2007

$\rm Nr~38$

Takashi Noiri and Valeriu Popa

SEPARATION AXIOMS IN QUASI *m*-BITOPOLOGICAL SPACES

ABSTRACT. By using the notion of *m*-spaces, we establish the unified theory for several variations of separation axioms quasi T_0 , quasi T_1 and quasi T_2 in bitopological spaces.

KEY WORDS: quasi m- T_0 , quasi m- T_1 , quasi m- T_2 , quasi-open, quasi m-structure, m_X -open, m-space, bitopological space.

AMS Mathematics Subject Classification: 54D10, 54E55.

1. Introduction

The notion of quasi-open sets in bitopological spaces is introduced by Datta [7]. Some properties of quasi-open sets are studied in [11]. Quasi-semiopen sets in bitopological spaces are introduced and studied in [9], [12] and [20]. Thakur and Paik [24], [25] introduced and studied the notion of quasi- α -open sets in bitopological spaces. In these papers, the following separation axioms introduced and investigated: quasi T_i , quasi semi- T_i for i = 0, 1, 2. Recently, the present authors [21] have introduced the notions of minimal structures and *m*-spaces.

In this paper, by using the notion of minimal structures we obtain the unified definitions and characterizations of variations of separation axioms quasi T_0 , quasi T_1 and quasi T_2 in bitopological spaces.

2. Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively.

Definition 1. Let (X, τ) be a topological space. A subset A of X is said to be α -open [16] (resp. semi-open [10], preopen [14], β -open [1] or semi-preopen [3]) if $A \subset Int(Cl(Int(A)))$ (resp. $A \subset Cl(Int(A))$, $A \subset$ Int(Cl(A)), $A \subset Cl(Int(Cl(A)))$).

The family of all semi-open (resp. preopen, α -open, β -open, semi-preopen) sets in X is denoted by SO(X) (resp. PO(X), $\alpha(X)$, $\beta(X)$, SPO(X)).

Definition 2. The complement of a semi-open (resp. preopen, α -open, β -open, semi-preopen) set is said to be semi-closed [6] (resp. preclosed [8], α -closed [15], β -closed [1], semi-preclosed [3]).

Definition 3. The intersection of all semi-closed (resp. preclosed, α -closed, β -closed, semi-preclosed) sets of X containing A is called the semi-closure [6] (resp. preclosure [8], α -closure [15], β -closure [2], semi-preclosure [3]) of A and is denoted by sCl(A) (resp. pCl(A), $\alpha Cl(A)$, $\beta Cl(A)$, spCl(A)).

Definition 4. The union of all semi-open (resp. preopen, α -open, β -open, semi-preopen) sets of X contained in A is called the semi-interior (resp. preinterior, α -interior, β -interior, semi-preinterior) of A and is denoted by sInt(A) (resp. pInt(A), $\alpha Int(A)$, $\beta Int(A)$, spInt(A)).

Throughout the present paper (X, τ) and (Y, σ) always denote topological spaces and (X, τ_1, τ_2) and (Y, σ_1, σ_2) denote bitopological spaces.

3. Minimal structures and *m*-continuity

Definition 5. A subfamily m_X of the power set $\mathcal{P}(X)$ of a nonempty set X is called a minimal structure (or briefly m-structure) [21] on X if $\emptyset \in m_X$ and $X \in m_X$.

By (X, m_X) (or briefly (X, m)), we denote a nonempty set X with a minimal structure m_X on X and call it an *m*-space. Each member of m_X is said to be m_X -open (or briefly *m*-open) and the complement of an m_X -open set is said to be m_X -closed (or briefly *m*-closed).

Remark 1. Let (X, τ) be a topological space. Then the families τ , SO(X), PO(X), $\alpha(X)$, $\beta(X)$ and SPO(X) are all *m*-structures on X.

Definition 6. Let X be a nonempty set and m_X an m-structure on X. For a subset A of X, the m_X -closure of A and the m_X -interior of A are defined in [13] as follows:

(1) m_X -Cl(A) = \cap { $F : A \subset F, X - F \in m_X$ },

(2) m_X -Int $(A) = \bigcup \{ U : U \subset A, U \in m_X \}.$

Remark 2. Let (X, τ) be a topological space and A a subset of X. If $m_X = \tau$ (resp. SO(X), PO(X), $\alpha(X)$, $\beta(X)$, SPO(X)), then we have

(1) m_X -Cl(A) = Cl(A) (resp. sCl(A), pCl(A), α Cl(A), β Cl(A), spCl(A)),

(2) m_X -Int(A) = Int(A) (resp. sInt(A), pInt(A), α Int(A), β Int(A), spInt(A)).

Lemma 1. (Popa and Noiri [21]) Let (X, m_X) be an *m*-space and A a subset of X. Then $x \in m_X$ -Cl(A) if and only if $U \cap A \neq \emptyset$ for every $U \in m_X$ containing x.

Definition 7. A minimal structure m_X on a nonempty set X is said to have property (\mathcal{B}) [13] if the union of any family of subsets belonging to m_X belongs to m_X .

Lemma 2. (Popa and Noiri [22]) Let (X, m_X) be an *m*-space and m_X satisfy property (\mathcal{B}) . Then for a subset A of X, the following properties hold:

(1) $A \in m_X$ if and only if m_X -Int(A) = A,

(2) A is m_X -closed if and only if m_X -Cl(A) = A,

(3) m_X -Int $(A) \in m_X$ and m_X -Cl(A) is m_X -closed.

Definition 8. A function $f : (X, m_X) \to (Y, m_Y)$ is said to be *M*-continuous [21] if for each $x \in X$ and each m_Y -open sets *V* of *Y* containing f(x), there exists $U \in m_X$ containing x such that $f(U) \subset V$.

Theorem 1. (Popa and Noiri [21]) Let (X, m_X) be an *m*-space and m_X satisfy property (\mathcal{B}). For a function $f : (X, m_X) \to (Y, m_Y)$, the following properties are equivalent:

(1) f is M-continuous;

(2) $f^{-1}(V)$ is m_X -open for every m_Y -open set V of Y;

(3) $f^{-1}(F)$ is m_X -closed for every m_Y -closed set F of Y.

Definition 9. An *m*-space (X, m_X) is said to be

(1) $m T_0$ [17] if for any pair of distinct points x, y of X, there exists an m_X -open set containing x but not y or an m_X -open set containing y but not x,

(2) m- T_1 [17] if for any pair of distinct points x, y of X, there exists an m_X -open set containing x but not y and an m_X -open set containing y but not x,

(3) m- T_2 [21] if for any pair of distinct points x, y of X, there exist m_X -open sets U, V such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

4. Minimal structures and bitopological spaces

First, we shall recall some definitions of variations of quasi-open sets in bitopological spaces.

Definition 10. A subset A of a bitopological space (X, τ_1, τ_2) is said to be

(1) quasi-open [7], [11] if $A = B \cup C$, where $B \in \tau_1$ and $C \in \tau_2$,

(2) quasi-semi-open [9], [12] if $A = B \cup C$, where $B \in SO(X, \tau_1)$ and $C \in SO(X, \tau_2)$,

(3) quasi-preopen [19] if $A = B \cup C$, where $B \in PO(X, \tau_1)$ and $C \in PO(X, \tau_2)$,

(4) quasi-semipreopen [26] if $A = B \cup C$, where $B \in \text{SPO}(X, \tau_1)$ and $C \in \text{SPO}(X, \tau_2)$,

(5) quasi- α -open [24] if $A = B \cup C$, where $B \in \alpha(X, \tau_1)$ and $C \in \alpha(X, \tau_2)$.

The family of all quasi-open (resp. quasi-semi-open, quasi-preopen, quasi-semipreopen, quasi- α -open) sets of (X, τ_1, τ_2) is denoted by QO(X) (resp. QSO(X), QPO(X), QSPO(X), $Q\alpha(X)$).

Definition 11. Let (X, τ_1, τ_2) be a bitopological space and m_X^1 (resp. m_X^2) an m-structure on the topological space (X, τ_1) (resp. (X, τ_2)). The family

$$qm_X = \{A \subset X : A = B \cup C, where B \in m_X^1 and C \in m_X^2\}$$

is called a quasi m-structure on X. Each member $A \in qm_X$ is said to be quasi- m_X -open (or briefly quasi-m-open). The complement of a quasi- m_X -open set is said to be quasi- m_X -closed (or briefly quasi-m-closed).

Remark 3. Let (X, τ_1, τ_2) be a bitopological space.

(1) If m_X^1 and m_X^2 have property (\mathcal{B}) , then qm_X is an *m*-structure with property (\mathcal{B}) .

(2) If $(m_X^1, m_X^2) = (\tau_1, \tau_2)$ (resp. $(SO(X, \tau_1), SO(X, \tau_2))$, $(PO(X, \tau_1), PO(X, \tau_2))$, $(SPO(X, \tau_1), SPO(X, \tau_2))$, $(\alpha(X, \tau_1), \alpha(X, \tau_2))$), then $qm_X = QO(X)$ (resp. QSO(X), QPO(X), QSPO(X), $Q\alpha(X)$).

(3) Since $SO(X, \tau_i)$, $PO(X, \tau_i)$, $SPO(X, \tau_i)$ and $\alpha(X, \tau_i)$ have property (\mathcal{B}) for i = 1, 2, QSO(X), QPO(X), QSPO(X) and $Q\alpha(X)$ have property (\mathcal{B}) .

Definition 12. Let (X, τ_1, τ_2) be a bitopological space. For a subset A of X, the quasi m_X -closure of A and the quasi m_X -interior of A are defined as follows:

(1) qm_X - $Cl(A) = \cap \{F : A \subset F, X - F \in qm_X\},$

(2) qm_X -Int(A) = $\cup \{U : U \subset A, U \in qm_X\},\$

 qm_X -Cl(A) and qm_X -Int(A) are simply denoted by qmCl(A) and qmInt(A), respectively.

Remark 4. Let (X, τ_1, τ_2) be a bitopological space and A a subset of X. If $qm_X = QO(X)$ (resp. QSO(X), QPO(X), QSPO(X), $Q\alpha(X)$), then we have

(1) qmCl(A) = qCl(A) (resp. qsCl(A) [9], qpCl(A) [19], qspCl(A) [26], $q\alpha Cl(A)$ [24]),

(2) $\operatorname{qmInt}(A) = \operatorname{qInt}(A)$ (resp. $\operatorname{qsInt}(A)$, $\operatorname{qpInt}(A)$, $\operatorname{qspInt}(A)$, $\operatorname{q\alphaInt}(A)$).

5. Quasi m- T_i -spaces

Definition 13. A bitopological space (X, τ_1, τ_2) is said to be

(1) quasi T_0 [20] (resp. quasi semi- T_0 [12], quasi α - T_0 , quasi pre- T_0 , quasi sp- T_0) if for each pair of distinct points in X, there exists a quasi-open (resp. quasi-semi-open, quasi- α -open, quasi-pre-open, quasi-semipre-open) set in (X, τ_1, τ_2) containing one of them and not containing the other,

(2) quasi T_1 [20] (resp. quasi semi- T_1 [12], quasi α - T_1 , quasi pre- T_1 , quasi sp- T_1) if for each pair of distinct points $x, y \in X$, there exist quasi-open (resp. quasi-semi-open, quasi- α -open, quasi-pre-open, quasi-semipre-open) sets U_x and U_y in (X, τ_1, τ_2) such that $x \in U_x, y \notin U_x, y \in U_y$ and $x \notin U_y$,

(3) quasi T_2 [20] (resp. quasi semi- T_2 [12], quasi α - T_2 , quasi pre- T_2 , quasi sp- T_2) if for each pair of distinct points $x, y \in X$, there exist disjoint quasi-open (resp. quasi-semi-open, quasi- α -open, quasi-pre-open, quasi-semipre-open) sets U_x and U_y in (X, τ_1, τ_2) such that $x \in U_x$ and $y \in U_y$.

Definition 14. Let (X, τ_1, τ_2) be a bitopological space and qm_X a quasi *m*-structure on X. Then (X, τ_1, τ_2) is said to be quasi *m*- T_i if the *m*-space (X, qm_X) is *m*- T_i for i = 0, 1, 2.

Remark 5. Let (X, τ_1, τ_2) be a bitopological space. If $qm_X = QO(X)$ (resp. QSO(X), $Q\alpha(X)$, QPO(X), QSPO(X)) and (X, qm_X) is m- T_i , then (X, τ_1, τ_2) is quasi T_i (resp. quasi semi- T_i , quasi α - T_i , quasi pre- T_i , quasi sp- T_i) for i = 0, 1, 2.

We shall recall the definitions of Λ_m -sets, a topological space (X, Λ_m) and (Λ, m) -closed sets in order to obtain characterizations of quasi m- T_0 spaces and quasi m- T_1 spaces. Let (X, m) be an m-space and A a subset of X. A subset $\Lambda_m(A)$ is defined in [5] as follows: $\Lambda_m(A) = \bigcap \{U : A \subset U \in m\}$. The subset A is called a Λ_m -set [5] if $A = \Lambda_m(A)$. The family of all Λ_m -sets of (X, m_X) is denoted by $\Lambda_m(X)$ (or simply Λ_m). It follows from Theorem 3.1 of [5] that the pair (X, Λ_m) is an Alexandorff (topological) space. The subset A is said to be (Λ, m) -closed [5] if $A = U \cap F$, where U is a Λ_m -set and F is an m-closed set of (X, m_M) . For a quasi m_X -structure qm_X, Λ_{qm} -sets, a topological space (X, Λ_{qm}) and (Λ, qm) -closed sets are similarly defined.

Theorem 2. (Noiri and Popa [17]) An *m*-space (X, m_X) is *m*-T₀ if and only if m_X -Cl($\{x\}$) $\neq m_X$ -Cl($\{y\}$) for any pair of distinct points $x, y \in X$.

Theorem 3. (Cammaroto and Noiri [5]) For an m-space (X, m_X) , the following properties are equivalent:

- (1) (X,m) is $m-T_0$;
- (2) The singleton $\{x\}$ is (Λ, m) -closed for each $x \in X$;
- (3) (X, Λ_m) is T_0 .

Corollary 1. Let (X, τ_1, τ_2) be a bitopological space and qm_X a quasi *m*-structure on X. Then the following properties are equivalent:

- (1) (X, τ_1, τ_2) is quasi m-T₀;
- (2) qmCl($\{x\}$) \neq qmCl($\{y\}$) for any pair of distinct points $x, y \in X$;
- (3) The singleton $\{x\}$ is (Λ, qm) -closed for each $x \in X$;
- (4) (X, Λ_{qm}) is T_0 .

Proof. This is an immediate consequence of Theorems 2 and 3.

Remark 6. In case $qm_X = QSO(X)$, by Corollary 1 we obtain the following characterization due to Maheshwari, Chae and Thakur [12]: a bitopological space (X, τ_1, τ_2) is quasi semi- T_0 if and only if $qsCl(\{x\}) \neq qsCl(\{y\})$ for any pair of distinct points $x, y \in X$.

Theorem 4. (Noiri and Popa [17]) Let (X, m_X) be an m-space and m_X have property (\mathcal{B}) . Then (X, m_X) is m- T_1 if and only if for each points $x \in X$, the singleton $\{x\}$ is m_X -closed.

Theorem 5. (Cammaroto and Noiri [5]) Let (X, m_X) be an m-space and m_X have property (\mathcal{B}). Then for the m-space (X, m_X) , the following properties are equivalent:

- (1) (X, m_X) is $m-T_1$;
- (2) The singleton $\{x\}$ is a Λ_m -set for each $x \in X$;
- (2) (X, Λ_m) is discrete.

Corollary 2. Let (X, τ_1, τ_2) be a bitopological space and qm_X a quasi *m*-structure on X having property (\mathcal{B}). Then for the space (X, τ_1, τ_2) , the following properties are equivalent:

- (1) (X, τ_1, τ_2) is quasi m-T₁;
- (2) The singleton $\{x\}$ is quasi- m_X -closed for each point $x \in X$;
- (3) The singleton $\{x\}$ is a quasi Λ_m -set for each $x \in X$;
- (4) (X, Λ_{qm}) is discrete.

Proof. This is an immediate consequence of Theorems 4 and 5.

Remark 7. In case $qm_X = QO(X)$ (resp. QSO(X)), by Corollary 2 we obtain the following characterization due to Maheshwari, Jain and Chae [11] (resp. Maheshwari, Chae and Thakur [12]): a bitopological space (X, τ_1, τ_2) is quasi T_1 (resp. quasi semi- T_1) if and only if the singleton $\{x\}$ is quasi-closed (resp. quasi-semi-closed) for each point $x \in X$.

Theorem 6. Let (X, m_X) be an *m*-space and m_X have property (\mathcal{B}) . Then, for the *m*-space (X, m_X) the following properties are equivalent:

(1) (X, m_X) is $m-T_2$;

(2) For any distinct points $x, y \in X$, there exists $U \in m_X$ containing x such that $y \notin m_X$ -Cl(U);

(3) For each point $x \in X$, $\{x\} = \cap \{m_X \operatorname{-Cl}(U) : x \in U \in m_X\};$

(4) For each pair of distinct points $x, y \in X$, there exists an *M*-continuous function f of (X, m_X) into an m- T_2 m-space (Y, m_Y) such that $f(x) \neq f(y)$.

Proof. (1) \Rightarrow (2) For any distinct points $x, y \in X$, there exist $U, V \in m_X$ such that $x \in U, y \in V$ and $U \cap V = \emptyset$; hence $V \cap m_X$ -Cl $(U) = \emptyset$ by Lemma 1. Therefore, we have $y \notin m_X$ -Cl(U).

(2) \Rightarrow (3): Let x be any point of X. Suppose that $y \in X - \{x\}$. By (2), there exists $U \in m_X$ such that $x \in U$ and $y \notin m_X$ -Cl(U). Thus, $y \notin \cap \{m_X$ -Cl(U) : $x \in U \in m_X\}$. Therefore, we have $\{x\} = \cap \{m_X$ -Cl(U) : $x \in U \in m_X\}$.

(3) \Rightarrow (1): For any pair of distinct points x, y in X, there exists $U \in m_X$ such that $x \in U$ and $y \notin m_X$ -Cl(U). Put $V = X - m_X$ -Cl(U). Since m_X has property (\mathcal{B}), by Lemma 2 m_X -Cl(U) is m-closed and hence $y \in V, V \in m_X$ and $U \cap V = \emptyset$. Therefore, (X, m_X) is m-T₂.

 $(1) \Rightarrow (4)$: For any pair of distinct points x, y in X, it suffices to take the identity function on (X, m_X) .

(4) \Rightarrow (1): Let x and y be any pair of distinct points of (X, m_X) . By (4), there exists an *M*-continuous function of (X, m_X) into an m- T_2 *m*-space (Y, m_Y) such that $f(x) \neq f(y)$. Therefore, there exist disjoint m_Y -open sets V_x and V_y such that $f(x) \in V_x$ and $f(y) \in V_y$. Since f is *M*-continuous and m_X has property (\mathcal{B}), by Theorem 1 $f^{-1}(V_x)$ and $f^{-1}(V_y)$ are disjoint m_X -open sets containing x and y, respectively. This implies that (X, m_X) is m- T_2 .

A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be *quasi M*-continuous if $f: (X, qm_X) \to (Y, qm_Y)$ is *M*-continuous, where qm_X and qm_Y are quasi *m*-structres on (X, τ_1, τ_2) and (Y, σ_1, σ_2) , respectively.

Corollary 3. Let (X, τ_1, τ_2) be a bitopological space and qm_X a quasi *m*-structure on X having property (\mathcal{B}). Then, for the space (X, τ_1, τ_2) the following properties are equivalent:

(1) (X, τ_1, τ_2) is quasi m-T₂;

(2) For any distinct points $x, y \in X$, there exists $U \in qm_X$ containing x such that $y \notin qmCl(U)$;

(3) For each point $x \in X$, $\{x\} = \cap \{\operatorname{qmCl}(U) : x \in U \in qm_X\};$

(4) For each pair of distinct points $x, y \in X$, there exists a quasi *M*-continuous function f of (X, τ_1, τ_2) into a quasi m- T_2 space (Y, σ_1, σ_2) such that $f(x) \neq f(y)$.

Proof. This is an immediate consequence of Theorem 6.

Remark 8. In case $qm_X = QSO(X)$, by Corollary 3 we obtain the results established in Theorem 6 of [20] and Theorem 24 of [12].

Theorem 7. Let $f : (X, m_X) \to (Y, m_Y)$ be an injective *M*-continuous function and m_X have property (\mathcal{B}). If (Y, m_Y) is m- T_i , then (X, m_X) is m- T_i for i = 0, 1, 2.

Proof. The proof of the case of m- T_0 is entirely analogous to that of m- T_1 . The proof for m- T_2 is obvious from Theorem 6. Thus, we shall prove the case of m- T_1 . Suppose that (Y, m_Y) is m- T_1 . Let x, y be any pair of distinct points of X. Since f is injective, $f(x) \neq f(y)$ and there exist $V_x, V_y \in m_Y$ containing f(x) and f(y), respectively, such that $f(y) \notin V_x$ and $f(x) \notin V_y$. Since f is M-continuous and m_X has property (\mathcal{B}), by Theorem 1 $f^{-1}(V_x)$ and $f^{-1}(V_y)$ are m_X -open sets containing x and y, respectively, such that $y \notin f^{-1}(V_x)$ and $x \notin f^{-1}(V_y)$. This implies that (X, m_X) is m- T_1 .

Corollary 4. Let qm_X and qm_Y be quasi m-structures on (X, τ_1, τ_2) and (Y, σ_1, σ_2) , respectively, where qm_X has property (\mathcal{B}). If $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is a quasi M-continuous injection and (Y, σ_1, σ_2) is quasi m- T_i , then (X, τ_1, τ_2) is quasi m- T_i for i = 0, 1, 2.

Proof. This follows immediately from Theorem 7.

Remark 9. If $qm_Y = QO(Y)$, $qm_X = QSO(X)$ and $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is a quasi *M*-continuous injection, then by Corollary 4 we obtain the result established in Theorem 2 of [20].

6. New forms of quasi- T_i spaces

There are many modifications of open sets in topological spaces. Recently, many researchers are interested in δ -preopen sets [23] and δ -semi-open sets [18]. First, we shall recall the definitions of the δ -closure and the θ -closure of a subset. Let (X, τ) be a topological space and A a subset of X. A point $x \in X$ is called a δ -cluster (resp. θ -cluster) point of A if $\operatorname{Int}(\operatorname{Cl}(U)) \cap A \neq \emptyset$ (resp. $\operatorname{Cl}(U) \cap A \neq \emptyset$) for every open set U containing x. The set of all δ -cluster (resp. θ -cluster) points of A is called the δ -closure (resp. θ -closure) [27] of A and is denoted by $\operatorname{Cl}_{\delta}(A)$ (resp. $\operatorname{Cl}_{\theta}(A)$). It is shown in [27] that $A \subset \operatorname{Cl}(A) \subset \operatorname{Cl}_{\delta}(A) \subset \operatorname{Cl}_{\theta}(A)$ for every subset A of X. A subset A is said to be δ -closed (resp. θ -closed) if $\operatorname{Cl}_{\delta}(A) = A$ (resp. $\operatorname{Cl}_{\theta}(A) = A$). The complement of a δ -closed (resp. θ -closed) set is said to be δ -closed (resp. θ -closed) set is said to be δ -open (resp. θ -open). The δ -interior (resp. θ -open) sets contained in A.

Definition 15. A subset A of a topological space (X, τ) is said to be

(1) δ -semiopen [18] (resp. θ -semiopen [4]) if $A \subset \operatorname{Cl}(\operatorname{Int}_{\delta}(A))$ (resp. $A \subset \operatorname{Cl}(\operatorname{Int}_{\theta}(A))$),

(2) δ -preopen [23]) (resp. θ -preopen) if $A \subset \operatorname{Int}(\operatorname{Cl}_{\delta}(A))$ (resp. $A \subset \operatorname{Int}(\operatorname{Cl}_{\theta}(A))$),

(3) δ -semipreopen (resp. θ -semipreopen) if $A \subset Cl(Int(Cl_{\delta}(A)))$ (resp. $A \subset Cl(Int(Cl_{\theta}(A))))$.

The family of all δ -semiopen (resp. δ -preopen, δ -semipreopen, θ -semiopen, θ -preopen, θ -semipreopen) sets of (X, τ) is denoted by $\delta SO(X, \tau)$ (resp. $\delta PO(X, \tau), \delta SPO(X, \tau), \theta SO(X, \tau), \theta PO(X, \tau), \theta SPO(X, \tau)$).

Definition 16. A subset A of a bitopological space (X, τ_1, τ_2) is said to be

(1) quasi- δ -semiopen if $A = B \cup C$, where $B \in \delta SO(X, \tau_1)$ and $C \in \delta SO(X, \tau_2)$,

(2) quasi- δ -preopen if $A = B \cup C$, where $B \in \delta PO(X, \tau_1)$ and $C \in \delta PO(X, \tau_2)$,

(3) quasi- δ -semipreopen if $A = B \cup C$, where $B \in \delta SPO(X, \tau_1)$ and $C \in \delta SPO(X, \tau_2)$.

(4) quasi- θ -semiopen if $A = B \cup C$, where $B \in \theta SO(X, \tau_1)$ and $C \in \theta SO(X, \tau_2)$,

(5) quasi- θ -preopen if $A = B \cup C$, where $B \in \theta PO(X, \tau_1)$ and $C \in \theta PO(X, \tau_2)$,

(6) quasi- θ -semipreopen if $A = B \cup C$, where $B \in \theta SPO(X, \tau_1)$ and $C \in \theta SPO(X, \tau_2)$.

The family of all quasi- δ -semiopen (resp. quasi- δ -preopen, quasi δ -semipreopen, quasi- θ -semiopen, quasi- θ -preopen, quasi θ -semipreopen) sets of (X, τ_1, τ_2) is denoted by $Q\delta SO(X)$ (resp. $Q\delta PO(X)$, $Q\delta PSO(X)$, $Q\theta SO(X)$, $Q\theta SO(X)$, $Q\theta PO(X)$, $Q\theta PSO(X)$).

Remark 10. Let (X, τ_1, τ_2) be a bitopological space. Since $\delta SO(X, \tau_i)$, $\delta PO(X, \tau_i)$, $\delta SPO(X, \tau_i)$, $\theta SO(X, \tau_i)$, $\theta PO(X, \tau_i)$ and $\theta SPO(X, \tau_i)$ are all *m*-structures with property (\mathcal{B}) for $i = i, 2, Q\delta SO(X), Q\delta PO(X), Q\delta PSO(X)$, $Q\theta PO(X)$ and $Q\theta PSO(X)$ are all quasi *m*-structures on X with property (\mathcal{B}).

For a bitopological space (X, τ_1, τ_2) , we can define new types of quasi T_i . For example, in case $qm_X = Q\delta SO(X)$, $Q\delta PO(X)$, $Q\delta PSO(X)$, $Q\theta SO(X)$, $Q\theta SO(X)$, $Q\theta PO(X)$ or $Q\theta PSO(X)$, we can define new types of quasi T_i as follows:

Definition 17. A bitopological space (X, τ_1, τ_2) is said to be quasi δ -semi- T_0 (resp. quasi δ -pre- T_0 , quasi δ -sp- T_0 , quasi θ -semi- T_0 , quasi θ -pre- T_0 , quasi θ -sp- T_0) if for each pair of distinct points in X, there exists a quasi- δ -semiopen (resp. quasi- δ -preopen, quasi- δ -semipreopen, quasi- θ -semiopen, quasi- θ -preopen, quasi- θ -semipreopen) set in (X, τ_1, τ_2) containing one of them and not containing the other.

Definition 18. A bitopological space (X, τ_1, τ_2) is said to be quasi δ -semi- T_1 (resp. quasi δ -pre- T_1 , quasi δ -sp- T_1 , quasi θ -semi- T_1 , quasi θ -pre- T_1 , quasi θ -sp- T_1) if for each pair of distinct points $x, y \in X$, there exist quasi- δ -semiopen (resp. quasi- δ -preopen, quasi- δ -semipreopen, quasi- θ -semiopen, quasi- θ -preopen, quasi- θ -semipreopen) sets U_x and U_y in (X, τ_1, τ_2) such that $x \in U_x, y \notin U_x, y \in U_y$ and $x \notin U_y$.

Definition 19. A bitopological space (X, τ_1, τ_2) is said to be quasi δ -semi- T_2 (resp. quasi δ -pre- T_2 , quasi δ -sp- T_2 , quasi θ -semi- T_2 , quasi θ -pre- T_2 , quasi θ -sp- T_2) if for each pair of distinct points $x, y \in X$, there exist disjoint quasi- δ -semiopen (resp. quasi- δ -preopen, quasi- δ -semipreopen, quasi- θ -semiopen, quasi- θ -preopen, quasi- θ -semipreopen) sets U_x and U_y in (X, τ_1, τ_2) such that $x \in U_x$ and $y \in U_y$.

Conclusion. We can apply the results established in Section 5 to bitopological spaces as follows:

- (1) bitopological spaces defined in Definition 13,
- (2) bitopological spaces defined in Definitions 17, 18 and 19,
- (3) bitopological spaces with any quasi *m*-structure having property (\mathcal{B}) .

References

- ABD EL-MONSEF M.E., EL-DEEP S.N., MAHMOUD R.A., β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77–90.
- [2] ABD EL-MONSEF M.E., MAHMOUD R.A., LASHIN E.R., β -closure and β -interior, J. Fac. Ed. Ain Shams Univ., 10(1986), 235–245.
- [3] ANDRIJEVIĆ D., Semi-preopen sets, Mat. Vesnik, 38(1986), 24–32.
- [4] CALDAS M., GANSTER M., GEORGIOU D.N., JAFARI S., NOIRI T., θ -semiopen sets and separation axioms in topological spaces, (submitted).
- [5] CAMMAROTO F., NOIRI T., On Λ_m -sets and related topological spaces, Acta Math. Hungar., 109(2005), 261–279.
- [6] CROSSLEY S.G., HILDEBRAND S.K., Semi-closure, Texas J. Sci., 22(1971), 99–112.
- [7] DATTA M.C., Contributions to the Theory of Bitopological Spaces, Ph. D. Thesis, Pilan (India), 1971.
- [8] EL-DEEB S.N., HASANEIN I.A., MASHHOUR A.S., NOIRI T., On p-regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 27(75)(1983), 311–315.
- [9] LEE J.Y., LEE J.J., Quasi-semi-open sets and quasi-semi-continuity, Ulsan Inst. Tech. Rep., 13(1982), 171–173.
- [10] LEVINE N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36–41.
- [11] MAHESHWARI S.N., JAIN P.C., GYU IHN CHAE, On quasiopen sets, Ulsan Inst. Tech. Rep., 11(1980), 291–292.

- [12] MAHESHWARI S.N., GYU IHN CHAE, THAKUR S.S., Quasi semiopen sets, Univ. Ulsan Rep., 17(1986), 133–137.
- [13] MAKI H., RAO K.C., NAGOOR GANI A., On generalizing semi-open and preopen sets, *Pure Appl. Math. Sci.*, 49(1999), 17–29.
- [14] MASHHOUR A.S., ABD EL-MONSEF M.E., EL-DEEP S.N., On precontinuous and weak precontinuous mappings, *Proc. Math. Phys. Soc. Egypt*, 53(1982), 47–53.
- [15] MASHHOUR A.S., HASANEIN I.A., EL-DEEB S.N., α-continuous and α-open mappings, Acta Math. Hungar., 41(1983), 213–218.
- [16] NJÅSTAD O., On some classes of nearly open sets, Pacific J. Math., 15(1965), 961–970.
- [17] NOIRI T., POPA V., On *m-D*-separation axioms, J. Math. Univ. Istanbul Fac. Sci., 61/62(2002/2003), 15–28.
- [18] PARK J.H., LEE B.Y., SON M.J., On δ-semi-open sets in topological spaces, J. Indian Acad. Math., 19(1997), 59–67.
- [19] POPA V., Quasi preopen sets and quasi almost continuity in bitopological spaces, Stud. Cerc. Bacău, (1984), 180–184.
- [20] POPA V., On some properties of quasi semi-separate spaces, Lucr. St. Mat. Fis. Inst. Petrol-Gaze, Ploiesti (1990), 71–76.
- [21] POPA V., NOIRI T., On M-continuous functions, Anal. Univ. "Dunarea de Jos" Galați, Ser. Mat. Fiz. Mec. Teor. (2), 18(23)(2000), 31–41.
- [22] POPA V., NOIRI T., A unified theory of weak continuity for functions, Rend. Circ. Mat. Palermo (2), 51(2002), 439–464.
- [23] RAYCHAUDHURI S., MUKHERJEE M.N., On δ-almost continuity and δ-preopen sets, Bull. Inst. Math. Acad. Sinica, 21(1993), 357–366.
- [24] THAKUR S.S., PAIK P., Quasi α-sets, J. Indian Acad. Math., 7(1985), 91–95.
- [25] THAKUR S.S., PAIK P., Quasi α-connectedness in bitopological spaces, J. Indian Acad. Math., 9(1987), 98–102.
- [26] THAKUR S.S., VERMA P., Quasi semi preopen sets, Vikram Math. J., 11(1991), 57–61.
- [27] VELIČKO N.V., H-closed topological spaces, Amer. Math. Soc. Transl. (2), 78(1968), 103–118.

Takashi Noiri 2949-1 Shiokita-Cho, Hinagu Yatsushiro-Shi, Kumamoto-Ken, 869-5142 Japan *e-mail:* t.noiri@nifty.com Valeriu Popa Department of Mathematics, University of Bacău 600114 Bacău, Romania

e-mail: vpopa@ub.ro

Received on 25.07.2006 and, in revised form, on 12.12.2006.