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OSCILLATIONS OF FOURTH ORDER QUASILINEAR

DIFFERENCE EQUATIONS

Abstract: Consider the fourth order quasilinear difference equa-
tion of the form

(∗) ∆3 (pn−1 (∆xn−1)
α) + qnxβ

n = 0, n = 1, 2, · · ·

where {pn} is a positive sequence and {qn} is a sequence of
non-negative reals, α and β are ratios of odd positive integers.
We obtain some new sufficient conditions for the oscillation of all
solutions of equation (*). Examples are inserted to illustrate the
importance of our results.
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1. Introduction and basic notions

In this paper, we are concerned with the oscillatory behavior of fourth
order quasilinear difference equations of the form

(1) ∆3 (pn−1 (∆xn−1)
α) + qnxβ

n = 0, n = 1, 2, · · ·

where {pn} is a nondecreasing sequence of positive reals such that
∑∞

n=1
1

p
1
α
n

= ∞, {qn} is a sequence of non-negative reals α and β are ratios of odd
positive integers. By a solution of equation (1), we mean a real sequence
{xn} defined and satisfies equation (1) for all n ≥ 1. A solution {xn} of
equation (1) is said to be oscillatory if for every positive integer N > 1,
there exists an integer n ≥ N such that xnxn+1 6 0 ; otherwise it is said
to be nonoscillatory. In recent years there has been an increasing interest
in the study of oscillatory behavior of solutions of difference equations,see
for example [1, 2, 4, 5, 6] and the references cited there in. Numerous
results exist for first and second order difference equations,but the results
dealing with fourth order equations are relatively scarce though such equa-
tions arise in the mathematical biology,bending of beams and other areas of
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mathematics in which discrete models are used. Therefore in this paper, we
study the oscillatory behavior of equation (1) and obtain some new sufficient
conditions for the oscillations of all solutions of equation (1). Examples are
included to dwell upon the importance of our results.

2. Some preliminary lemmas

In this section we state some lemmas which are needed in the sequel to
prove our main results.

Throughout this paper, we use the factorial function (t)(r) defined as
follows:

(t)(r) =

{
t(t− 1) · · · (t− r + 1) if r = 1, 2, 3, · · ·
0 if r = 0 or r > t

Lemma 1. Let {yn} be a sequence of real numbers in N = {1, 2, 3, · · · }.
Let {yn} and ∆3yn be of constant sign with ∆3yn not being identically zero
on any subset {n, n + 1, · · · } of N. If

yn∆3yn 6 0,

then there exists an integer n2 ≥ n1 such that either

(2) sgn yn = sgn∆yn = sgn ∆2yn, for n > n2,

or

(3) sgn yn = sgn∆2yn 6= sgn ∆yn, for n > n2.

Proof. The proof follows immediately from the Discrete Kneser’s Theo-
rem [1, Theorem 1.7.11]. ¥

Lemma 2. Let {yn} be as defined in Lemma 1 and such that yn > 0 and
(2) holds for all n ≥ n1. Then

(4) yn > 1
2

(n

2

)(2)
∆2yn, for n > n2.

Proof. From (2), we have

yn > 0, ∆yn > 0, ∆2yn > 0 for ∆3yn 6 0 for n > n1,

and hence

∆yn = ∆yn1 +
n−1∑
s=n1

∆2ys > (n− n1) ∆2yn.
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Summing the last inequality from n1 to n− 1, we have

yn > yn1 + ∆2yn

n−1∑
s=n1

(s− n1) > 1
2

(n

2

)(2)
∆2yn for n > n2 = 2n1,

and the proof is complete. ¥

Lemma 3. Let {zn} be be a positive sequence such that ∆zn > 0, ∆2zn <
0, ∆3zn > 0 and ∆4zn 6 0 for n > n1. Then

(5) zn > 1
6

(n

2

)(3)
∆3zn, n > n2 > 2n1.

Proof. We know
n−1∑
s=n1

(s− n1)
(3)∆4zs−3 = (n− n1)

(3) ∆3zn−3 − 3 (n− n1)
(2) ∆2zn−2

+ 6 (n− n1)∆zn−1 − 6zn + 6zn1 .

Then using the hypothesis,we obtain

zn > 1
6

(n− n1)
(3) ∆3zn−3 > 1

6
(n− n1)

(3) ∆3zn

> 1
6

(n

2

)(3)
∆3zn, for n > n2 = 2n1.

This completes the proof of Lemma 3. ¥

Lemma 4. Let {zn} be a positive sequence such that

∆zn > 0, ∆
(
(∆zn)

α
β

)
< 0, ∆2

(
(∆zn)

α
β

)
> 0 and ∆3

(
(∆zn)

α
β

)
6 0

for n ≥ n1. Then

z
α
β
n > 1

6

(n

2

)(3)
∆2

(
(∆zn)

α
β

)
for n > n2 > 2n1.

Proof. The proof is similar to that of Lemma 3 and hence the details
are omitted. ¥

Lemma 5. Suppose Fn ≥ 0 and Qn ≥ 0 for all n ≥ n0 ∈ N. If there
exists a positive sequence {Wn} such that

Wn+1 −QnWn + Fn 6 0, n > n0

then ∞∑
n=n0

Fn exp

(
n∑

t=n0

Qt

)
< ∞.
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Proof. For the proof of Lemma 5, see [8]. ¥

Lemma 6. Assume that {xn} is an eventually positive solution of equa-
tion (1). Let

(6) yn = pn−1 (∆xn−1)
α .

Then yn > 0 eventually.

Proof. Let xn−1 > 0 for all n ≥ n1 ∈ N. Then by the equation (1), we
have

∆3yn = −qnxβ
n 6 0,

for all n ≥ n1, which implies that {∆yn}, {∆2yn} are monotonic and either

∆2yn < 0

or
∆2yn > 0.

We claim that ∆2yn > 0. Suppose ∆2yn < 0 for n ≥ n1. Then there is a
constant d > 0 and an integer n2 ∈ N such that

yn ≤ −d for n > n2.

Therefore, we have

∆xn−1 6 −
(

d

pn−1

) 1
α

for all n ≥ n2. Summing the last inequality from n2 to n and then taking
n →∞, we see that xn → −∞ as n →∞. This is a contradiction and hence
∆2yn > 0 for n ≥ n1.

Next we consider the following three possible cases:

Case 1. For n ≥ n1 , we have

yn < 0 and ∆yn < 0.

Case 2. For n ≥ n1 , we have

yn > 0, ∆yn > 0 and ∆2yn > 0.

Case 3. For n ≥ n1 , we have

yn < 0, ∆yn < 0 and ∆2yn > 0.



Oscillations of fourth order quasilinear . . . 113

For Cases 1 and 2, using a similar method to the above, we can obtain a
contradiction and so Cases 1 and 3 are impossible. For Case 2, we see that
yn > 0 eventually. This completes the proof. ¥

3. Oscillation results

In this section, we derive some new sufficient conditions for the oscillation
of all solutions of equation (1). We begin with the case α = β.

Theorem 1. Assume α = β and σn = min
{(

n
8

)(3)
, 1

6

(
n
2

)(3)
}
. If

Qn =
pn − δσnqn

pn
> 0 where δ = 1 if α > 1 and

δ = α if α < 1 and

(7)
∞∑

n=n0

qn exp

(
n∑

i=n0

Qi

)
= ∞,

then every solution of equation (1) oscillates.

Proof. Let {xn} be a nonoscillatory solution of equation (1). Assume
without loss of generality that xn−1 > 0 for all n ≥ n1 ∈ N. Let yn be as in
Lemma 6. Then by (1) and (6) we have

(8) ∆3yn = −qnxα
n 6 0, n > n1

and therefore {yn}, {∆yn}, {∆2yn} are strictly monotonic. By Lemma 6,
yn > 0 eventually. From Lemma 1 we have either

(9) yn > 0, ∆yn > 0 and ∆2yn > 0

or

(10) yn > 0, ∆yn < 0 and ∆2yn > 0 for n > n2 > n1.

From Lemma 6, we have ∆xn−1 > 0. Hence there exists a constant M > 0
and a positive integer n3 ≥ n2 such that

(11) xn ≥ M for all n ≥ n3.

In the case of (9), we have from Lemma 2

(12) yn > 1
2

(n

4

)(2)
∆2yn for all n > N0.
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Let ` be a positive integer such that N0 + ` < n ≤ N0 + ` + 1 for n ≥ N1 =
N0 + ` + 1. Then we have

n >
1
2

(n + `) for n > N1.

From (12) we obtain

(13) yn >
1
2

(
n + `

8

)(2)

∆2yn

for n > N1.
From (6) we have

(14) xα
n =

((
yn

pn−1

) 1
α

+ xn−1

)α

> δ

(
yn

pn−1
+ xα

n−1

)

where δ is already defined in the hypothesis.
In view of (13) and (14) we obtain

xα
n > δ

pn

`−1∑

j=0

yn−j + δ`−1xα
n−`(15)

> δ

pn

`−1∑

j=0

1
2

(
n + `− j

8

)(2)

∆2yn−j + δ`−1Mα

> δ

2pn

(n

8

)(2)
`−1∑

j=0

∆2yn−j + M1, for n > N1

where M1 = δ`−1Mα. Since
{
∆2yn

}
is decreasing and ∆2yn > 0, we have

(16)
`−1∑

j=0

∆2yn−j >
n−1∑

i=N2

∆2yi,

where N2 = N1 + 1.
Substituting (15) and (16) in (8), we obtain

(17) ∆3yn +
δ

2
qn

pn

(n

8

)(2)
n−1∑

i=N2

∆2yi + M1qn 6 0.

Set Vn =
∑n−1

i=N2
∆2yi, n > N2. Then, by (17),we get

(18) ∆2Vn +
δ

2
qn

pn

(n

8

)(2)
Vn + M1qn 6 0.
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From (9) and (18), we have

Vn > 0, ∆Vn > 0, ∆2Vn 6 0

and by Lemma 4.1 of Hooker and Patula [3] there exists an integer N3 ≥ N2

such that

(19) Vn >
(n

2

)
∆Vn, n > N3.

From (18) and (19) we obtain

∆2Vn +
δ

2
qn

pn

(n

8

)(2) (n

2

)
∆Vn + M1qn 6 0

for n ≥ N3. Since
(

n
8

)(2) (
n
4

)
>

(
n
8

)(3), we have from the last inequality

(20) ∆2Vn + δ
(n

8

)(3) qn

pn
∆Vn + M1qn 6 0, n > N3.

Next assume (10) holds. Then we have

(21) xα
n > δ

pn

`−1∑

j=0

yn−j + M1.

Since yn > 0 and decreasing ,we have

(22)
`−1∑

j=0

yn−j >
n−1∑

i=N2

yi.

From (8),(21) and (22), we obtain

(23) ∆3yn + δ
qn

pn

n−1∑

i=N2

yi + M1qn 6 0.

Set un =
∑n−1

i=N2
yi, n > N2. Then, by (23), we get

(24) ∆4un + δ
qn

pn
un + M1qn 6 0.

From (10), we know

un > 0, ∆un > 0, ∆2un < 0, ∆3un > 0

and by Lemma 3, there exists an integer N4 ≥ N2 such that

(25) un > 1
6

(n

2

)(3)
∆3un, n > N4.
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Using (25) in (24) we obtain

(26) ∆4un +
δ

6

(n

2

)(3) qn

pn
∆3un + M1qn 6 0, n ≥ N4.

Let Wn = ∆Vn for (20) and Wn = ∆3un for (26). Then we have Wn > 0
for n ≥ N5 = max(N3, N4).

From (20) and (26) we obtain

∆Wn + δσn
qn

pn
Wn + M1qn 6 0, n > N5.

By Lemma 5,we have

M1

∞∑

n=N5

qn exp




n∑

i=N5

Qi


 < ∞,

which is a contradiction and the proof is complete. ¥

Theorem 2. Assume that all solutions of inequality

(27) ∆Wn + BnW
β
α

n + Mqn 6 0 for n > n0,

where M is any positive constant and

Bn = min

{
δqn

(
1

6pn

(n

2

)(3)
) β

α

, δ
n

2
qn

(
1

2pn

(n

8

)(2)
) β

α

}
,

are oscillatory for α = β and for α 6= β. Then every solution of equation
(1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 1, we obtain

(28) ∆3yn = −qnxβ
n 6 0, n > n1.

Again proceeding as in the proof of Theorem 1, we have from (28)

(29) ∆3yn + δqn

((
n
8

)(2)

2pn

) β
α n−1∑

i=N2

(
∆2yi

) β
α + M1qn 6 0.

Let Vn =
∑n−1

i=N2

(
∆2yi

) β
α ,n > N2. Then from (29) and (19) we have

(30) ∆
(
(∆Vn)

α
β

)
+ δ

n

2
qn

((
n
8

)

2pn

) β
α

∆Vn + M1qn 6 0



Oscillations of fourth order quasilinear . . . 117

where ∆Vn > 0. Once again proceeding as in the proof of Theorem 1 and
using Lemma 4, we obtain

(31) ∆3
(
(∆un)

α
β

)
+ δ

(
1
6

(
n
2

)(3)

pn

) β
α

qn ∆2
(
(∆un)

α
β

)
+ M1qn 6 0.

Let Wn = (∆Vn)
α
β , if (30) holds and Wn = ∆2

(
(∆un)

α
β

)
if (31) holds.

Then in both the cases {Wn} is a positive solution of either

∆Wn + BnW
β
α

n + M1qn 6 0

or
∆Wn + BnWn + M1qn 6 0

which is a contradiction. This competes the proof. ¥

Finally we give a easily verifiable condition for the oscillation of all solu-
tions of equation (1).

Theorem 3. Assume that

(32)
∞∑

n=n0

Anqn = ∞

where

An = max



n(2),

(
n(2)

pn

) β
α



 .

Then every solution of equation (1) oscillates.

Proof. Let {xn} be a nonoscillatory solution of equation (1). Without
loss of generality,we may assume that xn−1 > 0 for all n ≥ n1. Then {yn} be
as in Lemma 6. Then by Lemma 1, we have either (9) or (10) holds. If (10)
holds,then there exists a constant M > 0 and n2 ≥ n1 such that xβ

n > M
for n ≥ n2. From (1), we have

(33) ∆3yn 6 −Mqn.

Multiplying both sides of (33) by n(2) and summing,we get

n(2)∆2yn+1 − n
(2)
2 ∆2yn2+1 − 2n∆yn+2 + 2n1∆yn2+2(34)

+ 2yn+3 − 2yn2+3 = −
n−1∑
s=n2

s(2)qs.
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It is easy to see that, in view of (10) we have from (34)

n−1∑
s=n2

s(2)qs < n
(2)
2 ∆2yn2+1 − 2n1∆yn2+2 + 2yn2+3

which contradicts (32) as n −→ ∞. If (9) holds, then by Discrete Taylor’s
formula [1], we have

yn = yn1 + (n− n1)∆y1 +
1
2

n−2∑

j=n1

(n− j − 1)(2) ∆2yj

> (n− n1)∆y1 >
(n

2

)
∆y1, for n2 > 2n1.

Hence, yn ≥ M1n and therefore by (6),

∆xn−1 > M
1
α
1

(
n

pn−1

) 1
α

, n > n2.

Summing the last inequality from n2 to n, we obtain

xn > M
1
α
1

n∑
s=n2

s
1
α

(ps−1)
1
α

or

xα
n > δMα

1

n−1∑
s=n2

s

ps−1
> δ

Mα
1

2pn
(n− n2)

(2)

> δ

2
Mα

1

(
n
2

)(2)

pn
, n > n3 > 2n2.

Then for all n ≥ n3, we have

(35) xβ
n >

(
δ

2

) β
α

Mβ
1

((
n
2

)(2)

pn

) β
α

, n > n2.

Using (35) in equation (1) and summing, we obtain

n−1∑
s=n3

((
s
2

)(2)

ps

) β
α

qs < ∞,

which contradicts (32). This completes the proof of the theorem. ¥

We conclude this paper with the following examples.



Oscillations of fourth order quasilinear . . . 119

Example 1. Consider the difference equation

(36) ∆3
(
(∆xn−1)

5
)

+
1

n10
x5

n = 0.

Then it is easy to see that all the conditions of Theorem 1 are satisfied and
hence all solutions of equation (36) are oscillatory.

Example 2. Consider the difference equation

(37) ∆3
(
(n− 1) (∆xn−1)

3
)

+
1

n
4
3

x5
n = 0.

Then all the conditions of Theorem 3 are satisfied and hence all solutions of
equation (37) are oscillatory.
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