and (3.17), from (3.12) and (3.13) we
get (3.20). Consequently, (3.25) implies

3−A22 ≤ A12

1−A11
(B21 + D21) ≤ A12A21

1−A11
,

which contradicts (2.6).
The contradictions obtained in (a) and (b) prove that the problem (3.21),

(3.22), (3.2) has only the trivial solution.

Proof of Theorem 2.4. If A12A21 < (1 − A11)(1 − A22) then the validity of
the theorem follows immediately from Theorem 2.3. Therefore, suppose that

(3.26) A12A21 ≥ (1−A11)(1−A22).

According to Lemmas 3.1 and 3.2, in order to prove the theorem it is suf-
ficient to show that the problem (3.21), (3.22), (3.2) has only the trivial
solution.

Suppose that, on the contrary, (u1, u2)T is a nontrivial solution of the
problem (3.21), (3.22), (3.2). Define the numbers Mi,mi (i = 1, 2) by (3.7)
and choose αi, βi ∈ [a, b] (i = 1, 2) such that the equalities (3.8) and (3.9)
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are satisfied. Furthermore, let the numbers Bij , Dij (i, j = 1, 2) be given by
(3.10). It is clear that (3.2) guarantees

Mi ≥ 0, mi ≥ 0 for i = 1, 2.

For the sake of clarity we shall devide the discussion into the following
cases.

(a) The function u2 is of a constant sign. Then, without loss of generality,
we can assume that u2(t) ≥ 0 for t ∈ [a, b].

(b) The function u2 changes its sign. Then, without loss of generality, we
can assume that β2 < α2. It is clear that one of the following items is
satisfied.
(b1) u1(t) ≥ 0 for t ∈ [a, b].
(b2) u1(t) ≤ 0 for t ∈ [a, b].
(b3) The function u1 changes its sign.

Case (a): u2(t) ≥ 0 for t ∈ [a, b]. In view of (2.7) and the assumption
`12 ∈ Pab, Lemma 3.3 implies u1(t) ≥ 0 for t ∈ [a, b]. Therefore, by virtue
of the assumptions `21, `22 ∈ Pab, (3.22) yields u′2(t) ≤ 0 for t ∈ [a, b].
Consequently, u2 ≡ 0 and Lemma 3.3 once again results in u1 ≡ 0, which is
a contradiction.

Case (b): u2 changes its sign and β2 < α2. Obviously, (3.17) is true. The
integrations of (3.22) from a to β2 and from β2 to α2, in view of (3.7),
(3.9), (3.10), and the assumptions `21, `22 ∈ Pab, yield (3.23) and (3.24),
respectively. At first we note that, by virtue of (2.7), the assumption (2.8)
implies

(3.27) A22

[
A12A21 − (1−A11)(1−A22)

]
< 1−A11 .

Now we are in position to discuss the cases (b1)–(b3).

Case (b1): u1(t) ≥ 0 for t ∈ [a, b]. This means that m1 = 0. Consequently,
(3.24) implies

M2 ≤ m2(D22 − 1) ≤ m2(A22 − 1),

which, together with (2.7), contradicts (3.17).

Case (b2): u1(t) ≤ 0 for t ∈ [a, b]. This means that M1 = 0. Consequently,
(3.23) and (3.24) yield

(3.28) M2 ≤ m1A21 −m2(1−A22), m2 ≤ M2A22 .

On the other hand, the integration of (3.21) from a to β1, in view of (3.7),
(3.8), and the assumption `11, `21 ∈ Pab, results in (3.13). If we take now
(2.7) into account, it follows from (3.13) and (3.28) that
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m2(1−A11) ≤ M2A22(1−A11) ≤
≤ m1A21A22(1−A11)−m2A22(1−A11)(1−A22) ≤

≤ m2A12A21A22 −m2A22(1−A11)(1−A22).

Since m2 > 0, we get from the last relations that

1−A11 ≤ A22

[
A12A21 − (1−A11)(1−A22)

]
,

which contradicts (3.27).

Case (b3): u1 changes its sign. Suppose that α1 < β1 (the case, where
α1 > β1, can be proved analogously). Obviously,

(3.29) Mi > 0, mi > 0 for i = 1, 2.

is true. The integrations of (3.21) from a to α1 and from α1 to β1, on
account of (3.7), (3.8), (3.10), and the assumptions `11, `12 ∈ Pab, yield

(3.30) M1 =

α1∫

a

`11(u1)(s)ds +

α1∫

a

`12(u2)(s)ds ≤

≤ M1

α1∫

a

`11(1)(s)ds + M2

α1∫

a

`12(1)(s)ds = M1B11 + M2B12

and

(3.31) M1 + m1 = −
β1∫

α1

`11(u1)(s)ds−
β1∫

α1

`12(u2)(s)ds ≤

≤ m1

β1∫

α1

`11(1)(s)ds + m2

β1∫

α1

`12(1)(s)ds = m1D11 + m2D12 ,

respectively. By virtue of (2.7), (3.29), and (3.11), combining the inequali-
ties (3.23), (3.24) and (3.30), (3.31), we get

(3.32) 0 <
m2

M1
+

M2

m1
+

m2

m1
(1−D22) ≤ A21 +

M2

M1
B22

and

(3.33) 0 <
M1

M2
(1−B11) +

m1

m2
(1−D11) +

M1

m2
≤ A12 ,
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respectively.
On the other hand, in view of (2.7), the relations (3.24) and (3.31) imply

M2(1−A11) ≤ m2

[
A12A21 − (1−A11)(1−A22)

]
.

Using (3.23) and (3.26) in the last inequality, we get

M2

(
1−A11 −A22

[
A12A21 − (1−A11)(1−A22)

]) ≤

≤ M1A21

[
A12A21 − (1−A11)(1−A22)

]
.

Consequently,

(3.34) A21 +
M2

M1
B22 ≤ (1−A11)A21

1−A11 −A22

[
A12A21 − (1−A11)(1−A22)

] ,

because the inequality (3.27) is true.
Now, it follows from (3.32)–(3.34) that

(3.35)
(1−A11)A12A21

1−A11 −A22

[
A12A21 − (1−A11)(1−A22)

] ≥ m2

M2
(1−B11)+

+
m1

M1
(1−D11) + 1 +

M1

m1
(1−B11) +

M2

m2
(1−D11) +

M1M2

m1m2
+

+
M1m2

M2m1
(1−B11)(1−D22) + (1−D11)(1−D22) +

M1

m1
(1−D22).

Using the relation

x + y ≥ 2
√

xy for x ≥ 0, y ≥ 0,

we get

(3.36)
M1M2

m1m2
+

M1m2

M2m1
(1−B11)(1−D22) ≥ 2

M1

m1

√
(1−B11)(1−D22) ,

(3.37)
M1

m1
(1−B11) + 2

M1

m1

√
(1−B11)(1−D22) +

M1

m1
(1−D22) =

=
M1

m1

(√
1−B11 +

√
1−D22

)2
,
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(3.38)
M1

m1

(√
1−B11 +

√
1−D22

)2
+

m1

M1
(1−D11) ≥

≥ 2
√

1−D11

(√
1−B11 +

√
1−D22

)
≥

≥ 2
√

1−B11 −D11 + 2
√

(1−D11)(1−D22) ≥
≥ 2

√
1−A11 + 2

√
(1−D11)(1−D22) ,

and

m2

M2
(1−B11) +

M2

m2
(1−D11) ≥ 2

√
(1−B11)(1−D11)(3.39)

≥ 2
√

1−A11 .

Finally, in view (3.36)–(3.39), (3.35) implies

(1−A11)A12A21

1−A11 −A22

[
A12A21 − (1−A11)(1−A22)

] ≥

≥ 4
√

1−A11 + 1 + 2
√

(1−D11)(1−D22) + (1−D11)(1−D22) ≥
≥ 4

√
1−A11 +

(
1 +

√
(1−A11)(1−A22)

)2
= ω,

which contradicts (2.8).
The contradictions obtained in (a) and (b) prove that the problem (3.21),

(3.22), (3.2) has only the trivial solution.

Proof of Theorem 2.5. The validity of the theorem follows immediately from
Theorem 2.3.

Proof of Theorem 2.6. The validity of the theorem follows immediately from
Theorem 2.4.

4. Counter–examples

In this part, the counter–examples are constructed verifying that the
results obtained above are optimal in a certain sense.

Example 4.1. Let σik ∈ {−1, 1}, hik ∈ L
(
[a, b];R+

)
(i, k = 1, 2) be such

that

σ11 = 1,

b∫

a

h11(s)ds ≥ 1.
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It is clear that there exists t0 ∈ ]a, b] such that

t0∫

a

h11(s)ds = 1.

Let the operators `ik ∈ Pab (i, k = 1, 2) be defined by

(4.1) `ik(v)(t) def= hik(t)v
(
τik(t)

)
for t ∈ [a, b], v ∈ C([a, b];R),

where τ11(t) = t0, τ12(t) = a, τ21(t) = a, and τ22(t) = a for t ∈ [a, b]. Put

u(t) =

t∫

a

h11(s)ds for t ∈ [a, b].

It is easy to verify that (u, 0)T is a nontrivial solution of the problem (1.1),
(1.2) with qi ≡ 0 and ci = 0 (i = 1, 2).

This example shows that the constant 1 on the right–hand side of the
inequality in (2.3) is optimal and cannot be weakened.

Example 4.2 Let σik ∈ {−1, 1}, hik ∈ L
(
[a, b];R+

)
(i, k = 1, 2) be such

that

σ22 = −1,

b∫

a

h22(s)ds ≥ 3.

It is clear that there exist t0 ∈ ]a, b[ and t1 ∈ ]t0, b] such that

t0∫

a

h22(s)ds = 1,

t1∫

t0

h22(s)ds = 2.

Let the operators `ik ∈ Pab (i, k = 1, 2) be defined by (4.1), where τ11(t) = a,
τ12(t) = a, τ21(t) = a for t ∈ [a, b], and

τ22(t) =

{
t1 for t ∈ [a, t0[
t0 for t ∈ [t0, b]

.

Put

u(t) =





t∫
a

h22(s)ds for t ∈ [a, t0[

1−
t∫

t0

h22(s)ds for t ∈ [t0, b]
.
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It is easy to verify that (0, u)T is a nontrivial solution of the problem (1.1),
(1.2) with qi ≡ 0 and ci = 0 (i = 1, 2).

This example shows that the constant 3 on the right–hand side of the
inequality in (2.3) is optimal and cannot be weakened.

Example 4.3. Let σ11 = 1, σ12 = 1, σ21 = 1, σ22 = −1 and let the
functions hik ∈ L

(
[a, b];R+

)
(i, k = 1, 2) be such that

b∫

a

h11(s)ds < 1,

b∫

a

h22(s)ds ≤ 1,

and
b∫

a

h12(s)ds

b∫

a

h21(s)ds ≥ 1−
b∫

a

h11(s)ds.

It is clear that there exists t0 ∈ ]a, b] satisfying

t0∫

a

h12(s)ds

t0∫

a

h21(s)ds = 1−
t0∫

a

h11(s)ds.

Let the operators `ik ∈ Pab (i, k = 1, 2) be defined by (4.1), where τ11(t) = t0,
τ12(t) = t0, τ21(t) = t0, and τ22(t) = a for t ∈ [a, b]. Put

u1(t) =

t∫

a

h11(s)ds +
1−

t0∫
a

h11(s)ds

t0∫
a

h12(s)ds

t∫

a

h12(s)ds for t ∈ [a, b],

u2(t) =

t∫

a

h21(s)ds for t ∈ [a, b].

It is easy to verify that (u1, u2)T is a nontrivial solution of the problem (1.1),
(1.2) with qi ≡ 0 and ci = 0 (i = 1, 2).

This example shows that the strict inequality (2.4) in Theorem 2.1 cannot
be replaced by the nonstrict one provided A22 ≤ 1.

Example 4.4. Let σ11 = 1, σ12 = 1, σ21 = 1, σ22 = −1, and let the
functions h11, h22 ∈ L

(
[a, b];R+

)
be such that

(4.2)

b∫

a

h11(s)ds < 1, 1 <

b∫

a

h22(s)ds < 3.
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Obviously, there exists t0 ∈ ]a, b[ satisfying

(4.3)

t0∫

a

h22(s)ds =

b∫
a

h22(s)ds− 1

2
.

Furthermore, we choose h12, h21 ∈ L
(
[a, b];R+

)
with the properties

h21(t) = 0 for t ∈ [t0, b]

and

b∫

a

h12(s)ds

b∫

a

h21(s)ds ≥

1−

b∫

a

h11(s)ds





1− 1

4




b∫

a

h22(s)ds− 1




2

 .

It is clear that there exists t1 ∈ ]a, b] such that

t1∫

a

h12(s)ds

t0∫

a

h21(s)ds =


1−

t1∫

a

h11(s)ds





1− 1

4




b∫

a

h22(s)ds− 1




2

 .

Let the operators `ik ∈ Pab (i, k = 1, 2) be defined by (4.1), where τ11(t) = t1,
τ12(t) = t0, τ21(t) = t1 for t ∈ [a, b], and

(4.4) τ22(t) =

{
b for t ∈ [a, t0[
t0 for t ∈ [t0, b]

.

Put

u1(t) =

t1∫
a

h12(s)ds

1−
t1∫
a

h11(s)ds

t∫

a

h11(s)ds +

t∫

a

h12(s)ds for t ∈ [a, b],

u2(t) =





t1R
a

h12(s)ds
tR

a
h21(s)ds

1−
t1R
a

h11(s)ds

+

 
bR

a
h22(s)ds−1

!
tR

a
h22(s)ds

2 for t ∈ [a, t0[

1−
t∫

t0

h22(s)ds for t ∈ [t0, b]

.

It is easy to verify that (u1, u2)T is a nontrivial solution of the problem (1.1),
(1.2) with qi ≡ 0 and ci = 0 (i = 1, 2).
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This example shows that the strict inequality (2.4) in Theorem 2.1 cannot
be replaced by the nonstrict one provided A22 > 1.

Example 4.5. Let σ1i = 1, σ2i = −1 for i = 1, 2 and let h11, h22 ∈
L

(
[a, b];R+

)
be such that (4.2) is true. Obviously, there exists t0 ∈ ]a, b[

satisfying

(4.5)

t0∫

a

h22(s)ds = 1.

Furthermore, we choose h12, h21 ∈ L
(
[a, b];R+

)
with the properties

h21(t) = 0 for t ∈ [a, t0]

and

b∫

a

h12(s)ds

b∫

a

h21(s)ds ≥

1−

b∫

a

h11(s)ds





3−

b∫

a

h22(s)ds


 .

It is clear that there exists t1 ∈ ]a, b] such that

t1∫

a

h12(s)ds

b∫

t0

h21(s)ds =


1−

t1∫

a

h11(s)ds





2−

b∫

t0

h22(s)ds


 .

Let the operators `ik ∈ Pab (i, k = 1, 2) be defined by (4.1), where τ11(t) = t1,
τ12(t) = t0, τ21(t) = t1 for t ∈ [a, b], and τ22 is given by (4.4). Put

u1(t) =

t1∫
a

h12(s)ds

1−
t1∫
a

h11(s)ds

t∫

a

h11(s)ds +

t∫

a

h12(s)ds for t ∈ [a, b],

u2(t) =





1−
t0∫
t

h22(s)ds for t ∈ [a, t0[

1−
t1R
a

h12(s)ds

1−
t1R
a

h11(s)ds

t∫
t0

h21(s)ds−
t∫

t0

h22(s)ds for t ∈ [t0, b]
.

It is easy to verify that (u1, u2)T is a nontrivial solution of the problem (1.1),
(1.2) with qi ≡ 0 and ci = 0 (i = 1, 2).

This example shows that the strict inequality (2.6) in Theorem 2.3 cannot
be replaced by the nonstrict one provided A22 > 1.
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[12] Kiguradze I., Půža B., On boundary value problems for systems of linear
functional differential equations, Czechoslovak Math. J., 47(1997), 341–373.

[13] Kolmanovskii V., Myshkis A., Introduction to the theory and
applications of functional differential equations, Kluwer Acad. Publ.,
Dordrecht–Boston–London, 1999.
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