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Abstract. In this paper, we establish some common fixed point
theorems for selfmappings in uniform space by employing both
the concepts of an A−distance and an E−distance introduced
by Aamri and El Moutawakil [1]. We employ a contractive de-
finition independent of those of Olatinwo [8] and Aamri and El
Moutawakil [1]. Our results are also independent of those of Olat-
inwo [8] as well as independent of Theorems 3.1-3.3 of Aamri and
El Moutawakil [1].
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1. Introduction

Let (X, Φ) be a uniform space, where X is a nonempty set equipped
with a nonempty family Φ of subsets of X × X satisfying certain proper-
ties. Φ is called the uniform structure of X and its elements are called en-
tourages or neighbourhoods or surroundings. Interested readers can consult
Bourbaki [4], Olatinwo [8] and Zeidler [14] for the definition of uniform
space. The definition is also available on internet (by Wikipedia, the free
encyclopedia).

The concept of a W−distance on metric space was introduced by Kada
et al [6] to generalize some important results in nonconvex minimizations
and in fixed point theory for both W−contractive and W−expansive maps.
The theory of fixed point or common fixed point for contractive or expansive
selfmappings in complete metric space has been well-developed. Interested
readers can consult Berinde [2, 3], Jachymski [5], Kada et al [6], Kang [7],
Rhoades [9], Rus [11], Rus et al [12], Wang et al [13] and Zeidler [14] for
further study of fixed point or common fixed point theory.

Using the ideas of Kang [7], Montes and Charris [10] established some
results on fixed and coincidence points of maps by means of appropriate
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W−contractive or W−expansive assumptions in uniform space. Further-
more, Aamri and El Moutawakil [1] proved some common fixed point the-
orems for some new contractive or expansive maps in uniform spaces by
introducing the notions of an A−distance and an E−distance.

In Aamri and El Moutawakil [1], the following contractive definition was
employed:
Let f, g : X → X be selfmappings of X. Then, we have

(1) p(f(x), f(y)) ≤ ψ(p(g(x), g(y))), ∀ x, y ∈ X,

where ψ : IR+ → IR+ is a nondecreasing function satisfying
(i) for each t ∈ (0, +∞), 0 < ψ(t),
(ii) lim

n→∞ψn(t) = 0, ∀ t ∈ (0, +∞). ψ satisfies also the condition ψ(t) < t,

for each t > 0.
Olatinwo [8] employed the following contractive definition:
Let f, g : X → X be selfmappings of X. There exist L ≥ 0 and a comparison
function ψ : IR+ → IR+ such that ∀ x, y ∈ X, we have

(2) p(f(x), f(y)) ≤ Lp(x, g(x)) + ψ(p(g(x), g(y))).

In this paper, we shall establish some common fixed point theorems by
employing a contractive condition independent of (1) and (2).
We shall employ the concepts of an A−distance, an E−distance as well as
the notion of comparison function in this work. Berinde [2, 3] extended the
Banach’s fixed point theorem using different contractive definitions involv-
ing the concept of the comparison functions. Rus [11] and Rus et al [12]
also contain various generalizations and extensions of the Banach’s fixed
point theorem in which the contractive conditions involve some comparison
functions.

Our results are generalizations of Theorems 3.1-3.3 of [1] and Theo-
rems 3.1, 3.3 & 3.5 of Olatinwo [8].

2. Preliminaries

We shall require the following definitions and lemma in the sequel.
Let (X, Φ) be a uniform space.

Remark 1. When topological concepts are mentioned in the context of
a uniform space (X, Φ), they always refer to the topological space (X, τ(Φ)).

Definition 1. If V ∈ Φ and (x, y) ∈ V , (y, x) ∈ V , x and y are said to
be V−close. A sequence {xn}∞n=0 ⊂ X is said to be a Cauchy sequence for
Φ if for any V ∈ Φ, there exists N ≥ 1 such that xn and xm are V−close
for n, m ≥ N.
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Definition 2. A function p : X ×X → IR+ is said to be an A−distance
if for any V ∈ Φ, there exists δ > 0 such that if p(z, x) ≤ δ and p(z, y) ≤ δ
for some z ∈ X, then (x, y) ∈ V .

Definition 3. A function p : X×X → IR+ is said to be an E−distance if

(p1) p is an A−distance,

(p2) p(x, y) ≤ p(x, z) + p(z, y), ∀ x, y ∈ X.

Definition 4. A uniform space (X, Φ) is said to be Hausdorff if and only
if the intersection of all V ∈ Φ reduces to the diagonal { (x, x) | x ∈ X}, i.e.
if (x, y) ∈ V for all V ∈ Φ implies x = y. This guarantees the uniqueness
of limits of sequences. V ∈ Φ is said to be symmetrical if V = V −1 =
{ (y, x) | (x, y) ∈ V }.

Definition 5. Let (X,Φ) be a uniform space and p be an A−distance
on X.

(i) X is said to be S−complete if for every p−Cauchy sequence {xn}∞n=0,
there exists x ∈ X with lim

n→∞ p(xn, x) = 0.

(ii) X is said to be p−Cauchy complete if for every p−Cauchy sequence
{xn}∞n=0, there exists x ∈ X with lim

n→∞xn = x with respect to τ(Φ).

(iii) f : X → X is p−continuous if lim
n→∞ p(xn, x) = 0 implies lim

n→∞ p(f(xn),

f(x)) = 0.
(iv) f : X → X is τ(Φ)−continuous if lim

n→∞xn = x with respect to τ(Φ)

implies lim
n→∞ f(xn) = f(x) with respect to τ(Φ).

(v) X is said to be p−bounded if δp(X) = sup { p(x, y) | x, y ∈ X} < ∞.

Definition 6. Let (X, Φ) be a Hausdorff uniform space and p an A−distan-
ce on X. Two selfmappings f and g on X are said to be p−compatible if, for
each sequence {xn}∞n=0 of X such that lim

n→∞ p(f(xn), u) = lim
n→∞ p(g(xn), u) =

0 for some u ∈ X, then we have lim
n→∞ p(f(g(xn)), g(f(xn))) = 0.

See [1] for Remark 1 as well as the Definitions 1-6. We shall also state
the following definition of a comparison function which is mentioned in the
contractive condition (2).

Definition 7. A function ψ : IR+ → IR+ is called a comparison func-
tion if:

(i) ψ is monotone increasing;

(ii) lim
n→∞ψn(t) = 0, ∀ t ≥ 0.

Definition 7 is contained in Berinde [2, 3].
Remark 2. Every comparison function satisfies the condition ψ(0) = 0.

Also, both conditions (i) and (ii) imply that ψ(t) < t, ∀ t > 0. We state the
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following example of a comparison function:
The function ψ : IR+ → IR+ defined by

ψ(t) =

{
0 , if t ∈ [0, 1),
1
4 t , if t ≥ 1,

is a comparison function.

In this paper, we shall employ the following contractive definition:
Let f, g : X → X be selfmappings of X. There exist a constant k ∈ [0, 1)
and a monotone increasing function ϕ : IR+ → IR+ with ϕ(0) = 0, such that
∀ x, y ∈ X, we have

(3) p(f(x), f(y)) ≤ ϕ(p(x, g(x))) + kp(g(x), g(y)).

Remark 3. The contractive condition (3) is independent of (1) and (2)
since the right-hand side expressions of (1) and (2) cannot be obtained from
that of (3) or vice-versa as shown below:
Thus, for instance, if in condition (3), ϕ(u) = 0, ∀ u ∈ IR+, then (3) reduces
to

(?) p(f(x), f(y)) ≤ kp(g(x), g(y)), k ∈ [0, 1), ∀ x, y ∈ X,

where (?) is a special case of (1), (2) & (3). Indeed, by putting ψ(r) = kr,
∀ r ∈ IR+, k ∈ [0, 1), then we get (?) from (1).
Also, if in condition (3), we have ϕ(u) = Lu, L ≥ 0, ∀ u ∈ IR+, then (3)
also reduces to

(??) p(f(x), f(y)) ≤ Lp(x, g(x)) + kp(g(x), g(y)), k ∈ [0, 1), ∀ x, y ∈ X,

and (??) is a special case of (2) & (3). We note from this remark that it is
not possible to obtain either condition (1) or (2) from (3). Rather, we can
only both (?) and (??) from (3).

Lemma 1. Let (X, Φ) be a Hausdorff uniform space and p be an A−distan-
ce on X. Let {xn}∞n=0, {yn}∞n=0 be arbitrary sequences in X and {αn}∞n=0,
{βn}∞n=0 be sequences in IR+ converging to 0. Then, for x, y, z ∈ X, the
following hold:

(a) If p(xn, y) ≤ αn and p(xn, z) ≤ βn, ∀ n ∈ IN, then y = z. In
particular, if p(x, y) = 0 and p(x, z) = 0, then y = z.

(b) If p(xn, yn) ≤ αn and p(xn, z) ≤ βn, ∀ n ∈ IN, then {yn}∞n=0 converges
to z.

(c) If p(xn, xm) ≤ αn ∀ m > n, then {xn}∞n=0 is a Cauchy sequence
in (X,Φ).
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Remark 4. A sequence in X is p−Cauchy if it satisfies the usual metric
condition.

3. The main results

The main results of this paper are the following:

Theorem 1. Let (X, Φ) be a Hausdorff uniform space and p an A−distance
on X. Suppose that X is p−bounded and S−complete. Suppose that the
sequence {xn}∞n=0 is defined by

xn = f(xn−1), n = 1, 2, ...,

with x0 ∈ X. Let f and g be commuting p−continuous or τ(Φ)−continuous
selfmappings of X such that

(i) f(X) ⊆ g(X);

(ii) p(f(xi), f(xi)) = 0, ∀ xi ∈ X, i = 0, 1, 2, ...;

(iii) f, g : X → X satisfy the contractive condition (3).
Suppose also that ϕ : IR+ → IR+ a monotone increasing function such

that ϕ(0) = 0. Then, f and g have a common fixed point.

Proof. Let x0 ∈ X. Choose x1 ∈ X such that f(x0) = g(x1), choose
x1 ∈ X such that f(x1) = g(x2), and in general, choose xn ∈ X such that
f(xn−1) = g(xn). We recall that xn = f(xn−1), n = 1, 2, ..., so that by
conditions (ii) and (iii) of the Theorem, we obtain

p(f(xn), f(xn+m)) ≤ ϕ(p(xn, g(xn))) + kp(g(xn), g(xn+m))
= ϕ(p(f(xn−1), f(xn−1))) + kp(f(xn−1), f(xn+m−1))
= kp(f(xn−1), f(xn+m−1))
≤ k[ϕ(p(xn−1, g(xn−1))) + kp(g(xn−1), g(xn+m−1))]
= k[ϕ(p(f(xn−2), f(xn−2))) + kp(f(xn−2), f(xn+m−2)]
= k2(p(f(xn−2), f(xn+m−2)))
≤ . . . ≤ kn(p(f(x0), f(xm)) ≤ knδp(X),

from which we have that

(4) p(f(xn), f(xn+m)) ≤ knδp(X),

where p(f(x0), f(xm)) ≤ δp(X) and δp(X) = sup {p(x, y)|x, y ∈ X} < ∞.
δp(X) < ∞ since p is nonnegative with its range contained in IR+. Therefore,
using the fact that k ∈ [0, 1) in (4) yields knδp(X) → 0 as n → ∞, from
which it follows that

p(f(xn), f(xn+m)) → 0 as n →∞.
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Hence, by applying Lemma 1(c), we have that {f(xn)}∞n=0 is a p-Cauchy
sequence. Since X is S−complete, limn→∞ p(f(xn), u)) = 0, for some u ∈ X,
and therefore limn→∞ p(g(xn), u)) = 0.

Since f and g are p−continuous, then limn→∞ p(f(g(xn)), f(u)) = limn→∞
p(g(f(xn)), g(u)) = 0. Also, since f and g are commuting, then fg = gf ,
so that we have lim

n→∞ p(f(g(xn)), f(u)) = lim
n→∞ p(f(g(xn)), g(u)) = 0, so

that by Lemma 2.11(a), we obtain that f(u) = g(u). Since f(u) = g(u),
fg = gf , we have f(f(u)) = f(g(u)) = g(f(u)) = g(g(u)). Suppose that
p(f(u), f(f(u))) 6= 0. Using (3), then we have that

p(f(u), f(f(u))) ≤ ϕ(p(u, g(u))) + kp(g(u), g(f(u)))
= ϕ(p(f(u), f(u))) + kp(f(u), f(f(u)))
= kp(f(u), f(f(u))),

from which
(1− k)p(f(u), f(f(u)) ≤ 0.

Since k ∈ [0, 1), then 1 − k > 0 and we have p(f(u), f(f(u))) ≤ 0, which
is a contradiction since p is nonnegative. Therefore, p(f(u), f(f(u))) = 0.
Since condition (ii) of the Theorem implies that p(f(u), f(u)) = 0, then
p(f(u), f(f(u))) = 0 and p(f(u), f(u)) = 0, yield by Lemma 2.11(a) that
f(f(u)) = f(u). Thus, we have g(f(u)) = f(f(u)) = f(u). Hence, f(u) is a
common fixed point of f and g.
The proof is similar when f and g are τ(Φ)−continuous as S−completeness
implies p−Cauchy completeness. ¥

Remark 5. Theorem 1 is independent of Theorem 3.1 of Aamri and El
Moutawakil [1] as well as Theorem 3.1 of Olatinwo [8].

Theorem 1 is an existence result for the common fixed point of f and g,
while the next two results guarantee the uniqueness of the common fixed
point.

Theorem 2. Let (X, Φ) be a Hausdorff uniform space and p an E−distance
on X. Suppose that X is p−bounded and S−complete. Suppose that the
sequence {xn}∞n=0 is defined by

xn = f(xn−1), n = 1, 2, ...,

with x0 ∈ X. Let f and g be commuting p−continuous or τ(Φ)−continuous
selfmappings of X such that

(i) f(X) ⊆ g(X);

(ii) p(f(xi), f(xi)) = 0, ∀ xi ∈ X, i = 0, 1, 2, ...;

(iii) f, g : X → X satisfy the contractive condition (3).
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Suppose also that ϕ : IR+ → IR+ is a monotone increasing function such
that ϕ(0) = 0. Then, f and g have a unique common fixed point.

Proof. f and g have a common fixed point since an E−distance function
p is an A−distance. Suppose that there exist u, v ∈ X such that f(u) =
g(u) = u and f(v) = g(v) = v.

Let p(u, v) 6= 0. Then, we have

p(u, v) = p(f(u), f(v)) ≤ ϕ(p(u, g(u))) + kp(g(u), g(v))
= ϕ(p(u, u)) + kp(u, v) = kp(u, v),

from which we have that (1 − k)p(u, v) ≤ 0, leading to p(u, v) ≤ 0, since
1 − k > 0. This is a contradiction since p is nonnegative. Hence, we have
p(u, v) = 0. In a similar manner, we also have that p(v, u) = 0. Using
condition (p2) of Definition 3, we have p(u, u) ≤ p(u, v) + p(v, u), from
which it follows that p(u, u) = 0. Since p(u, u) = 0 and p(u, v) = 0, then by
Lemma 1(a), we have that u = v. ¥

Remark 6. Theorem 2 is independent of Theorem 3.2 as well as corol-
laries 3.1 & 3.2 of Aamri and El Moutawakil [1] and also independent of
Theorem 3.3 of Olatinwo [8].

Theorem 3. Let (X, Φ) be a Hausdorff uniform space and p an E−distance
on X. Suppose that X is p−bounded and S−complete. Suppose that the
sequence {xn}∞n=0 is defined by

xn = f(xn−1), n = 1, 2, ...,

with x0 ∈ X. Let f and g be p−compatible, p−continuous or τ(Φ)−continuous
selfmappings of X such that

(i) f(X) ⊆ g(X);

(ii) p(f(xi), f(xi)) = 0, ∀ xi ∈ X, i = 0, 1, 2, ...;

(iii) f, g : X → X satisfy the contractive condition (3).
Suppose also that ϕ : IR+ → IR+ is a monotone increasing function such

that ϕ(0) = 0. Then, f and g have a unique common fixed point.

Proof. Just as in the proof of Theorem 1, we have for some u ∈ X,
lim

n→∞ p(f(xn, u)) = lim
n→∞ p(g(xn, u)) = 0. Since f and g are p−continuous, we

have lim
n→∞ p(f(g(xn)), f(u)) = lim

n→∞ p(g(f(xn)), g(u)) = 0, while the assump-

tion that f and g are p−compatible implies lim
n→∞ p(f(g(xn)), g(f(xn))) = 0.

Furthermore, by condition (p2) of Definition 3, we have that

(5) p(f(g(xn)), g(u)) ≤ p(f(g(xn)), g(f(xn))) + p(g(f(xn)), g(u)).
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Taking limits in (4) and applying Lemma 1(a), then we have lim
n→∞ p(f(g(xn)),

g(u)) = 0. Since lim
n→∞ p(f(g(xn)), f(u)) = 0 and lim

n→∞ p(f(g(xn)), g(u)) = 0,

then by Lemma 1(a) we have f(u) = g(u). The rest of the proof is as in
Theorem 2. ¥

Remark 7. Theorem 3 is independent of Theorem 3.3 of Aamri and El
Moutawakil [1] as well as Theorem 3.5 of Olatinwo [8].

Remark 8. The results established in this paper can have applications
in mathematical economics. Specifically, these results can find application
in the study of demand and supply in relation to the determination of the
market equilibrium point. Some applications in the areas of both engineering
and science are also possible.
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