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1. Introduction

In this paper, we investigate the existence of ω−periodic solutions of
first-order functional differential equation

(1) x′(t) = f(t, x(t), x(t− τ1(t)), · · · , x(t− τm(t))),

where τi(i = 1, · · · ,m) are ω−periodic functions, f is a Carathedeodory
function and f(•, x1, · · · , xm) is a ω−periodic function for all (x1, · · · , xm) ∈
Rm.

The motivation for this paper is as follows: there were many papers
concerning with the existence of periodic solutions of the first-order delay
differential equations.

In [1], the authors studied the existence and asymptotic periodicity of
delay differential equation

(2) x′(t) + a(t)x(t) + b(t)x(t− τ) = f(t),

where a, b and f are ω−periodic, b has fixed sign, and there is a positive
integer n such that τ = nω, but they didn’t discuss the existence of periodic
solutions of above equation.
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In [2], the author studied the existence of periodic solutions of the delay
differential equation with piecewise constant variables

(3) x′(t) = f(t, x([t]), x([t− 1]), · · · , x([t− k]), x(t)), x ∈ R.

Under the assumption:

f(t, x0, · · · , xk+1) > 0 for t ∈ R and xi ≥ D (i = 0, · · · , k + 1);
f(t, x0, · · · , xk+1) < 0 for t ∈ R and xi ≤ −D (i = 0, · · · , k + 1);
f(t, x0, · · · , xk+1) > −M for (t, x0, · · · , xk+1) ∈ Rk+3,

where D > 0 is a constant, the authors proved that equation (3) has at least
on periodic solution. Some other existence results were also obtained in this
paper.

In [3, 4], the delay differential equation

(4) x′(t) = a(t)x(t) + λf(t, x(t− τ(t)))

was studied by using Krasnoselskii’s fixed point theorem, the authors estab-
lished some existence results for positive periodic solutions of equation (4)
at the case where f is sublinear or superlinear about x. When f(t, x) is a
linear function about x, (4) becomes the form of (2). In [11], Liu and Ge
studied the following differential equation

x′(t) = −δ(t)x(t) + f(t, x(t)).

It was showed that the equation has at least two positive periodic solutions
under certain growth conditions imposed on f .

In [5], the delay differential system

(5) x′i(t) = fi(t, x1(τi,1(t)), · · · , xn(τi,n(t))), i = 1, · · · , n

was studied. One of the results in [5] as follows:

Theorem KP. Let σi ∈ {−1, 1}, denote

f∗i (t, ρ1, · · · , ρn) = max{|fi(t, x1, · · · , xn)| : |x1| ≤ ρ1, · · · , |xn| ≤ ρn},
for each i ∈ {1, · · · , n}. The condition

(6) fi(t, x1, · · · , xn)sgn(σixi) ≤ pi(t)|xi|+
n∑

k=1

pi,k(t)|xk|+ q(t)

hold on set [0, ω]×Rn and for each i = 1, · · · ,m. Furthermore,
∫ τ0

i,i(t)

0
|pi(s)|ds ≤ p∗i,i(t)

∫ τ0
i,i(t)

0
|f∗(s, |x1|, · · · , |xn|)|ds ≤

n∑

k=1

p∗i,k(t)|xk|+ q∗,
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(7) |fi(t, x1, · · · , xi, · · · , xn)− fi(t, x1, · · · , xi, · · · , xn)| ≤ li(t)|xi − xi|
hold on the set Ii × Rn. Here pi : [0, ω] → R, pi,k, q, and Ii : [0, ω] →
[0, +∞) (i, k = 1, · · · , n) are summable functions, p∗i,k : [0, ω] → [0, +∞)
(i, k = 1, · · · , n) are essentially bounded functions, and q∗ is a nonnegative
number. Moreover, let

∫ ω

0
pi(s)ds < 0, i = 1, · · · , n

and there exist a constant nonnegative matrix A = (ai,j)n
i,k=1 such that

r(A) < 1 and
∫ ω

0
g(σipi)(t, s)[pi,k(s) + li(s)p∗i,k(s)]ds ≤ ai,k, i, k = 1, · · · , n.

Then system (5) has at least one ω periodic solution.

It follows from (6) and (7) that the growth conditions imposed on fi are
at most linear, we find the existence results have not established when fi

are supper linear even if n = 1 in (5). Furthermore, the equations discussed
in all above mentioned papers are delay differential equations. To the best
of our knowledge, there is no paper concerning the existence of periodic
solutions of mixed type differential equations or even of forward differential
equations.

In this paper, the equation discussed will be mixed type differential equa-
tions. Some sufficient conditions, which allow the degrees of x0, · · · , xm in
f(t, x0, · · · , xm) to be greater than 1 if f is polynomial, for the existence
of periodic solutions of equation (1) will be established in section 2. Some
examples will be given in this section to illustrate the main results. The
proofs of the theorems will be present in section 3. Our methods and the
results are different from known ones.

2. Main results and examples

In this section, we establish sufficient conditions for the existence of at
least one ω−periodic solution of equation (1). For convenience, we first
introduce some notations and an abstract existence theorem by Gaines and
Mawhin [8].

Let X and Y be Banach spaces, L : dom L ⊂ X → Y be a Fredholm
operator of index zero, P : X → X, Q : Y → Y be projectors such that

Im P = Ker L, Ker Q = Im L, X = Ker L⊕Ker P, Y = Im L⊕ Im Q.

It follows that

L|dom L∩Ker P : dom L ∩Ker P → Im L
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is invertible, we denote the inverse of that map by Kp.
If Ω is an open bounded subset of X, dom L∩Ω 6= ∅, the map N : X → Y

will be called L−compact on Ω if QN(Ω) is bounded and Kp(I−Q)N : Ω →
X is compact.

Theorem GM [8]. Let L be a Fredholm operator of index zero and let
N be L−compact on Ω. Assume that the following conditions are satisfied:
(i) Lx 6= λNx for every (x, λ) ∈ [(domL \KerL) ∩ ∂Ω]× (0, 1);
(ii) Nx /∈ ImL for every x ∈ KerL ∩ ∂Ω;
(iii) deg(ΛQN

∣∣KerL , Ω ∩ KerL, 0) 6= 0, where Λ : Y/ImL → KerL is an
isomorphism.

Then the equation Lx = Nx has at least one solution in domL ∩ Ω.

We use the classical Banach space C0
ω, the set of all continuous ω−periodic

functions defined in R with the norm ||x|| = maxt∈[0,ω] |x(t)|, let X = C0
ω =

Y . Define the linear operator L and the nonlinear operator N by

L : X ∩ domL → Y, Lx(t) = x′(t) for x ∈ X ∩ domL,

N : X → Y, Nx(t) = f(t, x(t), x(t− τ1(t)), · · · , x(t− τm(t))), for x ∈ X,

respectively, where domL = C1
ω = {x ∈ C1(R) : x(t + ω) = x(t), t ∈ R}.

Lemma 1. The following results hold.
(i) KerL = {x(t) ≡ c, t ∈ [0, 1], c ∈ R};
(ii) ImL =

{
y ∈ Y,

∫ ω
0 y(u)du = 0

}
;

(iii) L is a Fredholm operator of index zero;
(iv) There are projectors P : X → X and Q : Y → Y such that
KerL = ImP and KerQ = ImL. Furthermore, let Ω ⊂ X be an open
bounded subset with Ω ∩ domL 6= ∅, then N is L−compact on Ω;

(v) x(t) is a ω−periodic solution of equation (1) if and only if x is a
solution of the operator equation Lx = Nx in domL.

Proof. The proofs are simple and are omitted. ¥

Theorem 1. Suppose
(A1) there are continuous function g and h so that

f(t, x0, · · · , xm) = g(t, x0, · · · , xm) + h(t, x0, · · · , xm),

with
g(t, x0, · · · , xm)x0 ≤ 0,

and h satisfying that there are nonnegative continuous functions gi, pi and
e such that

|h(t, x0, · · · , xm)| ≤
m∑

i=0

gi(t, xi) + e(t), i = 0, · · · ,m
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and
lim

x→∞
gi(t, x)
|x| = pi(t), i = 0, · · · , m, t ∈ R.

(A2) there is a constant M > 0 such that

(i) f(t, x0, · · · , xm) > 0 for t ∈ R and xi > M(i = 0, · · · ,m);
(ii) f(t, x0, · · · , xm) < 0 for t ∈ R and xi < −M(i = 0, · · · , m);

or
(A3) there is a constant M > 0 such that

(i) f(t, x0, · · · , xm) < 0 for t ∈ R and xi > M(i = 0, · · · ,m);
(ii) f(t, x0, · · · , xm) > 0 for t ∈ R and xi < −M(i = 0, · · · , m);

Then equation (1) has at least one solution provided

(8)
m∑

i=0

∫ ω

0
pi(s)ds < 1/2.

Theorem 2. Suppose (A2) or (A3) holds and
(A4) there are continuous function g and h so that

f(t, x0, · · · , xm) = g(t, x0, · · · , xm) + h(t, x0, · · · , xm),

with
g(t, x0, · · · , xm)x0 ≥ 0,

and h satisfying that there are nonnegative continuous functions gi, pi and
e such that

|h(t, x0, · · · , xm)| ≤
m∑

i=0

gi(t, xi) + e(t), i = 0, · · · , m

and
lim

x→∞
gi(t, x)
|x| = pi(t), i = 0, · · · ,m, t ∈ R.

Then equation (1) has at least one solution provided (8) holds.

Theorem 3. Suppose
(A5) there are positive number α and nonnegative number αi and L so

that

|f(t, x0, · · · , xm)| ≥ α|x0| −
m∑

i=1

αi|xi| − L, (t, x0, · · · , xm) ∈ R×Rm+1

holds
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(A6) there is a constant M > 0 so that

cf(t, c, · · · , c) > 0 for all |c| > M

or
cf(t, c, · · · , c) < 0 for all |c| > M ;

Then equation (1) has at least one ω periodic solution if

(9)

m∑
i=1

αi

α
< 1.

Theorem 4. Suppose (A3) holds and
(A7) there are continuous function g and h such that

f(t, x0, · · · , xm) = g(t, x0, · · · , xm) + h(t, x0, · · · , xm),

and there are positive numbers β and µ such that

g(t, x0, · · · , xm)x0 ≥ β|x0|µ+1,

and there are continuous functions gi, pi and e such that

|h(t, x0, · · · , xm)| ≤
m∑

i=0

gi(t, xi) + e(t), i = 0, · · · ,m

and
lim

x→∞
gi(t, x)
|x|µ = pi(t), i = 0, · · · , m, t ∈ R

hold.
Furthermore, suppose τ ′i(t) < 1 for all t ∈ R, denote the inverse function

of s = t− τi(t) by t = µi(s), let λi = maxt∈R
1

|1−τ ′i(µi(t))| . Then equation (1)
has at least one solution provided

(10)
m∑

i=1

λµ+1
i ||pi||∞ + ||p0||∞ < β.

Theorem 5. Suppose
(A8) there are a continuous function g and h so that

f(t, x0, · · · , xm) = g(t, x0, · · · , xm) + h(t, x0, · · · , xm),

and there are positive numbers β and µ such that

g(t, x0, · · · , xm)x0 ≤ −β|x0|µ+1,
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and there are continuous functions gi, pi and e, and M > 0 so that

|h(t, x0, · · · , xm)| ≤
m∑

i=0

gi(t, xi) + e(t), i = 0, · · · ,m

and
lim

x→∞
gi(t, x)
|x|µ = pi(t), i = 0, · · · ,m, t ∈ R

hold.
Furthermore, suppose τ ′i(t) < 1 for all t ∈ R, denote the inverse function

of s = t− τi(t) by t = µi(s), let λi = maxt∈R
1

|1−τ ′i(µi(t))
|. Then equation (1)

has at least one solution provided

(11)
m∑

i=1

λµ+1
i ||pi||∞ + ||p0||∞ < β.

Now, we present some examples to illustrate the main results.

Example 1. Consider the functional differential equation

(12) x′ = a0x(t) +
m∑

i=1

pix(t− τi(t)) + p(t),

where a0 ∈ R, τi(t) = 1
2 sin t, and pi ∈ R, and p are continuous 2π-periodic

functions. Let

f(t, x0, · · · , xm) = a0x0 +
m∑

i=1

pixi + p(t).

It is easy to see

|f(t, x0, · · · , xm)| ≥ |a0||x0| −
m∑

i=1

|pi|xi| − min
t∈[0,ω]

|p(t)|,

and from

cf(t, c, · · · , c) =

(
a0 +

m∑

i=1

pi

)
c2 + cp(t),

we see that cf(t, c, · · · , c) > 0 for some positive constant M > 0 if a0 +∑m
i=1 pi > 0 and cf(t, c, · · · , c) < 0 for some positive constant M > 0 if

a0 +
∑m

i=1 pi < 0. Hence (A5) and (A6) hold.
It follows from Theorem 2.3 that, for each 2π−periodic function p, equa-

tion (12) has at least one 2π periodic solution if a0 +
∑m

i=1 pi 6= 0 and∑m
i=1 |pi| < |a0|.
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Example 2. Consider the functional differential equation

(13) x′ = a0[x(t)]2k+1 +
m∑

i=1

pi(t)[x(t− τi(t))]2k+1 + p(t),

where a0 ∈ R, τi(t) = 1
2 sin t, and pi and p are continuous 2π-periodic

functions, k an nonnegative integer.
It is easy to get

λi = max
t∈R

1
|1− τ ′i(µi(t))| = 2.

Let

f(t, x0, · · · , xm) = a0x
2k+1
0 +

m∑

i=1

pi(t)x2k+1
i + p(t),

g(t, x0, · · · , xm) = a0x
2k+1
0 ,

h(t, x0, · · · , xm) =
m∑

i=1

pi(t)x2k+1
i + p(t).

If a0 > 0, it follows from Theorem 4 that, for each p, equation (13) has
at least one 2π-periodic solution if

(14) 22k+2
m∑

i=1

||pi||∞ < a0.

If a0 < 0, it follows from Theorem 4 that, for each p, equation (13) has
at least one 2π-periodic solution if (14) holds.

Example 3. Consider the functional differential equation

(15) x′ = −(2 + x2(t))[x(t)]2k+1 +
m∑

i=0

pix(t− τi(t)) + p(t),

where τi(t) = 1
2 sin t, and pi ≤ 0 and p is continuous 2π-periodic functions,

k an nonnegative integer.
It follows from Theorem 1 that, for each p, that equation (15) has at least

one solution if ω
∑m

i=0 |pi| < 1/2.
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3. Proofs of theorems

In this section, we give the proofs of the main results.

Proof of Theorem 1. To apply Theorem GM, we should define an
open bounded subset Ω of X such that (i), (ii) and (iii) of Theorem GM
hold. It is based upon three steps to obtain Ω. The proof of this theorem is
divide into four steps.

Step 1. Let

Ω1 = {x ∈ domL/KerL, Lx = λNx for some λ ∈ (0, 1)}.
We prove Ω1 is bounded. It suffices to prove there is a constant B > 0 such
that ||x|| ≤ B.

For x ∈ Ω1, we get

(16) x′(t) = λf(t, x(t), x(t− τ1(t)), · · · , x(t− τm(t))).

The

(17)
∫ ω

0
f(t, x(t), x(t− τ1(t)), · · · , x(t− τm(t)))dt = 0.

It follows from (A2) or (A3) that there is ξ ∈ [0, ω] so that |x(ξ)| ≤ M .
Multiplying two sides of (16) by x(t) and integrating from ξ to t, we get,

for ξ + ω ≥ t ≥ ξ, using (A1),

1
2
[x(t)]2 =

1
2
[x(ξ)]2 + λ

∫ t

ξ
f(s, x(s), x(s− τ1(s)), · · · , x(s− τm(s)))x(s)ds

≤ 1
2
M2 + λ

∫ t

ξ
f(s, x(s), x(s− τ1(s)), · · · , x(s− τm(s)))x(s)ds

=
1
2
M2 + λ

∫ t

ξ
g(s, x(s), x(s− τ1(s)), · · · , x(s− τm(s)))x(s)ds

+ λ

∫ t

ξ
h(s, x(s), x(s− τ1(s)), · · · , x(s− τm(s)))x(s)ds

≤ 1
2
M2 + λ

∫ t

ξ
h(s, x(s), x(s− τ1(s)), · · · , x(s− τm(s)))x(s)ds

≤ 1
2
M2 +

∫ ω

0
|h(s, x(s), x(s− τ1(s)), · · · , x(s− τm(s)))||x(s)|ds

≤ 1
2
M2 +

m∑

i=1

∫ ω

0
gi(s, x(s− τi(s))|x(s)|ds

+
∫ ω

0
gi(s, x(s))|x(s)|ds +

∫ ω

0
|e(s)|x(s)|ds.
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Choosing ε > 0 so that
m∑

i=0

∫ ω

0
(pi(s) + ε)ds < 1/2.

For such a ε, there is a δ > 0 so that

(18) gi(t, x) ≤ (pi(t) + ε)|x|, for |x| ≥ δ, t ∈ R.

Denote

∆i,1 = {t ∈ [0, ω] : |x(t− τi(t))| ≤ δ},(19)
∆i,2 = {t ∈ [0, ω] : |x(t− τi(t))| > δ}, i = 1, · · · , m,

and

(20) ∆0,1 = {t ∈ [0, ω] : |x(t)| ≤ δ}, ∆0,2 = {t ∈ [0, ω] : |x(t)| > δ},
and

(21) gi,δ = max
t∈[0,ω],|x|≤δ

gi(t, x), i = 0, 1, · · · , m.

Then

1
2
||x||2∞ ≤ 1

2
M2 +

m∑

i=1

∫

∆i,2

gi(s, x(s− τi(s)))|x(s)|ds

+
∫

∆0,2

g0(s, x(s))|x(s)|ds +
m∑

i=1

∫

∆i,1

gi(s, x(s− τi(s)))|x(s)|ds

+
∫

∆0,1

g0(s, x(s))|x(s)|ds +
∫ ω

0
|e(s)|x(s)|ds

≤
m∑

i=0

gi,δ

∫ ω

0
|x(s)|ds +

m∑

i=1

∫ ω

0
(pi(s) + ε)|x(s− τi(s))||x(s)|ds

+
∫ ω

0
(p0(s) + ε)|x(s)|2ds +

∫ ω

0
|e(s)|x(s)|ds +

1
2
M2

≤ 1
2
M2 + ω

m∑

i=0

gi,δ||x||∞ +
m∑

i=1

∫ ω

0
(pi(s) + ε)ds||x||2∞

+
∫ ω

0
(p0(s) + ε)ds||x||2∞ +

∫ ω

0
|e(s)|ds||x||∞.

So we get
(

1
2
−

m∑

i=0

∫ ω

0
(pi(s) + ε)ds

)
||x||2∞ ≤ 1

2
M2+

∫ ω

0
e(s)ds||x||∞+ω

m∑

i=0

gi,δ||x||∞.
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It follows from (8) that there is a constant A > 0 so that ||x||∞ ≤ A. Then
Ω1 is bounded.

Step 2. Let
Ω2 = {x ∈ KerL, Nx ∈ ImL}.

We prove Ω2 is bounded. Suppose x ∈ Ω2, then x(t) = c ∈ R, we prove
|c| ≤ M . In fact, if c > M , then (A4) implies
∫ 1

0
f(u, x(u), x(u− τ1(u)), · · · , x(u− τmu))du =

∫ 1

0
f(u, c, c, · · · , c)du > 0.

Similarly, if c < −M , then we have
∫ 1

0
f(u, c, c, · · · , c)du < 0.

On the other hand, if x ∈ KerL and Nx ∈ ImL, we have QNx = 0, i.e.
∫ 1

0
f(u, c, c, · · · , c)du = 0.

This is a contradiction. So |c| ≤ M . This shows that Ω2 is bounded.

Step 3. Let

Ω3 = {x ∈ KerL, λ ∧ x + (1− λ)QNx = 0, λ ∈ [0, 1]},

where ∧ : KerL → ImQ is the linear isomorphism given by ∧(c) = c for all
c ∈ R. Now we show that Ω3 is bounded. Suppose xn(t) = cn ∈ Ω3 and
|cn| → +∞ as n tends to infinity. Then there exists λn ∈ [0, 1] such that

λncn + (1− λn)
∫ 1

0
f(u, cn, · · · , cn)du = 0.

So

λncn = −(1− λn)
∫ 1

0
f(u, cn, · · · , cn)du.

Since λn has a convergent subsequence, without loss of generality, suppose
λn → λ0, Again, since |cn| → +∞, there are two cases to be considered,
i.e. there is a subsequence of cn that tends to +∞(without loss of generality
suppose cn → +∞) or there is a subsequence of cn that tends to−∞(without
loss of generality suppose cn → −∞). If cn → +∞ as n tends to infinity.
Then for sufficiently large n, we have cn > M . Hence, using (A4), we see

λnc2
n = −(1− λn)cn

∫ 1

0
f(u, cn, · · · , cn)du < 0,
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a contradiction. If cn → −∞, then for sufficiently large n, cn < −M . Hence
using (A2), we see

λnc2
n = −(1− λn)cn

∫ 1

0
f(u, cn, · · · , cn)du < 0,

a contradiction. So Ω3 is bounded.
In the following, we shall show that all conditions of Theorem GM are

satisfied. Let Ω be a non-empty open bounded subset of X such that Ω ⊃
∪3

i=1Ωi centered at zero. By Lemma 1, L is a Fredholm operator of index
zero and N is L−compact on Ω. By the definition of Ω, we have
(a) Lx 6= λNx for x ∈ (domL/KerL) ∩ ∂Ω and λ ∈ (0, 1);
(b) Nx /∈ ImL for x ∈ KerL ∩ ∂Ω.

Step 4. We prove (c) deg(QN |KerL, Ω ∩KerL, 0) 6= 0.
In fact, let H(x, λ) = λ∧x+(1−λ)QNx. According the definition of Ω,

we know H(x, λ) 6= 0 for x ∈ ∂Ω∩KerL, thus by the homotopy property of
degree,

deg(QN |KerL,Ω ∩KerL, 0) = deg(H(·, 0), Ω ∩KerL, 0)
= deg(H(·, 1), Ω ∩KerL, 0) = deg(I, Ω ∩KerL, 0) 6= 0.

Thus by Theorem GM, Lx = Nx has at least one solution in dom L ∩ Ω,
which is a ω periodic solution of equation (1). The proof is complete. ¥

Proof of Theorem 2. To apply Theorem GM, we should define an
open bounded subset Ω of X such that (i), (ii) and (iii) of Theorem GM
hold. It is based upon three steps to obtain Ω. The proof of this theorem is
divide into four steps.

Step 1. Let

Ω1 = {x ∈ domL/KerL, Lx = λNx for some λ ∈ (0, 1)}.
We prove Ω1 is bounded. It suffices to prove there is a constant B > 0 such
that ||x|| ≤ B.

For x ∈ Ω1, we get (16). Similarly, we have that there is ξ ∈ [0, ω] such
that |x(ξ)| ≤ M . Multiplying two sides of (16) by x(t) and integrating from
t to ξ + ω, we get, for ξ + ω ≥ t ≥ ξ, using (A4),

1
2
[x(t)]2 =

1
2
[x(+ω + ξ)]2 − λ

∫ ω+ξ

t
f(s, x(s), x(s− τ1(s)), · · · ,

x(s− τm(s)))x(s)ds

≤ 1
2
M2 − λ

∫ ω+ξ

t
f(s, x(s), x(s− τ1(s)), · · · , x(s− τm(s)))x(s)ds

=
1
2
M2 − λ

∫ ω+ξ

t
g(s, x(s), x(s− τ1(s)), · · · , x(s− τm(s)))x(s)ds
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−λ

∫ ω+ξ

t
h(s, x(s), x(s− τ1(s)), · · · , x(s− τm(s)))x(s)ds

≤ 1
2
M2 − λ

∫ ω+ξ

t
h(s, x(s), x(s− τ1(s)), · · · , x(s− τm(s)))x(s)ds

≤ 1
2
M2 +

∫ ω

0
|h(s, x(s), x(s− τ1(s)), · · · , x(s− τm(s)))||x(s)|ds

≤ 1
2
M2 +

m∑

i=1

∫ ω

0
gi(s, x(s− τi(s))|x(s)|ds +

∫ ω

0
gi(s, x(s))|x(s)|ds

+
∫ ω

0
|e(s)|x(s)|ds.

The remaider of the proof of this step and the other steps are similar to
those of the proof of Theorem 1 and are omitted. ¥

Proof of Theorem 3. The method is exactly similar to that of The-
orem 1. Let Ω1 be defined as that in the proof of Theorem 1. For x ∈
Ω1, we get (16). Since x(0) = x(ω), there is ξ ∈ [0, ω] so that x′(ξ) =
λf(ξ, x(ξ), x(ξ − τ1(ξ)), · · · , x(ξ − τ(ξ))) = 0 and ξ is a maximum or mini-
mum point of x(t). It follows from (H5) that

||x||∞ = |x(ξ)| ≤ L

α
+

m∑
i=1

αi|x(ξ − τi(ξ))|
α

≤ L

α
+

m∑
i=1

αi

α
||x||∞.

Since (9) holds, we know that there is a constant A > 0 so that ||x||∞ ≤ A.
The remainder of the proof of this Theorem is similar to that of Theorem 1

and is omitted. ¥

Proof of Theorem 4. To apply Theorem GM, we should define an
open bounded subset Ω of X such that (i), (ii) and (iii) of Theorem GM
hold. It is based upon three steps to obtain Ω. The proof of this theorem is
divide into four steps.

Step 1. Let

Ω1 = {x ∈ domL \KerL, Lx = λNx for some λ ∈ (0, 1)}.

We prove Ω1 is bounded. Similar to that of the proof of Theorem 1, if
x ∈ Ω1, we get (16) and (17). It suffices to prove there is a constant B > 0
such that ||x|| ≤ B. We divide this step into two sub-steps.

Sub-step 1.1. Prove there is constant M > 0 such that
∫ ω
0 |x(s)|µ+1ds ≤

M .
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Multiplying two sides of (16) by x(t) and integrating from 0 to ω, using
(A7), we get

0 = λ

∫ ω

0
f(s, x(s), x(s− τ1(s)), · · · , x(s− τm(s))))x(s)ds

= λ

(∫ ω

0
h(s, x(s), x(s− τ1(s)), · · · , x(s− τm(s))))x(s)ds

+
∫ ω

0
g(s, x(s), x(s− τ1(s)), · · · , x(s− τm(s))))x(s)ds

)
.

Thus, from the second part of (A7),

β

∫ ω

0
|x(s)|µ+1 ds ≤

∫ ω

0
g(s, x(s), x(s− τ1(s)), · · · , x(s− τm(s))))x(s)ds

= −
∫ ω

0
h(s, x(s), x(s− τ1(s)), · · · , x(s− τm(s))))x(s)ds

≤
∫ ω

0
|h(s, x(s), x(s− τ1(s)), · · · , x(s− τm(s))))||x(s)|ds

≤
m∑

i=1

∫ ω

0
gi(s, x(s− τi(s)))|x(s)|ds +

∫ ω

0
gi(s, x(s))|x(s)|ds

+
∫ ω

0
|e(s)||x(s)|ds.

Choosing ε > 0 so that

m∑

i=1

λµ+1
i (||pi||∞ + ε) + (||p0||∞ + ε) < β.

For such a ε, there is a δ > 0 so that

(22) gi(t, x) ≤ (pi(t) + ε)|x|m, for |x| ≥ δ, t ∈ R.

Denote

∆i,1 = {t ∈ [0, ω] : |x(t− τi(t))| ≤ δ},(23)
∆i,2 = {t ∈ [0, ω] : |x(t− τi(t))| > δ}, i = 1, · · · ,m,

and

(24) ∆0,1 = {t ∈ [0, ω] : |x(t)| ≤ δ}, ∆0,2 = {t ∈ [0, ω] : |x(t)| > δ},
and

(25) gi,δ = max
t∈[0,ω],|x|≤δ

gi(t, x), i = 0, 1, · · · , m.
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β

∫ ω

0
|x(s)|µ+1 ds ≤

m∑

i=1

∫ ω

0
(pi(s) + ε)|x(s− τi(s))|µ|x(s)|ds

+
∫ ω

0
(p0(s) + ε)|x(s)|µ+1ds +

∫ ω

0
|e(s)||x(s)|ds +

m∑

i=0

gi,δ

∫ ω

0
|x(s)|ds

≤
m∑

i=1

(||pi||∞ + ε)
∫ ω

0
|x(s− τi(s))|µ|x(s)|ds + (||p0||∞ + ε)

∫ ω

0
|x(s)|µ+1ds

+ ||e||∞
∫ ω

0
|x(s)|ds +

m∑

i=0

gi,δ

∫ ω

0
|x(s)|ds

≤
m∑

i=1

(||pi||∞ + ε)
(∫ ω

0
|x(s− τi(s))|µ+1|ds

)µ/(µ+1) (∫ ω

0
|x(s)|µ+1ds

)1/(µ+1)

+ (||p0||∞ + ε)
∫ ω

0
|x(s)|µ+1ds + ωµ/(µ+1)||e||∞

(∫ ω

0
|x(s)|µ+1ds

)1/(µ+1)

+ ωµ/(µ+1)
m∑

i=0

gi,δ

(∫ ω

0
|x(s)|µ+1ds

)1/(µ+1)

.

It is easy to see that
∫ ω

0
|x(s−τi(s))|µ+1|ds =

∫ ω

0

( |x(s)|
1− τ ′i(µi(s))

)µ+1

ds ≤ λµ+1
i

∫ ω

0
|x(s)|µ+1ds.

Hence

β

∫ 1

0
|x(s)|µ+1ds ≤

m∑

i=1

(||pi||∞ + ε)

(∫ ω

0

( |x(s)|
|1− τ ′i(µi(s))|

)µ+1

ds

)µ/(µ+1)

×
(∫ ω

0
|x(s)|µ+1ds

)1/(µ+1)

+ (||p0||∞ + ε)
∫ ω

0
|x(s)|µ+1ds

+ ωµ/(µ+1)||e||∞
(∫ ω

0
|x(s)|µ+1ds

)1/(µ+1)

+ ωµ/(µ+1)
m∑

i=0

gi,δ

(∫ ω

0
|x(s)|µ+1ds

)1/(µ+1)

≤
m∑

i=1

λµ+1
i (||pi||∞ + ε)

(∫ ω

0
|x(s)|µ+1ds

)µ/(µ+1)

×
(∫ ω

0
||x(s)|µ+1ds

)1/(µ+1)

+ (||p0||∞ + ε)
∫ ω

0
|x(s)|µ+1ds

+ ωµ/(µ+1)||e||∞
(∫ ω

0
||x(s)|µ+1ds

)1/(µ+1)
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+ ωµ/(µ+1)
m∑

i=0

gi,δ

(∫ ω

0
|x(s)|µ+1ds

)1/(µ+1)

.

Then(
β −

m∑

i=1

λµ+1
i (||pi||∞ + ε)− (||p0||∞ + ε)

)∫ 1

0
|x(s)|µ+1ds

≤ ωµ/(µ+1)||e||∞
(∫ ω

0
||x(s)|µ+1ds

)1/(µ+1)

+ ωµ/(µ+1)
m∑

i=0

gi,δ

(∫ ω

0
|x(s)|µ+1ds

)1/(µ+1)

.

Hence there is a constant M > 0 such that
∫ ω

0
|x(s)|m+1ds ≤ M.

Sub-step 1.2. Prove there is B > 0 such that ||x|| ≤ B.
From Sub-step 1.1, we have that there is ξ ∈ [0, ω] so that x(ξ)| ≤ M

1/(µ+1).
For each t ∈ R, let k0 = max{k ∈ Z so that kω + ξ ≥ t} and t0 = k0ω + ξ.
Multiplying two side of (14) by x(t), integrating it from t to t0, we get

1
2
|x(t)|2 =

1
2
|x(ξ)|2 − λ

∫ t0

t
f(s, x(s), x(s− τ1(s)), · · · ,

x(s− τm(s)))x(s)ds

= M
1/(µ+1) − λ

(∫ t0

t
g(s, x(s), x(s− τ1(s)), · · · , x(s− τm(s))))x(s)ds

+
∫ t0

t
h(s, x(s), x(s− τ1(s)), · · · , x(s− τm(s))))x(s)ds

)

≤ M
1/(µ+1) − λ

(
β

∫ t0

t
|x(s)|µ+1ds

+
∫ t0

t
h(s, x(s), x(s− τ1(s)), · · · , x(s− τm(s))))x(s)ds

)

≤ M
1/(µ+1) − λ

∫ t0

t
h(s, x(s), x(s− τ1(s)), · · · , x(s− τm(s))))x(s)ds

≤ M
1/(µ+1) +

∫ ω

0
|h(s, x(s), x(s− τ1(s)), · · · , x(s− τm(s))))||x(s)|ds

≤ M
1/(µ+1) +

m∑

i=1

∫ ω

0
gi(s, x(s− τi(s))|x(s)|ds +

∫ ω

0
g0(s, x(s))|x(s)|ds.
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Similarly to Sub-step 1.1, we can get

1
2
|x(t)|2 ≤ M

1/(µ+1) +
m∑

i=1

λµ+1
i (||pi||∞ + ε)

(∫ ω

0
|x(s)|m+1ds

)µ/(µ+1)

×
(∫ ω

0
|x(s)|µ+1ds

)1/(µ+1)

+ (||p0||∞ + ε)

×
∫ ω

0
|x(s)|µ+1ds + ωµ/(µ+1)||e||∞

(∫ ω

0
|x(s)|µ+1ds

)1/(µ+1)

+ ωµ/(µ+1)
m∑

i=0

gi,δ

(∫ ω

0
|x(s)|µ+1ds

)1/(µ+1)

≤ M
1/(µ+1) +

m∑

i=1

λµ+1
i (||pi||∞ + ε)M + (||p0||∞ + ε)M

+ ωµ/(µ+1)||e||∞M
1/(µ+1) + ωµ/(µ+1)

m∑

i=0

gi,δM
1/(µ+1)

.

So there is M1 > 0 such that |x(t)| ≤ M1. It follows that ||x|| ≤ M1. Hence
Ω1 is bounded. This completes the step 1.

Step 2. Let

Ω2 = {x ∈ KerL, Nx ∈ ImL}.

Similar to that of the proof of Step 2 of Theorem 1, we can prove Ω2 is
bounded.

Step 3. Let

Ω3 = {x ∈ KerL, λ ∧ x + (1− λ)QNx = 0, λ ∈ [0, 1]},

where ∧ : KerL → ImQ is the linear isomorphism given by ∧(c) = c for all
c ∈ R. Similar to that of the proof of Step 3 of Theorem 1, we can show
that Ω3 is bounded.

The remainder step, Step 4, is similar to that of the proof of Step 4 of
Theorem 1 and is omitted.

Thus by Theorem GM, Lx = Nx has at least one solution in domL ∩Ω,
which is a periodic solution of equation (1). The proof is complete. ¥

Proof of Theorem 5. It is similar to that of Theorem 4 and is omit-
ted. ¥
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