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ON APPROXIMATION AND INTERPOLATION

ERRORS OF ANALYTIC FUNCTIONS∗

Abstract. Kasana and Kumar [5] obtained the (p, q)−growth
parameters in terms of Chebyshev and interpolation errors for en-
tire functions on a compact set E of positive transfinite diameter.
Rizvi and Nautiyal [9] studied the order and type in terms of these
errors for the functions which are not entire. But these results do
not give any specific information about the growth of non-entire
functions if maximum modules is increasing so rapidly that the
order of function is infinite. In this paper an attempt has been
made to extend the results contained in [9] for functions having
rapidly increasing maximum modulus.
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1. Introduction

Let E be a compact set in complex plane and ξ(n) = {ξn0, ξn1, . . . , ξnn}
be a system of (n + 1) points of the set E and define

V (ξ(n)) =
∏

0≤j<k≤n

|ξnj − ξnk|

and

∆j
(
ξ(n)

)
=

n∏

k=0,k 6=j

|ξnj − ξnk|, j = 0, 1, . . . , n

Again, let η(n) = ηno, ηn1, . . . , ηnn be the system of (n + 1) points in E
([11],[16]) such that

Vn ≡ V (ξ(n)) = sup
ξ(n)⊂E

V (ξ(n))

∗ This work dedicated to my teacher Late Prof. H.S. Kasana Senior Associate ICTP,
Trieste, Italy.



48 Devendra Kumar

and
∆0(η(n)) ≤ ∆j(η(n)) for j = 1, 2, . . . , n.

Such a system always exists and is called the nth extremal system of E.
The polynomials

L(j)(z, η(n)) =
n∏

k=0,k 6=j

(
z − ηnk

ηnj − ηnk

)
, j = 0, 1, . . . , n,

are called the Lagrange extremal polynomials and the limit d ≡ d(E) =
limn→∞ V

2/n(n+1)
n is called the transfinite diameter of E.

Let C(E) denote the algebra of analytic functions on E. Let us define
the approximation errors as follows:

En,1(f,E) ≡ En,1(f) = inf
g∈πn

‖f − g‖,

where ‖.‖ is the sup norm and πn(z) denotes the set of all polynomials of
degree ≤ n

Further, we also define

En,2(f ;E) ≡ En,2(f) = ‖Ln − Ln−1‖, n ≥ 2

En,3(f ;E) ≡ En,3(f) = ‖Ln − f‖,
where n ∈ N and

Ln(z) =
N∑

j=0

L(j)(z, η(n))f(ηnj)

is the Lagrange interpolation polynomial of degree n.
Kasana and Kumar [5] have studied the growth parameters in terms of

Chebyshev and interpolation errors En,j(f), j = 1, 2, 3 for entire functions
of index-pair (p, q). Rice [8] and Winiarski [16] have obtained these results
for (p, q) = (2, 1). Also when E = [−1, 1], Bernstein [2], Juneja [3], Reddy
[7], Shah [10] and Varga [14] have studied the rate of decay of these errors
for entire functions. All these results do not give any information about the
rates of decay of these errors when fεC(E) is not entire. However, Rizvi
and Nautiyal [9] studied the rates of decay of En,j when f is not entire. But
the results contained in [9] do not give any specific information about the
growth of f(z) if maximum modulus of f(z) is increasing so rapidly that
the order of f(z) is infinite. In the present paper we have extended the
results of Rizvi and Nautiyal [9] for the functions having rapidly increasing
maximum modulus. Our results give the generalizations of the results in [9]
obtained for q = 2. Although, Jozef Siciak [12] obtained some results on
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approximation and interpolation by transcendental polynomials in several
variables for any function holomorphic in a neighborhood of compact set E.
But our results are different from those of Jozef Siciak [12].

2. Definitions and auxiliary results

We first introduce the concept of domain of regularity for a function
f ∈ C(E).

Let Er = {z : |φ(z)| = r} , r > 1, where the univalent function ω = φ(z)
maps the complement of E onto |ω| > 1 such that φ(∞) = ∞ and φ′(∞) > 0.
Then Er is an analytic Jordan curve. Let Dr be the bounded domain with
the boundary Er. Then E ⊂ Dr′ for each r (1 < r < ∞) and Er ⊂ Dr′ for
r′ > r. Since through an arbitrary point z0 /∈ E there passes one and only
one curve Er (1 < r ≤ ∞), it follows that for each f ∈ C(E) there exists a
unique R ≡ R(f) (1 < R ≤ ∞) such that f can be extended analytically to
Dr for each r ≤ R but for no r > R. We call DR the ’domain of regularity’
for f and denote the class of those f ∈ C(E) which have domain of regularity
DR by C(E, R).

The concept of index q, the q-order and q-type were introduced by Bajpai
et al. [1] in order to obtain a measure of growth of the maximum modulus,
when it is rapidly increasing. Thus we define the growth parameters for a
function f ∈ C(E,R) as follows:

A function f ∈ C(E, R), 1 < R < ∞ , will be said to be of q-order ρ(q)
(ρ(q) < ∞, ρ(q − 1) = ∞, q = 2, 3, . . .) if

ρ(q) = lim sup
r→R−

log[q] M̄(r)
log(R/(R− r))

where
M̄(r) ≡ M̄(r, f) = max

z∈Er

|f(z)|

and
log[0] M̄(r) = M̄(r), log[q] M̄(r) = log log[q−1] M̄(r)

In case 0 < ρ(q) < ∞ , the q-type T (q)(0 ≤ T (q) < ∞) of f is defined as

T (q) = lim sup
r→R−

log[q−1] M̄(r)
(R/(R− r))ρ(q)

Now, it will be justified to give the definition of q-order and q-type of a
function analytic in the disk |z| < R, 0 < R < ∞. Let ρ0 and T0 are ρ and
T for the case of E the finite disk.
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f(z) is analytic in |z| < R, then the q-order ρo(q) of f(z) is defined as

ρ0(q) = lim sup
r→R−

log[q] M̄(r)
log(R/(R− r))

, 0 ≤ ρ0 ≤ ∞,

where M(r) ≡ M(r, f) = maxz∈Er |f(z)|. If 0 ≤ ρ0(q) ≤ ∞, then the type
T0(q) of f is defined as

T0(q) = lim sup
r→R−

log[q−1] M(r)
(R/(R− r))ρ(q)

.

Now we prove

Lemma 1. Let f(z) =
∑∞

n=0 anzn be analytic in |z| < R (0 < R < ∞)
and have q -order ρ0(q) (ρ0(q) > 0, q > 2). Then

ρ(q) + A(q) = lim sup
n→∞

log[q−1] n

log n− log+ log+ |an|Rn
, 0 ≤ ρ0 ≤ ∞,

where A(q) = 1 if q = 2, A(q) = 0 if q ≥ 3 and for x > 0, we put log+ x =
max(log x, 0).

Lemma 2. Let f(z) =
∑∞

n=0 anzn be analytic in |z| < R (0 < R < ∞).
Then f is of q-order ρ0(q)(0 < ρ0(q) < ∞) and q-type T0(q) if and only if

V (q) = T0(q)B(q),

where B(q) = (ρ0+1)ρ0+1)

ρ
ρ0
0

for q = 2 and B(q) = 1 if q = 3, 4, . . . and

V (q) = lim sup
n→∞

(log[q−2] n)(log+ |an|Rn)ρ(q)+A(q).

The above lemmas can be easily proved c.f.([4], Theorems 1 and 5).
Let w = ψ(z) be the univalent function which maps the complement of

E onto |w| > d such that ψ(∞) = ∞ and ψ′(∞) = 1. Set Ēr = {z : |ψ(z)| =
r}, r > d, d > 1, r > 1 and denote by D̄r the domain interior of Ēr. Ēr is
the largest equipotential curve of E. For r = d = 1, Ēr = E. We have taken
the case r > d. Then we have

Lemma 3. Let f(z) be analytic in D̄r0 , r0 > d. Then for every positive
integer n there exists a polynomial Qn ∈ πn such that

|f(z)−Qn(z)| ≤ AM̄(r)
(

d

r

)n

, z ∈ E.

for all r(< r0) sufficiently close to r0. Here A is a constant depending on
the set E and r0 but is independent of n and r and

M̄(r) ≡ M̄(r, f) = max
z∈Er

|f(z)|.
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Proof. It can be shown [13, p. 138] that, inside D̄r0 ,

(1) f(z) =
∞∑

k=0

Ckgk(z),

where {gk}∞k=0 is the sequence of Faber polynomials for E and the series on
the right hand side of (1) converges uniformly on compact subsets of D̄r0

Further, the C ′
ks satisfy

(2) |Ck| ≤ M̄(r)/rk for d < r < r0 and k = 0, 1, 2, . . .

Also from [13, p. 137], we have

(3) |gk(z)| ≤ 2dk for z ∈ E and k = 0, 1, 2, 3, . . .

Taking Qn =
∑n

k=0 Ckgk(z) with (2) and (3), we get

|f(z)−Qn(z)| ≤
∞∑

k=n+1

|Ck| |gk(z)|

≤ 2M̄(r)
∞∑

k=n+1

(d/r)k, d < r < r0

= 2M̄(r)
(

d

d− r

)(
d

r

)n

The lemma easily follows by taking r ≥ ((d + r′)/2) if r′ < ∞, and r ≥ 2d
if r′ = ∞. ¥

Lemma 4. Let f ∈ C(E, R), R > 1. Then

En,1(f) ≤ AM̄(r, f)(r)n, z ∈ E, n = 0, 1, 2, . . .

for all r(< R) sufficiently close to R. Here A is a constant depending on E
and R but independent of n and r.

Proof. By Lemma 3, for every positive integer n, there exists a polyno-
mial Qn of degree at most n such that

(4) |f(z)−Qn(z)| ≤ 2dkAM̄(r, f)(r)n, z ∈ E,

for all r (< R) sufficiently close to R. In view of definition of En,1(f) and
constant A we get the required result. ¥
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Lemma 5. Let f ∈ C(E), then

En,1(f) ≤ En,3(f) ≤ (n + 2)En,1(f),

En,2(f) ≤ 2(n + 2)En−1,1(f).

The lemma follows from Winiarski [16].

3. Main results

In this section we investigate the growth parameters of a function f ∈
C(E, R), 1 < R < ∞, in terms of En,j(f).

Theorem 1. Let f ∈ C(E), then f ∈ C(E, R), R > 1, if and only, if

lim sup
n→∞

(En,j(f))1/n = 1/R, j = 1, 2, 3.

Proof. First let f ∈ C(E,R). Then, by Lemma 4, we have

lim sup
n→∞

(En,1(f))1/n ≤ 1/r

for all r (< R) sufficiently close to R and so

lim sup
n→∞

(En,1(f))1/n ≤ 1/R.

Also it is known [15, Chapter XII] that there exist polynomials Pn ≡
Pn(f) ∈ πn such that

En,1(f) = ‖f − pn‖, n = 0, 1, 2, . . .

and

(5) f(z) = P0(z) +
∞∑

n=0

(Pn+1(z)− Pn(z))

holds in DR and the series on the right hand side of (5) converges uniformly
on compact subsets of DR. Now

‖Pn+1(z)− Pn(z))‖ ≤ 2En,1(f)

and

(6) |Pn+1(z)− Pn(z))| ≤ 2En,1(f)rn+1 for z ∈ Er, r > 1.

In view of (6) we see that if lim supn→∞(En,1(f))1/n < 1/R, then the series
on the right hand side of (5) converges uniformly on compact subsets of DR′
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for some R′ > R, which is a contradiction. Hence lim sup(En,1(f))1/n = 1/R
as n →∞. This proves the necessary part of the theorem for j = 1. Theorem
1 of [13, p.17] with Lemma 5 proves also the necessary part for j = 2, 3. The
sufficiency part can also be proved similarly. ¥

Theorem 2. Let f ∈ C(E, R), 1 < R < ∞, be of order ρ(q). Then

(7) ρ(q) + A(q) = lim sup
n→∞

log[q−1] n

log n− log+ log+ En,j(f)Rn
, j = 1, 2, 3.

Proof. In view of Lemma 5 and Theorem 1 of [13, p. 17] it is sufficient
to prove the theorem for the case j = 1. Thus for j = 1, let

lim inf
n→∞

log n− log+ log+ En,1(f)Rn

logq−1 n
= α.

Obviously 0 ≤ α ≤ ∞. First suppose that 0 < α < ∞. Then, by the
definition of α, there exists a sequence {nk} of positive integers tending to
infinity such that

(8) log Enk,1
(f)Rnk > nk(log[q−2] nk)(−α+ε) for k = 1, 2, 3, . . .

Using Lemma 4 and (8) we obtain

(9) log M̄(r) ≥ nk(log[q−2] nk)(−α+ε) + nk log(r/R)− log A

for the sequence {nk} and all r(< R) sufficiently close to R. Let {rk} be a
sequence defined by

nk = exp[q−2] {e log (R/rk)} , k = 1, 2, 3, . . . , then rk → R as k →∞.

Thus, using (9), for all sufficiently large values of k, we get

log M̄(rk) ≥ (1− e)nk(log[q−2] nk)−(α+ε)[1 + 0(1)]

= e(e− 1)
{

exp[q−2] (e log(R/rk))
−1/(α+ε)

}
log(R/rk)−1[1 + 0(1)].

Since log(R/(R− rk)) − log log(R/rk) as k →∞, after a simple calculation
the above inequality gives

(10) ρ(q) + A(q) ≥ 1/α.

Now by (5), we have that

f(z) = P0(z) +
∞∑

n=0

(Pn+1(z)− Pn(z)) holds in Dr.
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Thus in view of (6), we get

(11) |f(z)| ≤ P0(z) +
∞∑

n=0

|(Pn+1(z)− Pn(z))| ≤ K + 2
∞∑

n=0

En,1(f)rn+1

for z ∈ Er, 1 < r < R. (11) gives

(12) M̄(r, f) ≤ K + 2M(r, h),

where h(z) =
∑∞

n−∞En,1(f)zn+1. By Theorem 1, h(z) is analytic in |z| < R.
Using (12) and Lemma 1 for h(z), we get

(13) ρ(q) + A(q) ≤ 1/α.

Combining (10) and (13), the proof is completed for 0 < α < ∞. Also
both inequalities are trivially true if α = 0 or α = ∞. Hence the proof is
completed. ¥

Theorem 3. Let f ∈ C(E, R), 1 < R < ∞, and have q−order ρ(q)(0 <
ρ(q) < ∞), q − type T (q), then

(14) G(q) = T (q)B0(q),

where B0(2) = (ρ(2)+1)ρ(2)+1

(ρ(2))ρ(2) dρ(2), A(2) = 1 and B0(q) = 1, A(q) = 0 if
q = 3, 4, . . .

(15) G(q) = lim sup
n→∞

(log[q−2] n)
(

log+ En,j(f)Rn

n

)ρ(q)+A(q)

.

Proof. Let G(q) < ∞. For given ε > 0, by (15) we have

(
log[q−2] n

)(
log+ En,j(f)Rn

n

)ρ(q)+A(q)

< G(q)+ε, for all n > n0 ≡ n0(ε),

or

log[q−1] n + (ρ(q) + A(q))
[
log+ log+ En,j(f)Rn − log n

]
< log(G(q) + ε),

or

ρ(q) + A(q) >
log[q−1] n

log n− log+ log+ En,j(f)Rn
− log(G(q) + ε)

log n− log+ log+ En,j(f)Rn
.

Let 0 < T (q) < ∞. For given ε > 0, by definition, we have

(16) log M̄(r) < exp[q−2]
{

(T (q) + ε)(R/(R− r))ρ(q)
}
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for all r such that 0 < r0 = r0(ε) < r < R.
In view of Theorem 1 of [13, p. 1] and Lemma 5 it is sufficient to prove

the theorem for j = 1. Thus using Lemma 4, (16) gives

log+ En,1(f)Rn ≤ exp[q−2]
{

(T (q) + ε)(R/(R− r))ρ(q)
}

(17)

+ n log(R/r) + log A.

The maximum value of right hand side of (17) is uniquely determined by
the value of r given by

(18)
q−2∏

i=0

exp[i]
{

(T (q) + ε)(R/(R− r))ρ(q)
}

=
n(R− r)
Rρ(q)

.

For q = 2, using (18) in (17), we get

log+ En,1(f)Rn ≤ (T (q) + ε)1/(ρ(q)+1)nρ(q)/(1+ρ(q))

(ρ(q))ρ(q)/(1+ρ(q)+1)
(1 + ρ(q) + o(1))

for all sufficiently large value of n. On proceeding to limits, the above
inequality gives (14) for q = 2

Next, for q = 3, 4, . . . (18) gives

R

R− r
'

(
log[q−2] n

T (q) + ε

)1/ρ(q)

as n →∞.

Thus for n > n0, (17) gives

log+ En,1(f)Rn < n + n log(R/r) + logA,

or

log[q−2] n(1+o(1))

(
log+ En,1(f)Rn

n

)ρ(q)

< (T (q) + ε)(1 + o(1)).

Proceeding to limits as n →∞, the above inequality gives

T (q) ≥ G(q) for q ≥ 3.

The reverse inequality follows from (12) by applying Lemma 2 to the function
h(z). If G(q) is infinite then T (q) = ∞ and f is of growth (ρ(q),∞). Hence
the theorem is completed. ¥

Acknowledgements. The author is extremely thankful to the referee
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