F A S C I C U L I M A T H E M A T I C I
 Nr 37

Ethiraju Thandapani and Bothiah Selvaraj

OSCILLATIONS OF FOURTH ORDER QUASILINEAR DIFFERENCE EQUATIONS

Abstract: Consider the fourth order quasilinear difference equation of the form
$(*) \quad \Delta^{3}\left(p_{n-1}\left(\Delta x_{n-1}\right)^{\alpha}\right)+q_{n} x_{n}^{\beta}=0, n=1,2, \cdots$
where $\left\{p_{n}\right\}$ is a positive sequence and $\left\{q_{n}\right\}$ is a sequence of non-negative reals, α and β are ratios of odd positive integers. We obtain some new sufficient conditions for the oscillation of all solutions of equation $\left(^{*}\right)$. Examples are inserted to illustrate the importance of our results.

KEY wORDS: oscillations, fourth order, quasilinear, difference equations.

1. Introduction and basic notions

In this paper, we are concerned with the oscillatory behavior of fourth order quasilinear difference equations of the form

$$
\begin{equation*}
\Delta^{3}\left(p_{n-1}\left(\Delta x_{n-1}\right)^{\alpha}\right)+q_{n} x_{n}^{\beta}=0, n=1,2, \cdots \tag{1}
\end{equation*}
$$

where $\left\{p_{n}\right\}$ is a nondecreasing sequence of positive reals such that $\sum_{n=1}^{\infty} \frac{1}{p_{n}^{\frac{1}{\alpha}}}$ $=\infty,\left\{q_{n}\right\}$ is a sequence of non-negative reals α and β are ratios of odd positive integers. By a solution of equation (1), we mean a real sequence $\left\{x_{n}\right\}$ defined and satisfies equation (1) for all $n \geq 1$. A solution $\left\{x_{n}\right\}$ of equation (1) is said to be oscillatory if for every positive integer $N>1$, there exists an integer $n \geq N$ such that $x_{n} x_{n+1} \leqslant 0$; otherwise it is said to be nonoscillatory. In recent years there has been an increasing interest in the study of oscillatory behavior of solutions of difference equations,see for example $[1,2,4,5,6]$ and the references cited there in. Numerous results exist for first and second order difference equations,but the results dealing with fourth order equations are relatively scarce though such equations arise in the mathematical biology,bending of beams and other areas of
mathematics in which discrete models are used. Therefore in this paper, we study the oscillatory behavior of equation (1) and obtain some new sufficient conditions for the oscillations of all solutions of equation (1). Examples are included to dwell upon the importance of our results.

2. Some preliminary lemmas

In this section we state some lemmas which are needed in the sequel to prove our main results.

Throughout this paper, we use the factorial function $(t)^{(r)}$ defined as follows:

$$
(t)^{(r)}= \begin{cases}t(t-1) \cdots(t-r+1) & \text { if } r=1,2,3, \cdots \\ 0 & \text { if } r=0 \text { or } r>t\end{cases}
$$

Lemma 1. Let $\left\{y_{n}\right\}$ be a sequence of real numbers in $\mathbb{N}=\{1,2,3, \cdots\}$. Let $\left\{y_{n}\right\}$ and $\Delta^{3} y_{n}$ be of constant sign with $\Delta^{3} y_{n}$ not being identically zero on any subset $\{n, n+1, \cdots\}$ of \mathbb{N}. If

$$
y_{n} \Delta^{3} y_{n} \leqslant 0,
$$

then there exists an integer $n_{2} \geq n_{1}$ such that either

$$
\begin{equation*}
\operatorname{sgn} y_{n}=\operatorname{sgn} \Delta y_{n}=\operatorname{sgn} \Delta^{2} y_{n}, \quad \text { for } n \geqslant n_{2} \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
\operatorname{sgn} y_{n}=\operatorname{sgn} \Delta^{2} y_{n} \neq \operatorname{sgn} \Delta y_{n}, \quad \text { for } n \geqslant n_{2} . \tag{3}
\end{equation*}
$$

Proof. The proof follows immediately from the Discrete Kneser's Theorem [1, Theorem 1.7.11].

Lemma 2. Let $\left\{y_{n}\right\}$ be as defined in Lemma 1 and such that $y_{n}>0$ and (2) holds for all $n \geq n_{1}$. Then

$$
\begin{equation*}
y_{n} \geqslant \frac{1}{2}\left(\frac{n}{2}\right)^{(2)} \Delta^{2} y_{n}, \quad \text { for } n \geqslant n_{2} \tag{4}
\end{equation*}
$$

Proof. From (2), we have

$$
y_{n}>0, \Delta y_{n}>0, \Delta^{2} y_{n}>0 \text { for } \Delta^{3} y_{n} \leqslant 0 \text { for } n \geqslant n_{1},
$$

and hence

$$
\Delta y_{n}=\Delta y_{n_{1}}+\sum_{s=n_{1}}^{n-1} \Delta^{2} y_{s} \geqslant\left(n-n_{1}\right) \Delta^{2} y_{n}
$$

Summing the last inequality from n_{1} to $n-1$, we have

$$
y_{n} \geqslant y_{n_{1}}+\Delta^{2} y_{n} \sum_{s=n_{1}}^{n-1}\left(s-n_{1}\right) \geqslant \frac{1}{2}\left(\frac{n}{2}\right)^{(2)} \Delta^{2} y_{n} \quad \text { for } \quad n \geqslant n_{2}=2 n_{1},
$$

and the proof is complete.
Lemma 3. Let $\left\{z_{n}\right\}$ be be a positive sequence such that $\Delta z_{n}>0, \Delta^{2} z_{n}<$ $0, \Delta^{3} z_{n}>0$ and $\Delta^{4} z_{n} \leqslant 0$ for $n \geqslant n_{1}$. Then

$$
\begin{equation*}
z_{n} \geqslant \frac{1}{6}\left(\frac{n}{2}\right)^{(3)} \Delta^{3} z_{n}, \quad n \geqslant n_{2} \geqslant 2 n_{1} . \tag{5}
\end{equation*}
$$

Proof. We know

$$
\begin{aligned}
\sum_{s=n_{1}}^{n-1}\left(s-n_{1}\right)^{(3)} \Delta^{4} z_{s-3}= & \left(n-n_{1}\right)^{(3)} \Delta^{3} z_{n-3}-3\left(n-n_{1}\right)^{(2)} \Delta^{2} z_{n-2} \\
& +6\left(n-n_{1}\right) \Delta z_{n-1}-6 z_{n}+6 z_{n_{1}} .
\end{aligned}
$$

Then using the hypothesis, we obtain

$$
\begin{aligned}
z_{n} & \geqslant \frac{1}{6}\left(n-n_{1}\right)^{(3)} \Delta^{3} z_{n-3} \geqslant \frac{1}{6}\left(n-n_{1}\right)^{(3)} \Delta^{3} z_{n} \\
& \geqslant \frac{1}{6}\left(\frac{n}{2}\right)^{(3)} \Delta^{3} z_{n}, \quad \text { for } n \geqslant n_{2}=2 n_{1} .
\end{aligned}
$$

This completes the proof of Lemma 3 .
Lemma 4. Let $\left\{z_{n}\right\}$ be a positive sequence such that
$\Delta z_{n}>0, \Delta\left(\left(\Delta z_{n}\right)^{\frac{\alpha}{\beta}}\right)<0, \Delta^{2}\left(\left(\Delta z_{n}\right)^{\frac{\alpha}{\beta}}\right)>0$ and $\Delta^{3}\left(\left(\Delta z_{n}\right)^{\frac{\alpha}{\beta}}\right) \leqslant 0$
for $n \geq n_{1}$. Then

$$
z_{n}^{\frac{\alpha}{\beta}} \geqslant \frac{1}{6}\left(\frac{n}{2}\right)^{(3)} \Delta^{2}\left(\left(\Delta z_{n}\right)^{\frac{\alpha}{\beta}}\right) \text { for } n \geqslant n_{2} \geqslant 2 n_{1} .
$$

Proof. The proof is similar to that of Lemma 3 and hence the details are omitted.

Lemma 5. Suppose $F_{n} \geq 0$ and $Q_{n} \geq 0$ for all $n \geq n_{0} \in \mathbb{N}$. If there exists a positive sequence $\left\{W_{n}\right\}$ such that

$$
W_{n+1}-Q_{n} W_{n}+F_{n} \leqslant 0, \quad n \geqslant n_{0}
$$

then

$$
\sum_{n=n_{0}}^{\infty} F_{n} \exp \left(\sum_{t=n_{0}}^{n} Q_{t}\right)<\infty
$$

Proof. For the proof of Lemma 5, see [8].

Lemma 6. Assume that $\left\{x_{n}\right\}$ is an eventually positive solution of equation (1). Let

$$
\begin{equation*}
y_{n}=p_{n-1}\left(\Delta x_{n-1}\right)^{\alpha} \tag{6}
\end{equation*}
$$

Then $y_{n}>0$ eventually.
Proof. Let $x_{n-1}>0$ for all $n \geq n_{1} \in \mathbb{N}$. Then by the equation (1), we have

$$
\Delta^{3} y_{n}=-q_{n} x_{n}^{\beta} \leqslant 0
$$

for all $n \geq n_{1}$, which implies that $\left\{\Delta y_{n}\right\},\left\{\Delta^{2} y_{n}\right\}$ are monotonic and either

$$
\Delta^{2} y_{n}<0
$$

or

$$
\Delta^{2} y_{n}>0
$$

We claim that $\Delta^{2} y_{n}>0$. Suppose $\Delta^{2} y_{n}<0$ for $n \geq n_{1}$. Then there is a constant $d>0$ and an integer $n_{2} \in \mathbb{N}$ such that

$$
y_{n} \leq-d \text { for } n \geqslant n_{2}
$$

Therefore, we have

$$
\Delta x_{n-1} \leqslant-\left(\frac{d}{p_{n-1}}\right)^{\frac{1}{\alpha}}
$$

for all $n \geq n_{2}$. Summing the last inequality from n_{2} to n and then taking $n \rightarrow \infty$, we see that $x_{n} \rightarrow-\infty$ as $n \rightarrow \infty$. This is a contradiction and hence $\Delta^{2} y_{n}>0$ for $n \geq n_{1}$.

Next we consider the following three possible cases:
Case 1. For $n \geq n_{1}$, we have

$$
y_{n}<0 \quad \text { and } \Delta y_{n}<0
$$

Case 2. For $n \geq n_{1}$, we have

$$
y_{n}>0, \Delta y_{n}>0 \text { and } \Delta^{2} y_{n}>0
$$

Case 3. For $n \geq n_{1}$, we have

$$
y_{n}<0, \Delta y_{n}<0 \text { and } \Delta^{2} y_{n}>0
$$

For Cases 1 and 2, using a similar method to the above, we can obtain a contradiction and so Cases 1 and 3 are impossible. For Case 2, we see that $y_{n}>0$ eventually. This completes the proof.

3. Oscillation results

In this section, we derive some new sufficient conditions for the oscillation of all solutions of equation (1). We begin with the case $\alpha=\beta$.

Theorem 1. Assume $\alpha=\beta$ and $\sigma_{n}=\min \left\{\left(\frac{n}{8}\right)^{(3)}, \frac{1}{6}\left(\frac{n}{2}\right)^{(3)}\right\}$. If

$$
Q_{n}=\frac{p_{n}-\delta \sigma_{n} q_{n}}{p_{n}} \geqslant 0 \text { where } \delta=1 \text { if } \alpha \geqslant 1 \text { and }
$$

$\delta=\alpha$ if $\alpha<1$ and

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} q_{n} \exp \left(\sum_{i=n_{0}}^{n} Q_{i}\right)=\infty \tag{7}
\end{equation*}
$$

then every solution of equation (1) oscillates.
Proof. Let $\left\{x_{n}\right\}$ be a nonoscillatory solution of equation (1). Assume without loss of generality that $x_{n-1}>0$ for all $n \geq n_{1} \in \mathbb{N}$. Let y_{n} be as in Lemma 6. Then by (1) and (6) we have

$$
\begin{equation*}
\Delta^{3} y_{n}=-q_{n} x_{n}^{\alpha} \leqslant 0, \quad n \geqslant n_{1} \tag{8}
\end{equation*}
$$

and therefore $\left\{y_{n}\right\},\left\{\Delta y_{n}\right\},\left\{\Delta^{2} y_{n}\right\}$ are strictly monotonic. By Lemma 6 , $y_{n}>0$ eventually. From Lemma 1 we have either

$$
\begin{equation*}
y_{n}>0, \Delta y_{n}>0 \text { and } \Delta^{2} y_{n}>0 \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
y_{n}>0, \Delta y_{n}<0 \text { and } \Delta^{2} y_{n}>0 \text { for } n \geqslant n_{2} \geqslant n_{1} . \tag{10}
\end{equation*}
$$

From Lemma 6, we have $\Delta x_{n-1}>0$. Hence there exists a constant $M>0$ and a positive integer $n_{3} \geq n_{2}$ such that

$$
\begin{equation*}
x_{n} \geq M \text { for all } n \geq n_{3} . \tag{11}
\end{equation*}
$$

In the case of (9), we have from Lemma 2

$$
\begin{equation*}
y_{n} \geqslant \frac{1}{2}\left(\frac{n}{4}\right)^{(2)} \Delta^{2} y_{n} \text { for all } n \geqslant N_{0} . \tag{12}
\end{equation*}
$$

Let ℓ be a positive integer such that $N_{0}+\ell<n \leq N_{0}+\ell+1$ for $n \geq N_{1}=$ $N_{0}+\ell+1$. Then we have

$$
n>\frac{1}{2}(n+\ell) \text { for } n \geqslant N_{1}
$$

From (12) we obtain

$$
\begin{equation*}
y_{n}>\frac{1}{2}\left(\frac{n+\ell}{8}\right)^{(2)} \Delta^{2} y_{n} \tag{13}
\end{equation*}
$$

for $n \geqslant N_{1}$.
From (6) we have

$$
\begin{equation*}
x_{n}^{\alpha}=\left(\left(\frac{y_{n}}{p_{n-1}}\right)^{\frac{1}{\alpha}}+x_{n-1}\right)^{\alpha} \geqslant \delta\left(\frac{y_{n}}{p_{n-1}}+x_{n-1}^{\alpha}\right) \tag{14}
\end{equation*}
$$

where δ is already defined in the hypothesis.
In view of (13) and (14) we obtain

$$
\begin{align*}
x_{n}^{\alpha} & \geqslant \frac{\delta}{p_{n}} \sum_{j=0}^{\ell-1} y_{n-j}+\delta^{\ell-1} x_{n-\ell}^{\alpha} \tag{15}\\
& \geqslant \frac{\delta}{p_{n}} \sum_{j=0}^{\ell-1} \frac{1}{2}\left(\frac{n+\ell-j}{8}\right)^{(2)} \Delta^{2} y_{n-j}+\delta^{\ell-1} M^{\alpha} \\
& \geqslant \frac{\delta}{2 p_{n}}\left(\frac{n}{8}\right)^{(2)} \sum_{j=0}^{\ell-1} \Delta^{2} y_{n-j}+M_{1}, \text { for } n \geqslant N_{1}
\end{align*}
$$

where $M_{1}=\delta^{\ell-1} M^{\alpha}$. Since $\left\{\Delta^{2} y_{n}\right\}$ is decreasing and $\Delta^{2} y_{n}>0$, we have

$$
\begin{equation*}
\sum_{j=0}^{\ell-1} \Delta^{2} y_{n-j} \geqslant \sum_{i=N_{2}}^{n-1} \Delta^{2} y_{i} \tag{16}
\end{equation*}
$$

where $N_{2}=N_{1}+1$.
Substituting (15) and (16) in (8), we obtain

$$
\begin{equation*}
\Delta^{3} y_{n}+\frac{\delta}{2} \frac{q_{n}}{p_{n}}\left(\frac{n}{8}\right)^{(2)} \sum_{i=N_{2}}^{n-1} \Delta^{2} y_{i}+M_{1} q_{n} \leqslant 0 \tag{17}
\end{equation*}
$$

Set $V_{n}=\sum_{i=N_{2}}^{n-1} \Delta^{2} y_{i}, n \geqslant N_{2}$. Then, by (17), we get

$$
\begin{equation*}
\Delta^{2} V_{n}+\frac{\delta}{2} \frac{q_{n}}{p_{n}}\left(\frac{n}{8}\right)^{(2)} V_{n}+M_{1} q_{n} \leqslant 0 \tag{18}
\end{equation*}
$$

From (9) and (18), we have

$$
V_{n}>0, \Delta V_{n}>0, \Delta^{2} V_{n} \leqslant 0
$$

and by Lemma 4.1 of Hooker and Patula [3] there exists an integer $N_{3} \geq N_{2}$ such that

$$
\begin{equation*}
V_{n} \geqslant\left(\frac{n}{2}\right) \Delta V_{n}, \quad n \geqslant N_{3} \tag{19}
\end{equation*}
$$

From (18) and (19) we obtain

$$
\Delta^{2} V_{n}+\frac{\delta}{2} \frac{q_{n}}{p_{n}}\left(\frac{n}{8}\right)^{(2)}\left(\frac{n}{2}\right) \Delta V_{n}+M_{1} q_{n} \leqslant 0
$$

for $n \geq N_{3}$. Since $\left(\frac{n}{8}\right)^{(2)}\left(\frac{n}{4}\right) \geqslant\left(\frac{n}{8}\right)^{(3)}$, we have from the last inequality

$$
\begin{equation*}
\Delta^{2} V_{n}+\delta\left(\frac{n}{8}\right)^{(3)} \frac{q_{n}}{p_{n}} \Delta V_{n}+M_{1} q_{n} \leqslant 0, \quad n \geqslant N_{3} \tag{20}
\end{equation*}
$$

Next assume (10) holds. Then we have

$$
\begin{equation*}
x_{n}^{\alpha} \geqslant \frac{\delta}{p_{n}} \sum_{j=0}^{\ell-1} y_{n-j}+M_{1} . \tag{21}
\end{equation*}
$$

Since $y_{n}>0$ and decreasing, we have

$$
\begin{equation*}
\sum_{j=0}^{\ell-1} y_{n-j} \geqslant \sum_{i=N_{2}}^{n-1} y_{i} \tag{22}
\end{equation*}
$$

From (8),(21) and (22), we obtain

$$
\begin{equation*}
\Delta^{3} y_{n}+\delta \frac{q_{n}}{p_{n}} \sum_{i=N_{2}}^{n-1} y_{i}+M_{1} q_{n} \leqslant 0 \tag{23}
\end{equation*}
$$

Set $u_{n}=\sum_{i=N_{2}}^{n-1} y_{i}, n \geqslant N_{2}$. Then, by (23), we get

$$
\begin{equation*}
\Delta^{4} u_{n}+\delta \frac{q_{n}}{p_{n}} u_{n}+M_{1} q_{n} \leqslant 0 \tag{24}
\end{equation*}
$$

From (10), we know

$$
u_{n}>0, \quad \Delta u_{n}>0, \quad \Delta^{2} u_{n}<0, \quad \Delta^{3} u_{n}>0
$$

and by Lemma 3 , there exists an integer $N_{4} \geq N_{2}$ such that

$$
\begin{equation*}
u_{n} \geqslant \frac{1}{6}\left(\frac{n}{2}\right)^{(3)} \Delta^{3} u_{n}, \quad n \geqslant N_{4} \tag{25}
\end{equation*}
$$

Using (25) in (24) we obtain

$$
\begin{equation*}
\Delta^{4} u_{n}+\frac{\delta}{6}\left(\frac{n}{2}\right)^{(3)} \frac{q_{n}}{p_{n}} \Delta^{3} u_{n}+M_{1} q_{n} \leqslant 0, \quad n \geq N_{4} \tag{26}
\end{equation*}
$$

Let $\mathbf{W}_{n}=\Delta V_{n}$ for (20) and $\mathbf{W}_{n}=\Delta^{3} u_{n}$ for (26). Then we have $\mathbf{W}_{n}>0$ for $n \geq N_{5}=\max \left(N_{3}, N_{4}\right)$.

From (20) and (26) we obtain

$$
\Delta \mathbf{W}_{n}+\delta \sigma_{n} \frac{q_{n}}{p_{n}} \mathbf{W}_{n}+M_{1} q_{n} \leqslant 0, \quad n \geqslant N_{5}
$$

By Lemma 5, we have

$$
M_{1} \sum_{n=N_{5}}^{\infty} q_{n} \exp \left(\sum_{i=N_{5}}^{n} Q_{i}\right)<\infty
$$

which is a contradiction and the proof is complete.
Theorem 2. Assume that all solutions of inequality

$$
\begin{equation*}
\Delta W_{n}+B_{n} W_{n}^{\frac{\beta}{\alpha}}+M q_{n} \leqslant 0 \quad \text { for } n \geqslant n_{0} \tag{27}
\end{equation*}
$$

where M is any positive constant and

$$
B_{n}=\min \left\{\delta q_{n}\left(\frac{1}{6 p_{n}}\left(\frac{n}{2}\right)^{(3)}\right)^{\frac{\beta}{\alpha}}, \delta \frac{n}{2} q_{n}\left(\frac{1}{2 p_{n}}\left(\frac{n}{8}\right)^{(2)}\right)^{\frac{\beta}{\alpha}}\right\}
$$

are oscillatory for $\alpha=\beta$ and for $\alpha \neq \beta$. Then every solution of equation (1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 1, we obtain

$$
\begin{equation*}
\Delta^{3} y_{n}=-q_{n} x_{n}^{\beta} \leqslant 0, \quad n \geqslant n_{1} \tag{28}
\end{equation*}
$$

Again proceeding as in the proof of Theorem 1, we have from (28)

$$
\begin{equation*}
\Delta^{3} y_{n}+\delta q_{n}\left(\frac{\left(\frac{n}{8}\right)^{(2)}}{2 p_{n}}\right)^{\frac{\beta}{\alpha}} \sum_{i=N_{2}}^{n-1}\left(\Delta^{2} y_{i}\right)^{\frac{\beta}{\alpha}}+M_{1} q_{n} \leqslant 0 \tag{29}
\end{equation*}
$$

Let $V_{n}=\sum_{i=N_{2}}^{n-1}\left(\Delta^{2} y_{i}\right)^{\frac{\beta}{\alpha}}, n \geqslant N_{2}$. Then from (29) and (19) we have

$$
\begin{equation*}
\Delta\left(\left(\Delta V_{n}\right)^{\frac{\alpha}{\beta}}\right)+\delta \frac{n}{2} q_{n}\left(\frac{\left(\frac{n}{8}\right)}{2 p_{n}}\right)^{\frac{\beta}{\alpha}} \Delta V_{n}+M_{1} q_{n} \leqslant 0 \tag{30}
\end{equation*}
$$

where $\Delta V_{n}>0$. Once again proceeding as in the proof of Theorem 1 and using Lemma 4, we obtain

$$
\begin{equation*}
\Delta^{3}\left(\left(\Delta u_{n}\right)^{\frac{\alpha}{\beta}}\right)+\delta\left(\frac{\frac{1}{6}\left(\frac{n}{2}\right)^{(3)}}{p_{n}}\right)^{\frac{\beta}{\alpha}} q_{n} \Delta^{2}\left(\left(\Delta u_{n}\right)^{\frac{\alpha}{\beta}}\right)+M_{1} q_{n} \leqslant 0 \tag{31}
\end{equation*}
$$

Let $\mathbf{W}_{n}=\left(\Delta V_{n}\right)^{\frac{\alpha}{\beta}}$, if (30) holds and $\mathbf{W}_{n}=\Delta^{2}\left(\left(\Delta u_{n}\right)^{\frac{\alpha}{\beta}}\right)$ if (31) holds. Then in both the cases $\left\{\mathbf{W}_{n}\right\}$ is a positive solution of either

$$
\Delta \mathbf{W}_{n}+B_{n} W_{n}^{\frac{\beta}{\alpha}}+M_{1} q_{n} \leqslant 0
$$

or

$$
\Delta \mathbf{W}_{n}+B_{n} W_{n}+M_{1} q_{n} \leqslant 0
$$

which is a contradiction. This competes the proof.
Finally we give a easily verifiable condition for the oscillation of all solutions of equation (1).

Theorem 3. Assume that

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} A_{n} q_{n}=\infty \tag{32}
\end{equation*}
$$

where

$$
A_{n}=\max \left\{n^{(2)},\left(\frac{n^{(2)}}{p_{n}}\right)^{\frac{\beta}{\alpha}}\right\} .
$$

Then every solution of equation (1) oscillates.
Proof. Let $\left\{x_{n}\right\}$ be a nonoscillatory solution of equation (1). Without loss of generality, we may assume that $x_{n-1}>0$ for all $n \geq n_{1}$. Then $\left\{y_{n}\right\}$ be as in Lemma 6. Then by Lemma 1, we have either (9) or (10) holds. If (10) holds,then there exists a constant $M>0$ and $n_{2} \geq n_{1}$ such that $x_{n}^{\beta} \geqslant M$ for $n \geq n_{2}$. From (1), we have

$$
\begin{equation*}
\Delta^{3} y_{n} \leqslant-M q_{n} \tag{33}
\end{equation*}
$$

Multiplying both sides of (33) by $n^{(2)}$ and summing, we get

$$
\begin{align*}
n^{(2)} \Delta^{2} y_{n+1} & -n_{2}^{(2)} \Delta^{2} y_{n_{2}+1}-2 n \Delta y_{n+2}+2 n_{1} \Delta y_{n_{2}+2} \tag{34}\\
& +2 y_{n+3}-2 y_{n_{2}+3}=-\sum_{s=n_{2}}^{n-1} s^{(2)} q_{s} .
\end{align*}
$$

It is easy to see that, in view of (10) we have from (34)

$$
\sum_{s=n_{2}}^{n-1} s^{(2)} q_{s}<n_{2}^{(2)} \Delta^{2} y_{n_{2}+1}-2 n_{1} \Delta y_{n_{2}+2}+2 y_{n_{2}+3}
$$

which contradicts (32) as $n \longrightarrow \infty$. If (9) holds, then by Discrete Taylor's formula [1], we have

$$
\begin{aligned}
y_{n} & =y_{n_{1}}+\left(n-n_{1}\right) \Delta y_{1}+\frac{1}{2} \sum_{j=n_{1}}^{n-2}(n-j-1)^{(2)} \Delta^{2} y_{j} \\
& \geqslant\left(n-n_{1}\right) \Delta y_{1} \geqslant\left(\frac{n}{2}\right) \Delta y_{1}, \quad \text { for } \quad n_{2} \geqslant 2 n_{1} .
\end{aligned}
$$

Hence, $y_{n} \geq M_{1} n$ and therefore by (6),

$$
\Delta x_{n-1} \geqslant M_{1}^{\frac{1}{\alpha}}\left(\frac{n}{p_{n-1}}\right)^{\frac{1}{\alpha}}, \quad n \geqslant n_{2} .
$$

Summing the last inequality from n_{2} to n, we obtain

$$
x_{n} \geqslant M_{1}^{\frac{1}{\alpha}} \sum_{s=n_{2}}^{n} \frac{s^{\frac{1}{\alpha}}}{\left(p_{s-1}\right)^{\frac{1}{\alpha}}}
$$

or

$$
\begin{aligned}
x_{n}^{\alpha} & \geqslant \delta M_{1}^{\alpha} \sum_{s=n_{2}}^{n-1} \frac{s}{p_{s-1}} \geqslant \delta \frac{M_{1}^{\alpha}}{2 p_{n}}\left(n-n_{2}\right)^{(2)} \\
& \geqslant \frac{\delta}{2} M_{1}^{\alpha} \frac{\left(\frac{n}{2}\right)^{(2)}}{p_{n}}, \quad n \geqslant n_{3} \geqslant 2 n_{2} .
\end{aligned}
$$

Then for all $n \geq n_{3}$, we have

$$
\begin{equation*}
x_{n}^{\beta} \geqslant\left(\frac{\delta}{2}\right)^{\frac{\beta}{\alpha}} M_{1}^{\beta}\left(\frac{\left(\frac{n}{2}\right)^{(2)}}{p_{n}}\right)^{\frac{\beta}{\alpha}}, \quad n \geqslant n_{2} . \tag{35}
\end{equation*}
$$

Using (35) in equation (1) and summing, we obtain

$$
\sum_{s=n_{3}}^{n-1}\left(\frac{\left(\frac{s}{2}\right)^{(2)}}{p_{s}}\right)^{\frac{\beta}{\alpha}} q_{s}<\infty
$$

which contradicts (32). This completes the proof of the theorem.
We conclude this paper with the following examples.

Example 1. Consider the difference equation

$$
\begin{equation*}
\Delta^{3}\left(\left(\Delta x_{n-1}\right)^{5}\right)+\frac{1}{n^{10}} x_{n}^{5}=0 \tag{36}
\end{equation*}
$$

Then it is easy to see that all the conditions of Theorem 1 are satisfied and hence all solutions of equation (36) are oscillatory.

Example 2. Consider the difference equation

$$
\begin{equation*}
\Delta^{3}\left((n-1)\left(\Delta x_{n-1}\right)^{3}\right)+\frac{1}{n^{\frac{4}{3}}} x_{n}^{5}=0 \tag{37}
\end{equation*}
$$

Then all the conditions of Theorem 3 are satisfied and hence all solutions of equation (37) are oscillatory.

References

[1] Agarwal R.P., Difference Equations and Inequalities, Marcel Dekker, Second Edition, NewYork, 2000.
[2] Anderson D.R., A fourth order nonlinear difference equations, J. Diff. Eqn. Appl., 9(2003), 161-169.
[3] Hooker J.W., Patula W.T., A second order nonlinear difference equation, oscillation and asymptotic behavior, J. Math. Anal. Appl., 91(1983), 9-24.
[4] Hooker J.W., Patula W.T., Growth and oscillation properties of solutions of fourth order linear difference equations, J. Austral. Math. Soc.Ser. B, 26(1985), 310-328..
[5] Popenda J., Schmeidal E., On the solutions of fourth order difference equations, Rocky Mountain J. Math., 25(1995), 1485-1499.
[6] Graef J.R., Thandapani E., Oscillatory and asymptotic behavior of fourth order nonlinear delay difference equations, Fasci. Math., 31(2001), 23-36.
[7] Thandapani E., Mahalingam K., Oscillatory properties of third order neutral delay difference equations, Demon. Math., 35(2002), 325-337.
[8] Zhang G., ChengS.S., Elementary non-existence criteria for a recurrence relation, Chinese J. Math., 24(1996), 229-235.

Ethiraju Thandapani
Department of Mathematics, Periyar University
Salem-636011, Tamilnadu, India
e-mail: ethandapani@yahoo.co.in
Bothiah Selvaraj
Department of Mathematics, Periyar University
Salem-636011, Tamilnadu, India

Received on 22.02.2004 and, in revised form, on 29.10.2005.

