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NOTES ON SPACES WITH A WEAK-DEVELOPMENT

Abstract. Z. Li characterized spaces with a weak-development
consisting of point-countable sfp-covers by pseudo-sequence-co-
vering, quotient, and π-s-image of metric spaces. In this paper,
we omit ”pseudo-sequence-covering” in the above result, and prove
that a space has a weak-development consisting of point-countable
sfp-covers iff it is a quotient, and π-s-image of a metric space.
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1. Introduction

Recently, Z. Li [7] obtained the following result.

Proposition 1. A space has a weak-development consisting of point-coun-
table sfp-covers iff it is a pseudo-sequence-covering, quotient, and π-s-image
of a metric space.

In this paper, we prove that a space has an sn-development consisting of
point-countable cs∗-covers iff it is a sequentially-quotient, and π-s-image of a
metric space. By this result, we prove that a space has a weak-development
consisting of point-countable sfp-covers iff it is a quotient, and π-s-image
of a metric space, which omits “pseudo-sequence-covering” in Proposition 1.
Throughout this paper, all spaces mean regular and T1 topological spaces, all
mappings are continuous and onto. N denotes the set of all natural numbers.
Let X be a space and P ⊂ X. We say that a sequence {xn} converging to
x in X is eventually in P if {xn : n > k}⋃{x} ⊂ P for some k ∈ N; it
is frequently in P if {xnk

} is eventually in P for some subsequence {xnk
}

of {xn}. Let P be a family of subsets of X and let x ∈ X.
⋃P, st(x,P)

and (P)x denote the union
⋃{P : P ∈ P}, the union

⋃{P ∈ P : x ∈ P}
and the subfamily {P ∈ P : x ∈ P} of P, respectively. If f : X −→ Y is a
mapping, f(P) = {f(P ) : P ∈ P}. We shortly denote a point b = (βn)n∈N
of a Tychonoff-product space by (βn).
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Definition 1. Let X be a space.
(1) Let x ∈ P ⊂ X. P is called a sequential neighborhood of x in X if

whenever {xn} is a sequence converging to x in X, then {xn} is eventually
in P .

(2) Let P ⊂ X. P is called a sequentially open subset in X if P is a
sequential neighborhood of x in X for each x ∈ P .

(3) X is called a sequential space if each sequentially open subset in X is
open in X.

Remark 1. (1) P is a sequential neighborhood of x iff each sequence
{xn} converging to x is frequently in P .

(2) The intersection of finitely many sequential neighborhoods of x is a
sequential neighborhood of x.

Definition 2. Let P =
⋃{Px : x ∈ X} be a cover of a space X such

that the following conditions (a) and (b) are satisfied for each x ∈ X.
(a) Px is a network at x in X, i.e., Px ⊂ (P)x and for each neighborhood

U of x in X, P ⊂ U for some P ∈ Px;
(b) If U, V ∈ Px, then W ⊂ U

⋂
V for some W ∈ Px.

(1) P is called a weak-base [1] for X if whenever G ⊂ X, G is open
in X iff for each x ∈ G there is P ∈ Px with P ⊂ G, where Px is called a
wn-base (i.e., weak neighborhood base) at x in X.

(2) P is called an sn-network [4] for X if each element of Px is a sequen-
tial neighborhood of x in X for each x ∈ X, where Px is called an sn-network
at x in X.

Remark 2. Each weak-base for a space is an sn-network and each
sn-network for a sequential space is a weak-base [8].

Definition 3. Let {Pn : n ∈ N} be a sequence of covers of a space X
such that Pn+1 refines Pn for each n ∈ N.

(1) {Pn : n ∈ N} is called a net-development of X if {st(x,Pn) : n ∈ N}
is a network at x in X for each x ∈ X.

(2) {Pn : n ∈ N} is called an sn-development of X if {st(x,Pn) : n ∈ N}
is an sn-network at x in X for each x ∈ X.

(3) {Pn : n ∈ N} is called a weak-development of X [7] if {st(x,Pn) : n ∈
N} is a wn-base at x in X for each x ∈ X.

Remark 3. (1) By Remark 2, each weak-development of a space is
an sn-development and each sn-development of a sequential space X is a
weak-development.

(2) Each space with a weak-development is a sequential space [10].
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Definition 4. Let P be a cover of a space X.
(1) P is called an sfp-cover [7] if for each sequence {xn} converging to x

in X, there is a finite family {Sα : α ∈ Γ} of closed subsets of S and a finite
subfamily {Pα : α ∈ Γ} of P such that S =

⋃{Sα : α ∈ Γ} and Sα ⊂ Pα for
each α ∈ Γ, where S = {xn : n ∈ N}⋃{x}.

(2) P is called a fcs-cover [5] if for each sequence {xn} converging to x
in X, there is a finite subfamily P ′ of (P)x such that {xn} is eventually in⋃P ′.

(3) P is called a cs∗-cover [4] if for each convergent sequence {xn} in X,
{xn} is frequently in P for some P ∈ P.

Definition 5. Let f : X −→ Y be a mapping.
(1) f is called a pseudo-sequence-covering mapping [6] if for each sequence

{yn} converging to y in Y , there is a compact subset K of X such that
f(K) = {yn : n ∈ N}⋃{y}.

(2) f is called a sequentially-quotient mapping [2] if for each convergent
sequence {yn} in Y , there is a convergent sequence {xn} in X such that
{f(xn)} is a subsequence of {yn}.

(3) f is called a quotient mapping [3] if U is open in Y iff f−1(U) is
open in X.

(4) If X is a metric space with the metric d, f is called a π-mapping [9],
if for each y ∈ Y and for each neighborhood U of y in Y , d(f−1(y), X −
f−1(U)) > 0.

Remark 4. (1) Recall a mapping f : X −→ Y is a compact mapping
(resp. s-mapping), if f−1(y) is a compact (resp. separable) subset of X for
each y ∈ Y . It is clear that each compact mapping from a metric space is a
π-s-mapping.

(2) Each quotient mapping from a sequential space is a sequentially-quotient
mapping [4, Remark 1.8].

(3) Each sequentially-quotient mapping onto a sequential space is a quo-
tient mapping [4, Remark 1.8].

(4) Quotient mappings preserve sequential spaces [3, Exercises 2.4.G].

Lemma 1. Let P be a cover of a space X. Then the following are
equivalent.

(1) P is an sfp-cover of X.
(2) P is an fcs-cover of X.

Proof. (1) =⇒ (2). Let P be an sfp-cover of X. Whenever {xn} is a
sequence converging to x in X, put S = {xn : n ∈ N}⋃{x}. Then there is
a finite family {Sα : α ∈ Γ} of closed subsets of S and a finite subfamily
{Pα : α ∈ Γ} of P such that S =

⋃{Sα : α ∈ Γ} and Sα ⊂ Pα for each α ∈ Γ.
Put Γ′ = {α ∈ Γ : x 6∈ Sα} and S′ =

⋃{Sα : α ∈ Γ′}, then S′ is closed in
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S and x 6∈ S′. Thus there is k ∈ N such that xn 6∈ S′ foe each n > k. It
follows that {xn} is eventually in

⋃{Pα : α ∈ Γ−Γ′} and {Pα : α ∈ Γ−Γ′}
is a finite subfamily of (P)x. So P is an fcs-cover of X.

(2) =⇒ (1). Let P be an fcs-cover of X. Whenever {xn} is a sequence
converging to x in X, then there is a finite subfamily P ′ = {Pα : α ∈ Γ1}
of (P)x such that {xn} is eventually in

⋃P ′. Put S = {xn : n ∈ N}⋃{x},
then S −⋃P ′ = {xα : α ∈ Γ2} is finite. For each α ∈ Γ2, there is Pα ∈ P
such that xα ∈ Pα. Put Sα = Pα

⋂
S for each α ∈ Γ1 and put Sα = {xα}

for each α ∈ Γ2. Put Γ = Γ1
⋃

Γ2. It is easy to see that {Sα : α ∈ Γ}
is a finite family of closed subsets of S and {Pα : α ∈ Γ} ⊂ P. Moreover
S =

⋃{Sα : α ∈ Γ} and Sα ⊂ Pα for each α ∈ Γ. So P is an sfp-cover of
X. ¥

Lemma 2. Let P be a point-countable cover of a space X. Then the
following are equivalent.

(1) P is an sfp-cover of X.
(2) P is an fcs-cover of X.
(3) P is a cs∗-cover of X.

Proof. (1) ⇐⇒ (2). It holds from Lemma 1.
(2) =⇒ (3). It is clear from Definition 4.
(3) =⇒ (2). Let P be a point-countable cs∗-cover of X. Whenever

{xn} is a sequence converging to x in X, put S = {xn : n ∈ N}⋃{x}. P is
point-countable, put (P)x = {Pn : n ∈ N}. We claim that {xn} is eventually
in

⋃
n≤k Pn for some k ∈ N. In fact, if not, then there is xnk

∈ S −⋃
n≤k Pn

for each k ∈ N, . We may assume n1 < n2 < · · · < nk−1 < nk < nk+1 < · · · .
Put S′ = {xnk

: k ∈ N}, then S′ is a sequence converging to x. Since P is a
cs∗-cover, there is m ∈ N such that S′ is frequently in Pm. This contradicts
the construction of S′. ¥

Lemma 3. Let f : X −→ Y be a mapping, and let {yn} be a sequence
converging to y in Y . If {Bk} is a decreasing network at some point x ∈
f−1(y), and {yn} is frequently in f(Bk) for each k ∈ N, then there is a
sequence {xk} converging to x in X such that {f(xk)} is a subsequence of
{yn}.

Proof. Since {yn} is frequently in f(B1), there is n1 ∈ N such that
yn1 ∈ f(B1). Choose x1 ∈ f−1(yn1)

⋂
B1. We construct a sequence {xk} by

induction as follows. Assume xk has been chosen for k ∈ N. Since {yn} is
frequently in f(Bk+1), there is nk+1 ∈ N and nk+1 > nk such that ynk+1

∈
f(Bk+1), so we may choose xk+1 ∈ f−1(ynk+1

)
⋂

Bk+1. By induction, we
construct a sequence {xk} such that {f(xk)} = {ynk

} is a subsequence of



Notes on spaces with a weak-development 21

{yn}. Note that xk ∈ Bk for each k ∈ N, and {Bk} is a decreasing network
at x. So {xk} converges to x. ¥

Theorem 1. Let X be a space. Then the following are equivalent.
(1) X is a sequentially-quotient, and π-s-image of a metric space.
(2) X has a net-development consisting of point-countable cs∗-covers.
(3) X has a net-development consisting of point-countable fcs-covers.
(4) X has a net-development consisting of point-countable sfp-covers.

Proof. (2)⇐⇒(3) ⇐⇒ (4) from Lemma 2.
(1) =⇒ (2). Let (M, d) be a metric space, and let f : M −→ X be

a sequentially-quotient, and π-s-mapping. We write B(a, n) = {b ∈ M :
d(a, b) < 1/n} for each a ∈ M and each n ∈ N. For each n ∈ N, put
Bn = {B(a, n) : a ∈ M}, and let An be a locally-finite open refinement
of Bn. Put Fn = {⋂i≤n Ai : Ai ∈ Ai}, then Fn is a locally-finite open
refinement of Bn. Put Pn = f(Fn), then Pn refines f(Bn).

Claim 1. Pn is a point-countable cover of X for each n ∈ N.
Let n ∈ N and x ∈ X. As f is an s-mapping, f−1(x) is a Lindelöf subset

of M , so {F ∈ Fn : F
⋂

f−1(x) 6= ∅} is countable. Thus x only belongs to
countable elements of Pn, This proves that Pn is a point-countable cover of
X.

Claim 2. Pn is a cs∗-cover of X for each n ∈ N.
Let n ∈ N and S be a sequence converging to x in X. Since f is

sequentially-quotient, there is a sequence L in M converging to a ∈ f−1(x) ⊂
M such that f(L) is a subsequence of S. Choose F ∈ Fn such that a ∈ F .
Then L is eventually in F , so f(L) is eventually in f(F ) ∈ Pn, thus S is
frequently in f(F ) ∈ Pn. This proves that Pn is a cs∗-cover of X.

Claim 3. {Pn : n ∈ N} is a net-development of X,
For each n ∈ N, Fn+1 refines Fn, so Pn+1 refines Pn. Let x ∈ X, it

suffices to prove that {st(x,Pn) : n ∈ N} is a network at x in X. Let
x ∈ U with U open in X. Since f is a π-mapping, there is m ∈ N such
that d(f−1(x),M − f−1(U)) > 1/m. Pick k ∈ N such that k > 2m. Then
st(x, f(Bk)) ⊂ U . In fact, let x ∈ f(B(a, k)) ∈ f(Bk), where a ∈ M . Then
f−1(x)

⋂
B(a, k) 6= ∅. If B(a, k) 6⊂ f−1(U), choose b ∈ f−1(x)

⋂
B(a, k) and

c ∈ B(a, k)−f−1(U), then d(b, c) ≤ d(b, a)+d(a, c) < 1/k+1/k = 2/k, thus
d(f−1(x),M −f−1(U)) ≤ 2/k < 1/m. This is a contradiction. So B(a, k) ⊂
f−1(U), hence f(B(a, k)) ⊂ ff−1(U) = U , thus st(x, f(Bk)) ⊂ U . Note
that st(x,Pk) ⊂ st(x, f(Bk)) because Pk refines f(Bk). So st(x,Pk) ⊂ U .
This proves that {st(x,Pn) : n ∈ N} is a network at x.

By the above, X has a net-development {Pn : n ∈ N} consisting of
point-countable cs∗-covers.
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(2) =⇒ (1). Let X have a net-development {Pn : n ∈ N} consisting of
point-countable cs∗-covers.

For each n ∈ N, put Pn = {Pβ : β ∈ Λn}, and endow Λn a discrete topol-
ogy. Put M = {b = (βn) ∈ ∏

n∈N Λn : {Pβn : n ∈ N} is a network at some xb ∈
X}. Then M , which is a subspace of the product space

∏
n∈N Λn, is a metric

space with metric d described as follows:
Let b = (βn), c = (γn) ∈ M . If b = c, then d(b, c) = 0. If b 6= c, then

d(b, c) = 1/min{n ∈ N : βn 6= γn}.
Define f : M −→ X by f(b) = xb for each b = (βn) ∈ M , where

{Pβn : n ∈ N} is a network at xb. It is not difficult to prove that f is
continuous and onto.

Claim 1. f is a π-mapping.
Let x ∈ U with U open in X. Since {Pn : n ∈ N} is a net-development

of X, there is m ∈ N such that st(x,Pm) ⊂ U . If b = (βn) ∈ M such that
d(f−1(x), b) < 1/m, then there is c = (γn) ∈ f−1(x) such that d(b, c) < 1/m,
thus βk = γk if k ≤ m. Notice that x ∈ Pγm ∈ Pm and βm = γm. So f(b) ∈
Pβm = Pγm ⊂ st(x,Pm) ⊂ U , hence b ∈ f−1(U). Thus d(f−1(x), b) ≥ 1/m
if b ∈ M − f−1(U), and so d(f−1(x),M − f−1(U)) ≥ 1/m > 0. This proves
that f is a π-mapping.

Claim 2. f is an s-mapping.
Let x ∈ X. For each n ∈ N, put Dn = {β ∈ Λn : x ∈ Pβ}, then

Dn is countable, and so
∏

n∈NDn, which is a product of countably many
separable spaces, is separable. It suffices to prove that f−1(x) =

∏
n∈NDn.

If b = (βn) ∈ f−1(x), then {Pβn : n ∈ N} is a network at x in X. For
each n ∈ N, x ∈ Pβn and βn ∈ Λn, i.e., βn ∈ Dn. So b ∈ ∏

n∈NDn, thus
f−1(x) ⊂ ∏

n∈NDn. Conversely, if b = (βn) ∈ ∏
n∈NDn, then x ∈ Pβn ∈ Pn.

It is easy to see that {Pβn : n ∈ N} is a network at x in X. so f(b) = x, i.e.,
b ∈ f−1(x). Thus

∏
n∈NDn ⊂ f−1(x). This proves that f−1(x) =

∏
n∈NDn.

Claim 3. f is a sequentially-quotient mapping.
Let x ∈ X and let S be a sequence converging to x in X. P1 is a cs∗-cover

of X, so there is a subsequence S1 of S such that S1 is eventually in Pβ1

for some β1 ∈ Λ1. For m ∈ N, assume that we have obtained a subsequence
Sm of S such that Sm is eventually in Pβm for some βm ∈ Λm. Pm+1 is
a cs∗-cover of X, so there is a subsequence Sm+1 of Sm such that Sm+1 is
eventually in Pβm+1 for some βm+1 ∈ Λm+1. By induction, for each n > 1, we
may choose βn ∈ Λn and a subsequence Sn of Sn−1 such that Sn is eventually
in Pβn ∈ Pn. Put b = (βn) ∈ ∏

n∈N Λn. It is clear that {Pβn : n ∈ N} is
a network at x in X, so b ∈ M and f(b) = x. For each n ∈ N, put Bn =
{(γk) ∈ M : γk = βk for k ≤ n}. Then {Bn} is a decreasing neighborhood
base at b in M . We claim that f(Bn) =

⋂
k≤n Pβk

for each n ∈ N. In
fact, let c = (γk) ∈ Bn, then f(c) ∈ ⋂

k∈N Pγk
⊂ ⋂

k≤n Pγk
=

⋂
k≤n Pβk

,
so f(Bn) ⊂ ⋂

k≤n Pβk
. On the other hand, let y ∈ ⋂

k≤n Pβk
, then there is
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c′ = (γ′k) ∈ M such that f(c′) = y. For each k ∈ N, put γk = βk if k ≤ n,
and γk = γ′k if k > n. It is easy to see that {Pγn : n ∈ N} is a network at y
in X. Put c = (γk), then c ∈ Bn and f(c) = y. This show that y ∈ f(Bn).
So

⋂
k≤n Pβk

⊂ f(Bn), thus f(Bn) =
⋂

k≤n Pβk
. For each n ∈ N, by the

construction of Sn, Sn is eventually in Pβk
for each k ≤ n, and so Sn is

eventually in
⋂

k≤n Pβk
= f(Bn). Thus S is frequently in f(Bn) for each

n ∈ N. By Lemma 3, there is a sequence {bn} converging to b such that
{f(bn)} is a subsequence of S. So f is sequentially-quotient map.

By the above, X is a sequentially-quotient, and π-s-image of a metric
space. ¥

Lemma 4. Let {Pn : n ∈ N} be a net-development of space X. If Pn is
a cs∗-cover of X for each n ∈ N, then {Pn : n ∈ N} is an sn-development
of X.

Proof. It suffices to prove that st(x,Pn) is a sequential neighborhood
of x in X for each x ∈ X and each n ∈ N. Whenever S is a sequence
converging to x in X, Pn is a cs∗-cover of X, so S is frequently in P for
some P ∈ Pn. Note that P ⊂ st(x,Pn), S is frequently in st(x,Pn). By
Remark 1(1), st(x,Pn) is a sequential neighborhood of x in X. ¥

The following corollary is obtained immediately from Theorem 1 and
Lemma 4.

Corollary 1. Let X be a space. Then the following are equivalent.
(1) X is a sequentially-quotient, and π-s-image of a metric space.
(2) X has a sn-development consisting of point-countable cs∗-covers.
(3) X has a sn-development consisting of point-countable fcs-covers.
(4) X has a sn-development consisting of point-countable sfp-covers.

Theorem 2. Let X be a space. Then the following are equivalent.
(1) X is a quotient, and π-s-image of a metric space.
(2) X has a weak-development consisting of point-countable cs∗-covers.
(3) X has a weak-development consisting of point-countable fcs-covers.
(4) X has a weak-development consisting of point-countable sfp-covers.

Proof. (2)⇐⇒(3) ⇐⇒ (4) from Lemma 2.
(1) =⇒ (2). Let f : M −→ X be a quotient, and π-s-mapping, where M

is a metric space. Then f is sequentially-quotient from Remark 4(2). So X
has a sn-development {Pn : n ∈ N} consisting of point-countable cs∗-covers
from Corollary 1. By Remark 4(4), X is a sequential space. So {Pn : n ∈ N}
is weak-development of X from Remark 3(1).

(2) =⇒ (1). Let X have a weak-development consisting of point-countable
cs∗-covers. Then X has an sn-development consisting of point-countable
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cs∗-covers from Remark 3(1). So X is a sequentially-quotient, and π-s-image
of a separable metric space from Corollary 1. By Remark 3(2) and Remark
4(3), X is a quotient, and π-s-image of a metric space. ¥

References

[1] Arhangel’skii A., Mappings and spaces, Russian Math. Surveys, 21(1966),
115-162.

[2] Boone J.R., Siwiec F., Sequentially quotient mappings, Czech. Math. J.,
26(1976), 174-182.

[3] Engelking R., General Topology (revised and completed edition),
Heldermann-Verlag, Berline, 1989.

[4] Ge Y., Spaces with countable sn-networks, Comment Math. Univ. Carolinae,
45(2004), 169-176.

[5] Ge Y., On π-images of metric spaces, Acta Mathematica Academiae Paeda-
gogicae Nyiregyhaziensis, 22(2006), 209-215.

[6] Ikeda Y., Liu C., Tanaka Y., Quotient compact images of metric spaces
and related matters, Topology Appl., 122(2002), 237-252.

[7] Li Z., On π-s-images of metric spaces, International Journal of Mathematics
and Mathematical Sciences, 7(2005), 1101-1107.

[8] Lin S., Yan P., Sequence-covering maps of metric spaces, Topology Appl.,
109(2001), 301-314.

[9] Ponomarev V.I., Axiom of countability and continuous mappings, Bull Pol-
ish Acad. Sci. Math., 8(1960), 127-133.

[10] Tanaka Y., σ-Hereditarily closure-preserving k-networks and g-metrizability,
Proc. Amer. Math. Soc., 112(1991), 283-290.

Ying Ge
Department of Mathematics, Suzhou University

Suzhou, 215006, P.R.China

e-mail: geying@pub.sz.jsinfo.net

This project was supported by NSFC (No. 10571151 and 10671173) and
NSF (06KJD110162)

Received on 13.04.2006 and, in revised form, on 06.12.2006.


