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NOTES ON SPACES WITH A WEAK-DEVELOPMENT

ABSTRACT. Z. Li characterized spaces with a weak-development
consisting of point-countable sfp-covers by pseudo-sequence-co-
vering, quotient, and m-s-image of metric spaces. In this paper,
we omit ”pseudo-sequence-covering” in the above result, and prove
that a space has a weak-development consisting of point-countable
s fp-covers iff it is a quotient, and m-s-image of a metric space.
KEY WORDS: weak-(resp. sn-)development, sfp-(resp. fcs-, cs*-)
cover, quotient (resp. pseudo-sequence-covering, sequentially-
quotient, 7-) mapping.

AMS Mathematics Subject Classification: 54C10, 54D55, 54E35,
54E40.

1. Introduction

Recently, Z. Li [7] obtained the following result.

Proposition 1. A space has a weak-development consisting of point-coun-
table s fp-covers iff it is a pseudo-sequence-covering, quotient, and w-s-image
of a metric space.

In this paper, we prove that a space has an sn-development consisting of
point-countable cs*-covers iff it is a sequentially-quotient, and 7-s-image of a
metric space. By this result, we prove that a space has a weak-development
consisting of point-countable sfp-covers iff it is a quotient, and m-s-image
of a metric space, which omits “pseudo-sequence-covering” in Proposition 1.
Throughout this paper, all spaces mean regular and 77 topological spaces, all
mappings are continuous and onto. N denotes the set of all natural numbers.
Let X be a space and P C X. We say that a sequence {x,} converging to
x in X is eventually in P if {z,, : n > k}{J{z} C P for some k € N; it
is frequently in P if {z,,} is eventually in P for some subsequence {z,, }
of {x,}. Let P be a family of subsets of X and let x € X. P, st(x,P)
and (P), denote the union |J{P : P € P}, the union |J{P € P : z € P}
and the subfamily {P € P : x € P} of P, respectively. If f: X — Y isa
mapping, f(P) = {f(P): P € P}. We shortly denote a point b = (5,,)nen
of a Tychonoff-product space by (3,).
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Definition 1. Let X be a space.

(1) Let x € P C X. P is called a sequential neighborhood of x in X if
whenever {x,} is a sequence converging to x in X, then {x,} is eventually
mn P.

(2) Let P C X. P is called a sequentially open subset in X if P is a
sequential neighborhood of x in X for each x € P.

(3) X is called a sequential space if each sequentially open subset in X is
open in X.

Remark 1. (1) P is a sequential neighborhood of z iff each sequence
{zy} converging to z is frequently in P.

(2) The intersection of finitely many sequential neighborhoods of z is a
sequential neighborhood of x.

Definition 2. Let P = |J{P, : © € X} be a cover of a space X such
that the following conditions (a) and (b) are satisfied for each x € X.

(a) Py is a network at x in X, i.e., Py C (P)y and for each neighborhood
UofxinX, PCU for some P &€ Py,

(b) If U,V € Py, then W C UV for some W € P,.

(1) P is called a weak-base [1] for X if whenever G C X, G is open

i X iff for each x € G there is P € P, with P C G, where P, is called a
wn-base (i.e., weak neighborhood base) at x in X.

(2) P is called an sn-network [4] for X if each element of P, is a sequen-
tial neighborhood of x in X for each x € X, where P, is called an sn-network
at x in X.

Remark 2. Each weak-base for a space is an sn-network and each
sn-network for a sequential space is a weak-base [8].

Definition 3. Let {P, : n € N} be a sequence of covers of a space X
such that Ppy1 refines Py, for each n € N.

(1) {Py : n € N} is called a net-development of X if {st(x,P,) : n € N}
s a network at x in X for each x € X.

(2) {Py, : n € N} is called an sn-development of X if {st(x,Py):n € N}
is an sn-network at x in X for each x € X.

(3) {Pn : n € N} is called a weak-development of X [7] if {st(x,Py) :n €
N} is a wn-base at x in X for each x € X.

Remark 3. (1) By Remark 2, each weak-development of a space is
an sn-development and each sn-development of a sequential space X is a
weak-development.

(2) Each space with a weak-development is a sequential space [10].
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Definition 4. Let P be a cover of a space X.

(1) P is called an sfp-cover [7] if for each sequence {x,} converging to x
in X, there is a finite family {S, : a € I'} of closed subsets of S and a finite
subfamily {Py : « € T'} of P such that S = |J{Sa : « € T'} and S, C P, for
each a € T, where S = {x,, : n € N} | J{z}.

(2) P is called a fcs-cover [5] if for each sequence {x,} converging to x
in X, there is a finite subfamily P’ of (P). such that {z,} is eventually in
Ur.

(3) P is called a cs*-cover [{] if for each convergent sequence {x} in X,
{zn} is frequently in P for some P € P.

Definition 5. Let f : X — Y be a mapping.

(1) f is called a pseudo-sequence-covering mapping [6] if for each sequence
{yn} converging to y in Y, there is a compact subset K of X such that
F(K) = {yn - € N} Uly}.

(2) f is called a sequentially-quotient mapping [2] if for each convergent
sequence {y,} in Y, there is a convergent sequence {x,} in X such that
{f(zn)} is a subsequence of {yn}.

(3) f is called a quotient mapping [3] if U is open in Y iff f~1(U) is
open in X.

(4) If X is a metric space with the metric d, f is called a T-mapping [9],
if for each y € Y and for each neighborhood U of y in Y, d(f~'(y), X —
fHw)) > o.

Remark 4. (1) Recall a mapping f : X — Y is a compact mapping
(resp. s-mapping), if f~1(y) is a compact (resp. separable) subset of X for
each y € Y. It is clear that each compact mapping from a metric space is a
T-s-mapping.

(2) Each quotient mapping from a sequential space is a sequentially-quotient
mapping [4, Remark 1.8].

(3) Each sequentially-quotient mapping onto a sequential space is a quo-
tient mapping [4, Remark 1.8].

(4) Quotient mappings preserve sequential spaces [3, Exercises 2.4.G].

Lemma 1. Let P be a cover of a space X. Then the following are
equivalent.

(1) P is an sfp-cover of X.

(2) P is an fes-cover of X.

Proof. (1) = (2). Let P be an sfp-cover of X. Whenever {z,} is a
sequence converging to x in X, put S = {z, : n € N} J{z}. Then there is
a finite family {S, : a € T'} of closed subsets of S and a finite subfamily
{Py:a €T} of Psuchthat S =|J{S,:a€T}and S, C P, foreach o € T.
PuulV={ael:x ¢Sy} and S = J{Sa : @ € T"}, then S’ is closed in
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S and z ¢ S’. Thus there is k € N such that z,, ¢ 5" foe each n > k. It
follows that {z,,} is eventually in | J{Py:a € T —T"} and {P, : o € T — 1"}
is a finite subfamily of (P);. So P is an fcs-cover of X.

(2) = (1). Let P be an fes-cover of X. Whenever {x,} is a sequence
converging to z in X, then there is a finite subfamily P’ = {P, : a € T'1}
of (P); such that {x,} is eventually in |JP’. Put S = {z,, : n € N} J{z},
then S — P’ = {zo : @ € 'y} is finite. For each o € Ty, there is P, € P
such that z, € P,. Put S, = P,[)S for each a € T'; and put S, = {z,}
for each @ € T'y. Put I' = 'y T2, It is easy to see that {S, : a € T'}
is a finite family of closed subsets of S and {P, : @ € I'} C P. Moreover
S =U{Sq:a€el}and S, C P, for each « € I'. So P is an sfp-cover of
X. |

Lemma 2. Let P be a point-countable cover of a space X. Then the
following are equivalent.

(1) P is an sfp-cover of X.

(2) P is an fes-cover of X.

(3) P is a cs*-cover of X.

Proof. (1) <= (2). It holds from Lemma 1.

(2) = (3). It is clear from Definition 4.

(3) = (2). Let P be a point-countable cs*-cover of X. Whenever
{z,,} is a sequence converging to x in X, put S = {z, : n € N} J{z}. P is
point-countable, put (P), = {F, : n € N}. We claim that {z,} is eventually
in (J,,<j, P for some k € N. In fact, if not, then there is z,, € S —J,,<; Pn
foreagthN, . We may assume n1 < ng < -+ < ng—1 < N < Ngt1 < el
Put S’ = {z,, : k € N}, then S’ is a sequence converging to z. Since P is a
cs*-cover, there is m € N such that S’ is frequently in P,,. This contradicts
the construction of S’. |

Lemma 3. Let f: X — Y be a mapping, and let {y,} be a sequence
converging to y in Y. If {By} is a decreasing network at some point x €
f~Yy), and {yn} is frequently in f(By) for each k € N, then there is a
sequence {x} converging to x in X such that {f(xx)} is a subsequence of

{yn}

Proof. Since {y,} is frequently in f(Bi), there is n; € N such that
Yn, € f(B1). Choose x1 € f~(yn,) (1 B1. We construct a sequence {z} by
induction as follows. Assume zj has been chosen for k£ € N. Since {y,} is
frequently in f(Bj41), there is ngyq € N and ngqy > ny such that y,, , €
f(Bi+1), so we may choose zx1 € f ' (Yny,) () Be41. By induction, we
construct a sequence {zj} such that {f(xr)} = {yn,} is a subsequence of
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{yn}. Note that z}, € By, for each k € N, and {By} is a decreasing network
at x. So {xy} converges to x. [ |

Theorem 1. Let X be a space. Then the following are equivalent.
(1) X is a sequentially-quotient, and w-s-image of a metric space.
(2) X has a net-development consisting of point-countable cs*-covers.
(8) X has a net-development consisting of point-countable fcs-covers.
(4) X has a net-development consisting of point-countable sfp-covers.

Proof. (2)<=(3) <= (4) from Lemma 2.

(1) = (2). Let (M,d) be a metric space, and let f : M — X be
a sequentially-quotient, and m-s-mapping. We write B(a,n) = {b € M :
d(a,b) < 1/n} for each a € M and each n € N. For each n € N, put
B, = {B(a,n) : a € M}, and let A, be a locally-finite open refinement
of B,. Put F, = {(;<, 4i : A; € A;}, then F,, is a locally-finite open
refinement of B,,. Put P, = f(F,), then P, refines f(B,).

Claim 1. Py is a point-countable cover of X for each n € N.

Let n € Nand z € X. As f is an s-mapping, f~!(z) is a Lindeléf subset
of M, so {F € F,, : F(\ f~'(x) # 0} is countable. Thus x only belongs to
countable elements of P,,, This proves that P, is a point-countable cover of
X.

Claim 2. P, is a cs*-cover of X for each n € N.

Let n € N and S be a sequence converging to x in X. Since f is
sequentially-quotient, there is a sequence L in M converging toa € f~!(x) C
M such that f(L) is a subsequence of S. Choose F' € F, such that a € F.
Then L is eventually in F, so f(L) is eventually in f(F) € P,, thus S is
frequently in f(F') € P,. This proves that P,, is a ¢s*-cover of X.

Claim 3. {Py, : n € N} is a net-development of X,

For each n € N, F,, 1 refines F,, so Ppy1 refines P,. Let x € X, it
suffices to prove that {st(z,P,) : n € N} is a network at = in X. Let
x € U with U open in X. Since f is a m-mapping, there is m € N such
that d(f~!(z), M — f~%(U)) > 1/m. Pick k € N such that k > 2m. Then
st(z, f(By)) C U. In fact, let € f(B(a,k)) € f(By), where a € M. Then
Y @) Bla,k) #0. If B(a,k) ¢ f~Y(U), choose b € f~1(x)( B(a, k) and
c € B(a,k)— f~1(U), then d(b,c) < d(b,a) +d(a,c) < 1/k+1/k = 2/k, thus
d(f~Y(z), M — f~1(U)) < 2/k < 1/m. This is a contradiction. So B(a, k) C
f~YU), hence f(B(a,k)) C ff~Y(U) = U, thus st(z, f(Bx)) C U. Note
that st(x,Px) C st(x, f(By)) because Py refines f(Bg). So st(xz,Pr) C U.
This proves that {st(x,P,) : n € N} is a network at .

By the above, X has a net-development {P, : n € N} consisting of
point-countable cs*-covers.
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(2) = (1). Let X have a net-development {P,, : n € N} consisting of
point-countable cs*-covers.

For each n € N, put P,, = {P3 : 3 € A,,}, and endow A,, a discrete topol-
ogy. Put M = {b = (B,) € [[,,en An : {Ps, : n € N}is anetwork at some xy,
X}. Then M, which is a subspace of the product space [ | A, is a metric
space with metric d described as follows:

Let b = (Bn),¢ = () € M. If b = ¢, then d(b,¢) = 0. If b # ¢, then
d(b,c) = 1/min{n € N : 5, # v, }.

Define f : M — X by f(b) = xp for each b = (8,) € M, where
{Ps, : n € N} is a network at . It is not difficult to prove that f is
continuous and onto.

Claim 1. f is a m-mapping.

Let z € U with U open in X. Since {P, : n € N} is a net-development
of X, there is m € N such that st(x,Py) C U. If b = (3,) € M such that
d(f~Y(z),b) < 1/m, then there is ¢ = (v,,) € f~!(x) such that d(b,c) < 1/m,
thus By = v, if & < m. Notice that € P,,, € Py, and B, = vm. So f(b) €
Ps,, = P, C st(z,Pm) C U, hence b € f~1(U). Thus d(f~*(z),b) > 1/m
if be M — f~Y(U), and so d(f~(z), M — f~5(U)) > 1/m > 0. This proves
that f is a m-mapping.

Claim 2. f is an s-mapping.

Let « € X. For each n € N, put D, = {8 € A, : © € Pg}, then
D, is countable, and so [],,cyy Dn, which is a product of countably many
separable spaces, is separable. It suffices to prove that f~!(z) = [L.ex Do
If b = (8,) € f'(z), then {Ps, : n € N} is a network at z in X. For
each n € N, x € Pg, and 3, € Ay, ie., B, € D,. Sob € [],cry Dn, thus
(@) C [1hen Dn- Conversely, if b= (8,) € [1,eny Dn, then @ € Pg, € P
It is easy to see that {Ps, : n € N} is a network at z in X. so f(b) =z, i.e.,
be f~'(z). Thus [],eny Dn C f~*(x). This proves that f~(z) = [,.en Dn-

Claim 3. f is a sequentially-quotient mapping.

Let x € X and let S be a sequence converging to x in X. P; is a c¢s*-cover
of X, so there is a subsequence S; of S such that S is eventually in Pg,
for some (1 € Aq. For m € N, assume that we have obtained a subsequence
Sy, of S such that S, is eventually in Pg,, for some 3, € Ay, Ppyr is
a cs*-cover of X, so there is a subsequence Sy, of S, such that Sy,41 is
eventually in Pg, ., for some 3,11 € Ay 1. By induction, for each n > 1, we
may choose 3, € A, and a subsequence S, of S,,_1 such that S, is eventually
in Pg, € Pn. Put b= (8n) € [[,enyAn- It is clear that {Pg, : n € N} is
a network at  in X, so b € M and f(b) = x. For each n € N, put B, =
{(vk) € M : v = B for k <n}. Then {B,} is a decreasing neighborhood
base at b in M. We claim that f(By) = (<, Ps, for each n € N. In

fact, let ¢ = (yx) € By, then f(c) € Mgeny Pre € Mi<n P = Ni<n Pais
s0 f(Bn) C Ng<p Pp,- On the other hand, let y € (<, P3,, then there is

neN
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¢ = (v,) € M such that f(¢/) =y. For each k € N, put v, = f if k < n,
and vy, = 7}, if k£ > n. It is easy to see that {P,, : n € N} is a network at y
in X. Put ¢ = (v), then ¢ € By, and f(c) = y. This show that y € f(B,).
S0 Mk<n P8, € f(Bn), thus f(Bn) = (\g<,, P3,- For each n € N, by the
construction of S,, S, is eventually in ng for each £ < n, and so S, is
eventually in (., Pg, = f(Bn). Thus S is frequently in f(B,) for each
n € N. By Lemma 3, there is a sequence {b,} converging to b such that
{f(b,)} is a subsequence of S. So f is sequentially-quotient map.

By the above, X is a sequentially-quotient, and m-s-image of a metric
space. |

Lemma 4. Let {P,, : n € N} be a net-development of space X. If Py, is
a cs*-cover of X for each n € N, then {P,, : n € N} is an sn-development
of X.

Proof. It suffices to prove that st(z,P,) is a sequential neighborhood
of x in X for each x € X and each n € N. Whenever S is a sequence
converging to x in X, P, is a cs*-cover of X, so S is frequently in P for
some P € P,. Note that P C st(x,P,), S is frequently in st(z,P,). By
Remark 1(1), st(z,P,) is a sequential neighborhood of x in X. [ |

The following corollary is obtained immediately from Theorem 1 and
Lemma 4.

Corollary 1. Let X be a space. Then the following are equivalent.
(1) X is a sequentially-quotient, and w-s-image of a metric space.
(2) X has a sn-development consisting of point-countable cs*-covers.
(3) X has a sn-development consisting of point-countable fcs-covers.
(4) X has a sn-development consisting of point-countable s fp-covers.

Theorem 2. Let X be a space. Then the following are equivalent.

(1) X is a quotient, and mw-s-image of a metric space.

(2) X has a weak-development consisting of point-countable cs*-covers.
(8) X has a weak-development consisting of point-countable fcs-covers.
(4) X has a weak-development consisting of point-countable sfp-covers.

Proof. (2)<=(3) <= (4) from Lemma 2.

(1) = (2). Let f: M — X be a quotient, and 7-s-mapping, where M
is a metric space. Then f is sequentially-quotient from Remark 4(2). So X
has a sn-development {P,, : n € N} consisting of point-countable cs*-covers
from Corollary 1. By Remark 4(4), X is a sequential space. So {P,, : n € N}
is weak-development of X from Remark 3(1).

(2) = (1). Let X have a weak-development consisting of point-countable
cs*-covers. Then X has an sn-development consisting of point-countable
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cs*-covers from Remark 3(1). So X is a sequentially-quotient, and 7-s-image
of a separable metric space from Corollary 1. By Remark 3(2) and Remark
4(3), X is a quotient, and 7-s-image of a metric space. |
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