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CONVERGENCE AND PERIODIC PROPERTIES

OF SOLUTIONS FOR A CLASS OF DELAY
DIFFERENCE EQUATION

Abstract: We propose a class of delay difference equation with
piecewise constant nonlinearity. The convergence of solutions and
the existence of globally asymptotically stable periodic solutions
are investigated for such a class of difference equation.
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1. Introduction

The qualitative behavior of solutions of differential equations with piece-
wise constant argument and delay difference equations have been the subject
of many recent investigations. See, for example, [1-15] and the references
cited therein. As mentioned in papers by Cook and Wiener [3, 4] and Shah
and Wiener [10], the strong interest in differential equations with piecewise
constant argument is motivated by the fact that they represent a hybrid of
continuous and discrete dynamical systems and combine the properties of
both differential and difference equations. In this paper, we consider the
following delay difference equation.

(1.1) xn = axn−1 + (1− a)f(xn−k), for n = 1, 2, ...,

where a ∈ (0, 1), k is a positive integer and f : R → R is a signal transmission
function of the piecewise constant nonlinearity:

(1.2) f(ξ) =

{
1, ξ ∈ (−b, b]
0, ξ ∈ (−∞,−b] ∪ (b,∞),

for some constant b ∈ (0,∞).
Equation (1.1) can be derived from the following delay differential equa-

tion with a piecewise constant argument

(1.3) ẋ = −µx + βf(x[t− l]),
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where ẋ = dx
dt , µ > 0 and β > 0 are given constants, l is an nonnegative

integer, f : R → R is a signal transmission function defined by (1.2), and
[ · ] denotes the greatest integer function.

As we know, equation (1.3) has also wide applications in certain bio-
medical models. For some background on (1.3) and some other systems
of differential equations involving piecewise constant argument, we refer to
[1− 4, 11−12]. It is easy to convert (1.3) into a difference equation (1.1). In
fact, we may rewrite (1.3) in the following form

(1.4)
d

dt
(x(t)eµt = eµtβf(x([t− l])).

Let n be a positive integer and k = l+1. Then we integrate (1.4) from n−1
to t ∈ [n− 1, n) to obtain

(1.5) x(t)eµt − x(n− 1)eµ(n−1) =
β

µ
(eµt − eµ(n−1))f(x(n− k)).

Letting t → n and simplifying, we get from (1.5)

(1.6) x(n) = e−µx(n− 1) +
β

µ
(1− e−µ)f(x(n− k)).

Set x∗n = µ
β x(n) for any nonnegative integer n, f∗(u) = f

(
β
µu

)
, b∗ = µ

β b,

a = e−µ, and then drop ∗ to obtain (1.1).
Our goal is to discuss the convergence and periodic properties of delay

difference equation (1.1) with (1.2).
For the sake of simplicity, let N denotes the set of all nonnegative integers.

For any a, b ∈ N , define N(a) = {a, a+1, . . . , } and N(a, b) = {a, a+1, . . . , b}
whenever a ≤ b. In particular, N = N(0). By a solution of (1.1), we mean a
sequence {xn} of points in R that is defined for all n ∈ N(−k) and satisfies
(1.1) for n ∈ N . Let X denote the set of mappings from N(−k,−1) to R.
Clearly, for any ϕ ∈ X, equation (1.1) has an unique solution xn satisfying
the initial conditions

(1.7) xi = ϕ(i) for i ∈ N(−k,−1).

We shall concentrate on the case where ϕ+b and ϕ−b have no sign changes on
N(−k,−1). More precisely, we consider those ϕ ∈ X1 ∪X2 ∪X3 = Xb ⊂ X,
where

X1 = {ϕ; ϕ : N(−k,−1) → R and ϕ(i) ≤ −b for i ∈ N(−k,−1)} ,

X2 = {ϕ; ϕ : N(−k,−1) → R and − b < ϕ(i) ≤ b for i ∈ N(−k,−1)}
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and

X3 = {ϕ; ϕ : N(−k,−1) → R and ϕ(i) > b for i ∈ N(−k,−1)} .

2. Convergence of solutions

In this section, we consider the convergence of solutions of (1.1).

Theorem 2.1. Let b > 1, then xn → 1 as n →∞.

Proof. In view of (1.1), we have

(2.1) axn−1 ≤ xn ≤ axn−1 + (1− a) for n ∈ N.

By induction, it follows that

(2.2) an+1ϕ(−1) ≤ xn ≤ (ϕ(−1)− 1)an+1 + 1 for n ∈ N,

which implies that there exists a positive integer m1 such that −b < xn ≤ b
for n ∈ N(m1). Thus, we have

(2.3) xn = axn−1 + (1− a) for n ∈ N(m1 + k).

Therefore,

(2.4) xn = (xm1+k−1 − 1)an−m1−k+1 + 1 for n ∈ N(m1 + k),

which implies that xn → 1 as n →∞. ¥

Theorem 2.2. Let b = 1, then xn → 1 as n →∞.

Proof. We distinguish several cases.

Case 1. Let ϕ ∈ X2.
By using (1.1) and (1.2), we can see that

(2.5) xn = (ϕ(−1)− 1)an+1 + 1 for n ∈ N(0, k − 1).

This, together with the fact that a ∈ (0, 1) and ϕ ∈ X2, implies that xn ∈ X2

for n ∈ N(0, k−1). By induction, it is easy to verify that xn ∈ X2 for n ∈ N .
Therefore,

xn = (ϕ(−1)− 1)an+1 + 1 for n ∈ N,

it follows that xn → 1 as n →∞.

Case 2. Let ϕ ∈ X3.
By (1.1) and (1.2), we show that

(2.6) xn = ϕ(−1)an+1 for n ∈ N(0, k − 1).
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Let m1 be the least nonnegative integer such that

(2.7) xm1−1 > 1, xm1 ≥ 1,

then (2.6) holds for n ∈ N(0,m1 + k − 1).
By (2.6) and (2.7), we have

−1 < xm1+i = ϕ(−1)am1+i+1 < ϕ(−1)am1+1 = xm1 ≤ 1 for i ∈ N(0, k−1),

which implies xm1+i ∈ X2 for i ∈ N(0, k− 1). By Casel, we have xn → 1 as
n →∞.

Case 3. Let ϕ ∈ X1.
The proof of Case 3 is similar to that of Case 2, and thus is omitted. ¥

Remark 2.1. Theorem 2.1 and Theorem 2.2 indicate that the unique
equilibrium 1 is the global attractor of equation (1.1) when b ≥ 1.

3. Existence and attraction of periodic solutions

The following Lemma is helpful for discussing existence and attraction of
periodic solutions.

Lemma 3.1. Let 0 < b < 1. For any solution {xn} of (1.1) with initial
value ϕ ∈ Xb, then there exists integers m1 and m ∈ N(−1) with m−m1 ≥ k
such that xn ∈ X2 for n ∈ N(m1, m) and xm+1 ∈ (b, 1).

Proof. We distinguish several cases. ¥

Case 1. Let ϕ ∈ X2. We shall show that there exists an n0 ∈ N(−1)
such that xn ∈ X2 for n ∈ N(−k, n0) and xn0+1 6∈ X2. Otherwise, we have
xn ∈ X2 for any n ∈ N(−k). It follows from (1.1) and (1.2) that

(3.1) xn = (ϕ(−1)− 1)an+1 + 1 for n ∈ N,

which implies that xn → 1 > b as n → ∞. It contradicts the fact that
xn ∈ X2 for n ∈ N(−k).

Note that
xn0+1 = axn0 + (1− a) > −b,

which implies that xn0+1 ∈ X3.
Moreover,

xn0+1 = axn0 + (1− a) ≤ ab + (1− a) < 1,

so, the conclusion of Lemma 3.1 holds, where m = n0 and m1 = −k.
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Case 2. Let ϕ ∈ X3. For this case, by the similar argument as Case 2
of Theorem 2.2, it is easy to verify that there exists some n1 ∈ N(−1) such
that xn inX2 for n ∈ N(n1, n1 + k − 1). Hence, Case 2 can be proved by
using Case 1.

Case 3. Let ϕ ∈ X1. The proof of Case 3 is similar to that of Case 2, and
thus is omitted.

Remark 3.1. From the proof of Lemma 3.1, we see that to study the
limiting behavior of solutions with initial values in Xb for b ∈ (0, 1), it suffices
to restrict initial condition ϕ ∈ X2 and the first iteration x0 ∈ D0 = (b, 1).

Theorem 3.1. Let b ∈ I1(p, q) ∩ I2(p, q) for some p, q ∈ N , where
I1(p, q) = [ ap+1, ap(1−ak−1)

1−ak+p−1 ) and I2(p, q) = [ 1−aq +ap+q+k, 1− aq+1(1−ak+p

1−a2k+p+q ).
Then the equation (1.1) exists a globally asymptotically stable periodic solu-
tion {x′n} with initial condition ϕ ∈ Xb, whose minimal period is 2k + p+ q.

Proof. From the Remark 3.1, it suffices to consider ϕ ∈ X2 and the first
iteration x0 ∈ D0 = (b, 1).

Note that the iteration of the linear map

(3.2) g1(u) = au + 1− a

satisfies

(3.3) g
(n)
1 (u) = anu + 1− an

and that the iteration of the linear map

(3.4) g2(u) = au

satisfies

(3.5) g
(n)
2 (u) = anu.

Let g
(n)
1 (D0) = Dn for n ∈ N(1, k − 1).

Since ϕ ∈ X2 and x0 ∈ D0 = (b, 1), it is clear that the solution {xn} of
(1.1) with (1.2) satisfies

(3.6) xn = g
(n)
1 (x0) for n ∈ N(1, k − 1).

Moreover, it is easy to prove that

(3.7) Dn = (g(n)
1 (b), g(n)

1 (1)) for n ∈ N(1, k − 1).

In view of u ∈ (0, 1), we have

(3.8) 1 > g
(k)
1 (u) > g

(k−1)
1 (u) > . . . > g

(0)
1 (u) = u.
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Recall that b ∈ (0, 1), from (3.7) and (3.8), it follows that Dn ⊂ X3 holds
for all n ∈ N(0, k − 1).

Let n1 be the largest integer such that xn ∈ X3 for n ∈ N(0, n1 + k− 1).
Then, from (1.1) and (1.2), we can obtain

(3.9) xn+k−1 = g
(n)
2 (xk−1) = g

(n)
2 g

(k−1)
1 (x0) for n ∈ N(1, n1 + k),

which implies that xn+k−1 ∈ Dn+k−1 for n ∈ N(1, n1 + k) where Dn+k−1 =
g
(n)
2 g

(k−1)
1 (D0) for n ∈ N(1, n1 + k). Furthermore, it follows from (3.7) that

(3.10) Dn+k−1 = (g(n)
2 g

(k−1)
1 (b), g(n)

2 g
(k−1)
1 (1))

= (an+k−1b− an+k−1 + an, an) for n ∈ N(1, n1 + k).

Since b ∈ I1(p, q), from (3.10), it is easy to verify that

(3.11) Dn+k−1 ⊂ X3 for n ∈ N(0, p),

which leads to n1 ≥ p and

(3.12) xn+k−1 ∈ Dn+k−1 ⊂ X2 for n ∈ N(p + 1, p + k).

Thus, it is easy to see n1 = p. Taking n = p + k in (3.9), we have

(3.13) x2k+p−1 = g
(k+p)
2 g

(k−1)
1 (x0) = a2k+p−1x0 − a2k+p−1 + ak+p.

Let n2 be the largest integer such that xn+2k+p−1 ∈ X2 for n ∈ N(0, n2).
Then, from (1.1) and (3.13), we get

(3.14) xn+2k+p−1 = g
(n)
1 (x2k+p−1) = (x2k+p−1 − 1)an + 1 = an+2k+p−1x0

−an+2k+p−1 + an+k+p − an + 1 for n ∈ N(1, n2 + k).

This implies that xn+2k+p−1 ∈ Dn+2k+p−1 for n ∈ N(1, n2 + k) where

(3.15) Dn+2k+p−1 = g
(n)
1 (D2k+p−1) = g

(n)
1 g

(k+p)
2 g

(k−1)
1 (D0).

Substituting (3.10) with n1 = p into (3.15), we calculate Dn+2k+p−1 to be

(3.16) Dn+2k+p−1 = (g(n)
1 g

(k+p)
2 g

(k−1)
1 (b), g(n)

1 g
(k+p)
2 g

(k−1)
1 (1))

= (an+2k+p−1b− an+2k+p−1 + an+k+p − an + 1, an+k+p

−an + 1) for n ∈ N(1, n2 + k).

Since b ∈ I2(p, q), from (3.16), it follows that

(3.17) xn+2k+p−1 ∈ Dn+2k+p−1 ⊂ X2 for n ∈ N(0, q),
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and

(3.18) xn+2k+p−1 ∈ Dn+2k+p−1 ⊂ D0 ⊂ X3 for n ∈ N(q + 1, q + k),

which implies that n2 = p.
Taking n = q + 1, from (3.18), we have

x2k+p+q ∈ D2k+p+q ⊂ D0.

From the above facts, we can construct the mapping g(x) : D0 → D0 as
follows

(3.19) g(x) = g
(q+1)
1 g

(k+2)
2 g

(k−1)
1 (x)

= a2k+p+qx− a2k+p+q + ak+p+q+1 − aq+1 + 1.

Obviously,

(3.20) lim
n→∞ g(n)(x) = 1− aq+1(1− ak+p)(1− a2k+p+k)−1 = x∗.

Notes that b ∈ I1(p, q)∩I2(p, q), it can be checked that x∗ ∈ D0. Hence, x∗ is
the unique fixed point of g(x) in D0. Clearly, the unique solution {x′n} with
initial value ϕ ∈ X2 and the first iteration x′0 = x∗ is a periodic solution,
whose minimal period is 2k + p + q. From Lemma 3.1 and (3.20), we see
that the solution {x′n} is a globally asymptotically stable periodic solution
with initial value ϕ ∈ Xb. The proof is complete ¥
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