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1. Introduction

Let D ⊂ Rn denote the simple connected and bounded domain with
boundary ∂D of class C1. Let us consider the following polyharmonic equa-
tions

(1) ∆nu(X) = f(X), X = (x1, ..., xn),

(1a) ∆nu(X) = f(X, ∆n−1u(X)), X ∈ D

and the following boundary conditions

(2) ∆iu(X) = fi(X) for X ∈ ∂D, i = 0, 1, ..., n− 1.

To the construction of solutions of the problems (1), (2) and (1a), (2) we shall
apply the convenient Green function. For the solution of the problem (1a),
(2) we shall apply the suitable nonlinear integral equation. We will prove
the theorems on uniqueness and existence of solutions for above boundary
value problems (1),(2) and (1a), (2).

In the paper [1], the similar boundary value problem for the nonlinear
equation of the second and fourth order in the three dimensional ball have
been considered.
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2. Theorems on uniqueness for linear boundary value
problem (1), (2)

Definition of class (K ). Let

(K) = {u ∈ C2n(D) ∩ C2n−1(D)}.

We shall prove the following theorem:

Theorem 1. If the functions u1, u2 are the solutions of the boundary
value problem (1), (2) of the class (K),then

u1(X) ≡ u2(X) for X ∈ D.

Proof. Let us consider the following identity

∆n(u1(X)− u2(X)) ≡ 0 for X ∈ D.

We have
∆(∆n−1(u1(X)− u2(X))) ≡ 0 for X ∈ D.

Hence, the function ∆n−1(u1(X)− u2(X)) is harmonic in the domain D
and

∆n−1(u1(X)− u2(X)) = 0 for X ∈ ∂D.

Thus
∆n−1(u1(X)− u2(X)) ≡ 0 forX ∈ D.

Similarly, we can verify the identity

∆k(u1(X)− u2(X)) = 0 for k = n− 1, n− 2, ..., 1, 0.

Hence, we obtain
u1(X) ≡ u2(X) for X ∈ D.

¥

3. Theorem on uniqueness for nonlinear boundary
value problem (1a), (2)

Let N will be the inward normal to the boundary ∂D. The boundary
value problem (1a), (2) is equivalent to the following system of problems:

(1.1)
{

∆n−1u(X) = W0(X), ∆W0 = f(X, W0(X)) for X ∈ D,
W0(X) = fn−1(X) for X ∈ ∂D,
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(1.2)
{

∆n−2u(X) = W1(X), ∆W1(X) = W0(X) for X ∈ D,
W1(X) = fn−2(X) for X ∈ ∂D,

(1.3)
{

∆n−3u(X) = W2(X), ∆W2(X) = W1(X) for X ∈ D,
W2(X) = fn−3(X) for X ∈ ∂D,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

(1.n)
{

∆u(X) = Wn−1(X) for X ∈ D,
u(X) = f0(X) for X ∈ ∂D.

Definition of class (F). The function f(X,W (X)) ∈ (F ) if the func-
tions Dj

W F (X,W ), j = 0, 1, are continuous in the domain Z = {(X, W ) :
X ∈ D, W ∈ [−r, r]}, where r is the positive number.

Theorem 2. If the functions u1, u2 are the solutions of the boundary
value problems (1a), (2) belonging to the class (K), the function f ∈ (F )
and DW f(X, W ) ≥ 0 for (X,W ) ∈ Z, then u1(X) ≡ u2(X) for X ∈ D.

Proof. Let the functions W 1
0 , W 2

0 be the solutions of the problem (1.1)
of the class C2(D) ∩ C1(D). Then

∆(W 1
0 (X)−W 2

0 (X)) = f(X, W 1
0 )− f(X,W 2

0 )(3)
= (W 1

0 (X)−W 2
0 (X))DNf(X, W ),

where W = W 1
0 + t(W 2

0 −W 1
0 ), t ∈ (0, 1).

Multiplying on either side the equation (3) by W 1
0 (X) − W 2

0 (X) and
further integrating on either side the domain D, we obtain I = J , where

I =
∫

D
(W 1

0 (X)−W 2
0 (X))∆(W 1

0 (X)−W 2
0 (X))dX,

J =
∫

D
(W 1

0 (X)−W 2
0 (X))2DW f(X, W )dX.

For J and I we have

I = −
∫

D
(grad(W 1

0 (X)−W 2
0 (X)))2dX

+
∫

∂D
(W 1

0 (X)−W 2
0 (X))DN (W 1

0 (X)−W 2
0 (X))dS

= −
∫

D
(grad(W 1

0 (X)−W 2
0 (X)))2dX < 0
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and J ≥ 0. By I = J and I ≤ 0, J ≥ 0 it follows that grad(W 1
0 (X) −

W 2
0 (X)) = 0 for X ∈ D. Thus W 1

0 (X) − W 2
0 (X) = const = 0, since

W 1
0 (X) −W 2

0 (X) = 0 for X ∈ ∂D. Let the functions W 1
1 ,W 2

1 of the class
C4(D) ∩ C3(D) will be the solutions of the boundary value problem (1.2)
for the W = W 1

1 and W = W 2
1 , respectively.

Then

∆(W 1
1 (X)−W 2

1 (X)) = W 1
0 (X)−W 2

0 (X) ≡ 0 for X ∈ D

and
W 2

1 (X)−W 1
1 (X) ≡ 0 for X ∈ ∂D.

Thus, W 1
1 (X) = W 2

1 (X) for X ∈ D.
Analogically, for W i

n−1 ∈ C2n−2(D) ∩ C2n−3(D), we obtain

W 1
n−1(X) = W 2

n−1(X) for X ∈ D

or
∆(u1(X)− u2(X)) ≡ 0 for X ∈ D.

Hence, by the homogeneous boundary condition for the function u1(X) −
u2(X), we obtain u1(X)− u2(X) ≡ 0 for X ∈ D. ¥

4. Theorem on existence of the solution of the boundary
value problems (1), (2)

Let us consider the following functions

u0(X) = A

∫

∂D
f0(Y )DN(Y )G(X, Y )dS(Y ),

u1(X) = A

∫

D
G(X, Y )(

∫

∂D
f1(Z)DN(Z)G(Y, Z)dS(Z))dY,

u2(X) = A

∫

D
G(X, Y )(

∫

D
G(Y, Z1)

×(
∫

∂D
f2(Z2)DN(Z2)G(Z1, Z2)dS(Z2))dZ1)dY,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

un−1(X) = A

∫

D
G(X,Y )(

∫

D
G(Y, Z1)...

×(
∫

D
G(Zn−3, Zn−2)(

∫

∂D
fn−1(Zn−1)

×DN(Zn−1)G(Zn−2, Zn−1)dS(Zn−1))dZn−2)...)dZ1)dY,

Un(X) = A

∫

D
G(X, Y )(

∫

D
G(Y, Z1)...(

∫

D
G(Zn−3, Zn−2)

×(
∫

D
f(Zn−1)G(Zn−2, Zn−1)dZn−1)...dZ1)dY,
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where A = (Pn)−1, Pn denote the measure of the unit n-dimensional sphere
and Zi = (zi

1, z
i
2, ..., z

i
n), i = 1, ..., n− 1, is a point of Rn.

Lemma 1. If the function f0 belongs to the class C(∂D), then

1o. the function u0 ∈ C2n(D) and satisfies the equation

(4) ∆nu0(X) = 0 for X ∈ D,

2o. the function u0 satisfies the boundary conditions

(5) u0(X) → f0(X0) when X → X0 ∈ ∂D

(6) ∆iu0(X) → 0 when X → X0 ∈ ∂D, i = 1, ..., n.

Proof. Ad. 1o. Let us consider the integrals

ui
0(X) = A

∫

∂D
f0(Y )DN(Y )∆

i
XG(X, Y )dS(Y ), i = 0, 1, ..., n.

For each X ∈ D the integrals ui
0, i = 0, 1, ..., n are locally uniformly conver-

gent [2], p. 239. Thus, we obtain

(7) ∆iu0(X) = 0, i = 1, ..., n,

because ∆G(X, Y ) = 0 for each (X, Y ) ∈ D × ∂D.

Ad. 2o. By [2], (p. 367) we get the condition(5). By (7), we obtain (6). ¥

Lemma 2. If the functions fi ∈ C(∂D), i = 1, ..., n− 1, then:

1o. the functions ui, i = 1, ..., n− 1, are of class C2n(D) and satisfy
the equation (4) for X ∈ D,

2o. the functions ui, i = 1, ..., n− 1, satisfy the boundary conditions

(8) ∆iui(X) → fi(X0) when X → X0 ∈ ∂D, i = 1, ..., n− 1,

(9) ∆jui(X) → 0 when X → X0 ∈ ∂D, i, j = 1, ..., n− 1, i 6= j.
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Proof. Ad. 1o. We shall give the proof only for the integral u2. The
proof for the remaining integrals ui, i = 1, 3, 4, ..., n, is similar. The integral

J(Y ) =
∫

D
G(Y, Z1)(

∫

∂D
f2(Z2)DN(Z2)G(Z1, Z2)dS(Z2))dZ1

is of class C1(D), because the integral
∫

∂D
f2(Z2)DN(Z2)G(Z1, Z2)dS(Z2)

is continuous in D. Hence, for the integral J we have

|J | ≤ sup
∂D

|f2(Z2)|
∫

D
G(Y,Z1)dZ1.

Using the spherical coordinates we can prove that the integral J(Y ) and, by
[2], p. 327, the integrals

J i(X) =
∫

D
DyiG(Y,Z1)(

∫

∂D
f2(Z2)DN(Z2)G(Z1, Z2)dS(Z2))dZ1,

i = 1, ..., n.

are continuous in D. By Poisson theorem we have

∆u2(X) = A

∫

D
G(X, Z1)(

∫

∂D
f2(Z2)DN(Z2)G(Z1, Z2)dS(Z2))dZ1.

Applying once more the Poisson theorem we obtain

(10) ∆2u2(X) = A

∫

∂D
f2(Z2)DN(Z2)G(X, Z2)dS(Z2).

Hence

∆iu2(X) = A

∫

∂D
f2(Z2)DN(Z2)∆

i
XG(X, Z2)dS(Z2) ≡ 0,(11)

i = 3, 4, ..., n.

Ad. 2o. By (10), we have

∆2u2(X) → f2(X0) when X → X0 ∈ ∂D.

By (11), we obtain

∆iu2(X) → 0 when X → X0 ∈ ∂D, i = 3, 4, ..., n− 1.

¥
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Lemma 3. If the function f ∈ C1(D), then:

1o the function Un ∈ (K) and satisfies the equation (1) for X ∈ D,

2o the function Un satisfies the homogeneous boundary conditions

∆iUn(X) → 0 when X → X0 ∈ ∂D, i = 0, ..., n− 1.

Proof. Ad. 1o. Applying the Poisson theorem (n− 1)-times we obtain

(12) ∆n−1Un(X) = A

∫

D
f(Y )G(X, Y )dY.

Applying once more the Poisson theorem for the formula (12) we obtain the
assertion 1o.

Ad. 2o. We have

Un(X) = A

∫

D
G(X, Y )Un−1(Y )dY

and, by the boundary properties of the function G, we obtain

Un(X) → A

∫

D
G(X0, Y )Un−1(Y )dY = 0 when X → X0 ∈ ∂D.

Similarly, we have

∆iUn(X) = A

∫

D
G(X, Y )Un−i−1(Y )dY, i = 1, ..., n− 1,

and

∆iUn(X) → A

∫

D
G(X0, Y )Un−i−1(Y )dY = 0, i = 2, 3, ..., n− 1.

¥

By Lemmas 1, 2, 3, we obtain the following theorem:

Theorem 3. If the functions fi ∈ C(∂D), i = 0, 1, ..., n−1, the function
f ∈ C1(D), then the function

u(X) =
n−1∑

i=0

ui(x) + Un(X)

is the solution of the boundary value problem (1), (2).
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5. Theorem on the existence and uniqueness
of the solution of the problem (1),(2)

Theorem 4. If the function f ∈ C1(D), then the function Un(X) is the
unique solution of the problem (1), (2) satisfying the homogeneous boundary
conditions.

Proof. By Lemma 3, the function Un satisfies the equation (1) for X ∈
D. In order to prove uniqueness it is sufficient to verify that the function
Un ∈ (K). Indeed, by Lemma 3, function Un satisfies the equation

∆n−1Un(X) = A

∫

D
f(Y )G(X, Y )dY ∈ C1(D)

and Un(X) ∈ C2n−1(D). Consequently, Un ∈ (K). ¥

6. Solution of the boundary problem (1a), (2)

Let

S(X) =
n−1∑

i=0

ui(X)

and

Gn(X,Y ) =
∫

D
...

∫

D
G(X, Z1)G(Z1, Z2)...G(Zn−2, Y )dZ1...dZn−2.

Let us consider the integral equation

(13) V (X) = (TV )(X),

(TV )(X) = S(X) + (PV )(X),

(PV )(X) = A

∫

D
f(Y, V (Y ))Gn(X, Y )dY

Definition of class (U ). Let ‖u‖ = supD |u(x)| and let (U) denotes the
class of all continuous functions for X ∈ D for which ‖u‖ ≤ r, where r is
positive number.

Let the functions R, Q ∈ (U) and let d(R, Q) = ‖R−Q‖, where

q = A sup
Z

∣∣∣∣
∫

D
DW f(Y,W )Gn(X, Y )dY

∣∣∣∣ .
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Lemma 4. If the functions R, Q ∈ (U), the function f ∈ (F ), f(X, 0) ≡ 0
for X ∈ D, functions fi ∈ C(∂D), i = 0, 1, ..., n − 1, q ∈ (0, 1), ‖S‖ ≤
(1− q)r, then

1o (PV )(X )|V≡0 = 0,

2o d(TR, TQ) ≤ qd(R, Q),

3o for every u ∈ (U), ‖Tu‖ ≤ r .

Proof. The assertion 1o is evident.

Ad. 2o We have

d(TR, TQ) = d(PR, PQ)

= A sup
Z

∣∣∣∣∣∣

∫

D

[f(Y,R(Y )− f(Y, Q(Y ))]Gn(X,Y )dY

∣∣∣∣∣∣

= A sup
Z

∣∣∣∣
∫

D
(R(Y )−Q(Y ))DW f(Y, W )Gn(X, Y )dY

∣∣∣∣ ,

where
W = R + t(Q−R), t ∈ (0, 1), W ∈ (U).

Thus
d(TR, TR) ≤ qd(R, Q).

Ad. 3o By 1o, we have

‖Tu‖ = ‖Tu− TO + TO‖ ≤ ‖Tu− TO‖+ ‖TO‖
= ‖S + Pu− S − P (0)‖ ≤ ‖Pu− P (0)‖ = d(u, 0) = ‖u‖ ≤ r.

From Lemma 4, it follows that the mapping T is the contracting mapping
for the function of class (U) and the operator T transforms each function
u ∈ (U) into the function belonging to the class (U). Consequently, by the
Banach theorem there exists the unique solution V ∈ (U) of the equation
(13). ¥

Theorem 5. If the function f ∈ (F ), f(X, 0) ≡ 0 for X ∈ D, the
functions fi ∈ C(∂D), i = 0, 1, ..., n − 1, q ∈ (0, 1), ‖S‖ ≤ (1 − q)r, then
the function V is the solution of the integral equation (13) satisfying the
conditions:

1o the function V satisfies (1a) for X ∈ D,

2o the function V satisfies the boundary conditions (2) for X ∈ ∂D.
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Proof. Ad. 1o By Lemmas 1, 2, the function S(X) satisfies the equation

∆nS(X) = 0 for X ∈ D.

Applying n-times the Poisson theorem we obtain

∆n(PV )(X) = f(X, V (X)) for X ∈ D

and finally, by (13), we obtain

∆nV (X) = ∆nS(X) + ∆n(PV )(X) = f(X, V (X))for X ∈ D.

Ad. 2o By Lemma 2, the function S satisfies the boundary conditions (2)
and, by Lemma 3, we have

∆k(PU)(X) = 0 for X ∈ ∂D, k = 0, 1, ..., n− 1.

¥

7. Theorem on existence and uniqueness for the equation
(1a) and homogeneous boundary data

Theorem 6. If the function f ∈ (F ), f(X, 0) ≡ 0 for X ∈ D, DW f(X, W )
≥ 0 for (X,W ) ∈ Z, q ∈ (0, 1), then the function U is the solution of the

(14) U(X) = (PU)(X) for X ∈ D

belonging to the class (U) and satisfies the conditions:

1o the function U(X) satisfies the equation (1a) for X ∈ D,

2o the function U satisfies the homogeneous boundary conditions

(2a) ∆iU(X) = 0 for X ∈ ∂D, i = 0, ..., n− 1,

3o the function U is the unique solution of the problem (1a), (2a).

Proof. Ad. 1o Similarly as for the equation (13) we construct it solution
U belonging to the class (U). Similarly, as in Lemma 3, we can verify that
the function U satisfies the conditions (1a), (2a). ¥
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8. Example of a physical application of biharmonic
boundary value problems in the theory of elasticity

In the theory of elasticity the following boundary problem is considered:

(15) ∆2u(X) = f(X, u(X)), for X ∈ D,

(16) ∆iu(X) = fi(X), for X ∈ D, i = 0, 1,

where D is a disc or a three-dimensional ball and f = 0.
If f 6= 0, then solution of above boundary value problem (14), (15) is not

known. By foregoing results we obtain the solution of problem (14), (15)
applying the Green function for the Laplace equation for the domain D and
for the Dirichlet boundary condition.

References
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