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OSCILLATION AND ASYMPTOTIC BEHAVIOUR

OF SOLUTIONS OF SECOND ORDER NEUTRAL

DIFFERENTIAL EQUATIONS WITH POSITIVE

AND NEGATIVE COEFFICIENTS

Abstract. Sufficient conditions in terms of the coefficient func-
tions for the oscillation and asymptotic behavior of nonoscillatory
solutions of a class of second order nonlinear neutral differential
equations have been obtained. The results improve some earlier
results.
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1. Introduction

In this paper, we consider the oscillation and asymptotic behavior of
nonoscillatory solutions of the second order neutral differential equations of
the form

[x(t)−
l∑

i=1

ci(t)x(t− τi)]′′ +
m∑

i=1

pi(t)G(x(t− δi))(1)

−
n∑

i=1

qi(t)G(x(t− σi)) = f(t)

where m ≥ n and τ1 · · · τl, δ1 · · · δm, and σ1 · · ·σn are positive reals,ci, f ∈
C([0,∞), R), i = 1, ..., l, pi ∈ C([0,∞), [0,∞)) for i = 1, · · · , m and qi ∈
C([0,∞), [0,∞)) for i = 1, · · · , n, G ∈ C(R, R), G is nondecreasing with
xG(x) > 0 for x 6= 0. We assume that there exists a continuous function
F (t) ∈ C2([0,∞), R) such that F ′′(t) = f(t) and limt→∞ F (t) = 0.

By a solution of (1), we mean a continuous function x(t) which is defined
for t ≥ t0− ρ such that x(t)−∑l

i=1 ci(t)x(t− τi) ∈ C2([t0,∞), R) and (1) is
satisfied for t ≥ t0 where ρ = max{τ1 · · · τl, δ1 · · · δm, σ1 · · ·σn}. A solution
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of (1) is called oscillatory if it has arbitrarily large zeros. Otherwise, it is
called nonoscillatory.

Throughout this work we assume that pi(t) − qi(t − δi + σi) ≥ 0 for
i = 1, · · · , n.

Sufficient conditions for oscillation of solutions of first order neutral delay
differential equations with positive and negative coefficients have been stud-
ied by many authors, see ([1],[2],[6], [7],[8]). It is recently, that second order
neutral differential equations with positive and negative coefficients have
been given a serious study. In a recent paper, Parhi and Chand [5] stud-
ied (1) when G(x) = x and they obtained various sufficient conditions for
the oscillation of all bounded solutions of the linear homogeneous equation.
Further, Manojlovic et al. [4] studied Eq.(1) withG(x) = x where they have
assumed one additional condition qi(t) ≤ qi(t−σi) for every i = 1, · · · , n. In
this paper, we study Eq.(1) on various ranges on

∑l
i=1 ci(t) and improve the

results of [5] by removing not only on the boundedness on the solutions but
also relaxing other conditions as well. Our results improve the results of [4]
also, where we remove the condition qi(t) ≤ Qi(t−σi) for every i = 1, · · · , n.

We consider the following ranges on
∑l

i=1 ci(t):

(A1) 0 ≤
l∑

i=1
ci(t) ≤ c < 1

(A2) −1 ≤ c1 ≤
l∑

i=1
ci(t) ≤ 0

(A3) −c3 ≤
l∑

i=1
ci(t) ≤ −c2 < −1

(A4) 1 ≤ c4 ≤
l∑

i=1
ci(t) ≤ c5

(A5) −c6 ≤
l∑

i=1
ci(t) ≤ −c7 ≤ 0

where c1, · · · , c7 are positive constants.
The following assumptions are needed for use in the sequel:

(H1) lim inf
|u|→∞

G(u)
u ≤ β, where β > 0 is a real number.

(H2) lim
t→∞

n∑
i=1

t∫
t0

[pi(s)− qi(s− δi + σi)] ds = ∞.

(H3) lim
t→∞

k
t

t∫
t0

s{
n∑

i=1
[pi(s)− qi(s− δi + σi)]} ds > 1

for any positive constant k.

(H4) F (t) is oscillatory.



Oscillation and asymptotic behaviour of solutions . . . 107

(H5) β
n∑

i=1

∞∫
s−δi+σi

qi(θ) dθ ds < 1 when δi ≥ σi

(H6) c + β
n∑

i=1

∞∫
s−δi+σi

qi(θ) dθ ds < 1

(H7) δi ≥ σi for every i = 1, · · · , n.

(H8) σi ≥ δi for every i = 1, · · · , n.

(H9) β
n∑

i=1

∞∫
s−δi+σi

qi(θ) dθ ds < 1 + c7

The following result will be needed for our use (see Lemma 1.5.4 in [3]).

Lemma 1. Let a ∈ (−∞, 0), τ ∈ (0,∞), t0 ∈ R and suppose that a
function x ∈ C[[t0 − τ,∞), R] satisfy the inequality

x(t) ≤ a + max
t−τ≤s≤t

x(s)

for t ≥ t0. Then x(t) cannot be a nonnegative function.

2. Main results - the case when δi ≥ σi, i = 1, · · · , n.

In this section, we consider Eq. (1) when δi ≥ σi, i = 1, · · · , n. We shall
obtain sufficient conditions under which a solution of the equation is either
oscillatory or tends to zero as t → ∞. We observe that the results hold
when G is either linear or sublinear. This is mainly due to the assumption
(H1).

Theorem 1. Let ci(t), i = 1, · · · , l be as in (A1). If (H1), (H6), (H7)
and either of (H2) or (H3) are satisfied, then every solution of (1) is either
oscillatory or tends to zero as t →∞.

Proof. Let x(t) be a solution of (1). If x(t) is oscillatory, then there
is nothing to prove. Let x(t) be nonoscillatory. Assume that x(t) > 0
eventually. There exists a t1 ≥ t0+ρ > 0 such that x(t) > 0 and x(t−ρ) > 0
for t ≥ t1. Setting

w(t) = x(t)−
l∑

i=1

ci(t)x(t− τi)(2)

−
n∑

i=1

∫ t

t0

∫ s

s−δi+σi

qi(θ)G(x(θ − σi)) dθ ds − F (t),

then Eq. (1) can be written as

(3) w′′(t) +
n∑

i=1

{pi(t)− qi(t− δi + σi)}G(x(t− δi)) ≤ 0
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for t ≥ t1.Hence w′′(t) ≤ 0 for t ≥ t1. Thus there exists a t2 ≥ t1 such that
w′(t) > 0 or < 0 for t ≥ t2. Let w′(t) < 0 for t ≥ t2. This in turn implies
that w(t) < 0 for t ≥ t3 ≥ t2 and limt→∞w(t) = −∞. Then there exist
t4 > t3, ε > 0 and λ > 0 such that 0 < ε < λ, w(t) < −λ and F (t) < ε for
t− ρ > t4. Hence from (2),

x(t) = w(t) +
l∑

i=1

ci(t)x(t− τi)

+
n∑

i=1

∫ t

t0

∫ s

s−δi+σi

qi(θ)G(x(θ − σi)) dθ ds + F (t)

≤ −λ + [
l∑

i=1

ci(t) + β

n∑

i=1

∫ t

t0

∫ s

s−δi+σi

qi(θ) dθ ds] max
t−ρ≤s≤t

x(s) + ε

≤ −(λ− ε) + max
t−ρ≤s≤t

x(s).

Then by Lemma 1, it follows that x(t) cannot be nonnegative, a contradic-
tion. Hence w′(t) < 0 is not possible.

Next, suppose that w′(t) > 0 for t ≥ t2. Then w(t) > 0 or < 0 for large
t, say for t ≥ t5 ≥ t2. First, suppose that w(t) < 0 for t ≥ t5. Then w(t) is
bounded and

(4) x(t)−
l∑

i=1

ci(t)x(t−τi)−
n∑

i=1

∫ t

t0

∫ s

s−δi+σi

qi(θ)G(x(θ−σi)) dθ ds < F (t).

We claim that x(t) is bounded. If not, then there exists a sequence {Tk}∞k=1,
Tk > t5 for every k such that Tk → ∞ and x(Tk) → ∞ as k → ∞. In
particular, for t = Tk, (4) gives

x(Tk)[1− c− β
n∑

i=1

∫ Tk

t0

∫ s

s−δi+σi

qi(θ) dθ ds] < F (Tk).

Letting k →∞, we obtain a contradiction. Hence our claim holds. Further,
if lim supt→∞ x(t) = λ > 0, then integration of (3) form t5 to t yields a
contradiction, because G is nondecreasing and (H2) or (H3) holds. Hence
x(t) → 0 as t →∞.

Finally, suppose that w(t) > 0 for t ≥ t5. From the increasingness of
w(t) and the assumptions on F (t), it follows that there exists a real β0 > 0
such that w(t) + F (t) > β0 for large t, that is

φ(t) = x(t)−
l∑

i=1

ci(t)x(t− τi)(5)

−
n∑

i=1

∫ t

t0

∫ s

s−δi+σi

qi(θ)G(x(θ − σi)) dθ ds > β0



Oscillation and asymptotic behaviour of solutions . . . 109

for t ≥ t6 > t5. This in turn implies that there exists a positive number β1

such that

(6) φ(t) ≥ β1w(t)

for t ≥ t7 ≥ t6.If this is not true, then there exists a sequence {T ′′k }, T ′′k →∞
as k →∞ such that

(7) φ(T ′′k ) ≤ 1
k
w(T ′′k )

or
w(T ′′k ) + T (T ′′k ) ≤ 1

k
w(T ′′k )

or
(1− 1

k
)w(T ′′k ) + F (T ′′k ) ≤ 0.

If w(T ′′k ) → ∞, then F (T ′′k ) → −∞, a contradiction to the boundedness of
F (t). If w(T ′′k ) tends to a constant, then from (7), we have φ(T ′′k ) → 0 as
k →∞ a contradiction to (5). Hence (6) holds. consequently, x(t) ≥ β1w(t)
for t ≥ t7. Then from (3)

(8) w′′(t) +
n∑

i=1

{pi(t)− qi(t− δi + σi)}G(β1w(t− δi)) ≤ 0

for t ≥ t8 ≥ t7.
Let (H2) hold. Since w(t) > µ for some µ > 0, then integrating (8) from

t8 to t and letting t →∞, we obtain a contradiction.
Next, suppose that (H3) holds. Set r(t) = −w′(t). Then r′(t) = −w′′(t).

Then r(t) < 0, nondecreasing and

tr′(t) ≥ G(β1µ)t
n∑

i=1

{pi(t)− qi(t− δi + σi)}

for t ≥ t8. Integrating the above inequality from t8 to t gives

tr(t)− t8r(t8)−
∫ t

t8

r(s) ds ≥ G(β1µ)
∫ t

t8

s
n∑

i=1

{pi(s)− qi(s− δi + σi)} ds.

Since r(t) is nondecreasing, then the above integral inequality gives

1 ≥ G(β1µ)
t(−r(t8))

∫ t

t8

s
n∑

i=1

{pi(s)− qi(s− δi + σi)} ds,

a contradiction. Hence w(t) > 0 is not possible for large t.
If x(t) < 0 for large t, then one may proceed as above to prove the

theorem. This completes the proof of the theorem. ¥
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Theorem 2. Let
∑l

i=1 ci(t) be in the range (A5). If (H1), (H2), (H7)
and (H9) are satisfied, then every solution of (1) is either oscillatory or
tends to zero as t →∞.

Proof. Let x(t) be a nonoscillatory solution of (1). Assume that x(t) > 0
and x(t − ρ) > 0 for t ≥ t1 ≥ t0 + ρ > 0. Setting w(t) as in (2), we obtain
(3). Hence w′′(t) ≤ 0 for t ≥ t1. Then w′(t) > 0 or < 0 for some t ≥ t2 ≥ t1.

Let w′(t) > 0 for t ≥ t2. Then integration of (3) from t2 to t gives

w′(t1) ≥
n∑

i=1

∫ t

t2

{pi(s)− qi(s− δi + σi)}G(x(s− δi)) ds.

Letting t →∞, the above inequality, in view of (H2), yields G(x(t)) → 0 as
t →∞. Hence x(t) → 0 as t →∞.

Next, suppose that w′(t) < 0 for t ≥ t2. Thus there exists a t3 ≥ t2
such that w(t) < 0 for t ≥ t3 and limt→∞w(t) = −∞. We claim that x(t)
is bounded. If not, there exists a sequence {Tk}∞k=1 such that Tk ≥ t3 for
every k, Tk → ∞ as k → ∞, w(Tk) → ∞ and x(Tk) → ∞ as k → ∞ and
maxt3≤t≤Tk

x(t) = x(Tk). Then we have

w(Tk) = x(Tk)−
l∑

i=1

ci(Tk)x(Tk − τi)

−
n∑

i=1

∫ Tk

t0

∫ s

s−δi+σi

qi(θ)G(x(θ − σi)) dθ ds− F (Tk)

≥ x(Tk)[1−
l∑

i=1

ci(Tk)− β
n∑

i=1

∫ Tk

t0

∫ s

s−δi+σi

qi(θ) dθ ds]− F (Tk).

Letting k → ∞, in view of (H9), we obtain w(Tk) → ∞ as k → ∞, a con-
tradiction. Hence our claim holds, that is, x(t) is bounded. Consequently,
w(t) is bounded, a contradiction.

If x(t) < 0, the proof of the theorem may be treated similarly. The
theorem is proved. ¥

Remark 1. Theorem 2 improves Theorem 3 due to Manojlovic et al. [4].
In the following, we give a stronger condition than (H2) under which

every solution of (1) oscillates when (H7) holds.

Theorem 3. Let
∑l

i=1 ci(t) be in the range (A5). If (H1), (H4), (H7)
and (H9) and

(H10)
n∑

i=1

{pi(t)− qi(t− δi + σi)} ≥ b, b ≥ 0 is a constant

hold, then every solution of (1) is oscillatory.
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Proof. Suppose that x(t) is a nonoscillatory solution of (1). Assume
that x(t) > 0 and x(t − ρ) > 0 for t ≥ t1 ≥ t0 + ρ > 0. Then from (3), we
have w′′(t) ≤ 0 for t ≥ t1 and hence w′(t) > 0 or < 0 for some t ≥ t2 ≥ t1.

If w′(t) < 0 for t ≥ t2, then limt→∞w(t) = −∞. Proceeding as in Theo-
rem 2, one may show that x(t) is bounded.Consequently, w(t) is bounded,
a contradiction.

Next, suppose that w′(t) > 0 for t ≥ t2. Then integrating (3) from t2 to
t, we obtain

∞ > w′(t2) ≥ b

∫ ∞

t2

G(x(s− δi)) ds.

Therefore, G(x(t)) ∈ L1([t2,∞)). Since uG(u) > 0 and G is nondecreasing,
then x(t) ∈ L1([t2,∞)). Hence

z(t) = x(t)−
l∑

i=1

ci(t)x(t− τi) ∈ L1([t2,∞)).

Setting φ(t) = z(t)− F (t), we see that

(9) φ′(t) = w′(t) +
n∑

i=1

∫ t

t−δi+σi

qi(s)G(x(s− σi)) ds ≥ 0.

Hence φ(t) is nondecreasing. Further, since(H4) holds, then φ(t) > 0 for
large t. Hence

lim
t→∞ z(t) = lim

t→∞(z(t)− F (t)) = lim
t→∞φ(t) = µ, µ ∈ (0,∞).

Thus there exists a t3 ≥ t2 and 0 < ε < µ such that z(t) > µ− ε for t ≥ t3.
Hence z(t) 6∈ L1([t2,∞)), a contradiction. Hence x(t) 6> 0 for large t.

In a similar way one may show that x(t) 6< 0 for large t. This completes
the proof of the theorem. ¥

Corollary 1. Suppose that all the conditions of Theorem 3 are satisfied
except the condition (H4). Then every solution of (1) is either oscillatory
or tends to zero as t →∞.

Proof. Proceeding as in the lines of Theorem 3, one may arrive at
x(t) ∈ L1([t2,∞)) and (9). Since φ(t) is nondereasing, then

lim
t→∞ z(t) = lim

t→∞(z(t)− F (t)) = lim
t→∞φ(t) = µ, µ ∈ [0,∞).

If µ > 0, then we obtain a contradiction as in the proof of Theorem 3. If
µ = 0, then x(t) < z(t) implies that x(t) → 0 as t → ∞. The proof is
complete. ¥

Proceeding as in the lines of Theorem 1, one may prove the following
theorem.
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Theorem 4. Let ci(t), i = 1, · · · , l be in the range (A2) or (A3). Further
assume that (H1), (H5) and (H7) hold. If either (H2) or (H3) holds, then
every solution of (1) is oscillatory or tends to zero as t →∞.

Theorem 5. Let ci(t), i = 1, · · · , l be in the range (A4). Let (H1), (H7)
and

(H11)
n∑

i=1

∫ ∞

t0

∫ s

s−δi+σi

qi(θ) dθ ds < ∞

hold. If either (H2) or (H3) is satisfied, then every bounded solution of (1)
is oscillatory or tends to zero as t →∞.

Proof. Since x(t) is bounded, then lim supt→∞ x(t) > 0 implies that
w′(t) → −∞ as t → ∞ and hence w(t) → −∞ as t → ∞. On the other
hand, since x(t) is bounded ,and (H1) and (H11) hold, then (2) yields that
x(t) →∞ as t →∞, a contradiction. Thus the theorem is proved. ¥

Remark 2. In the above results, the condition (H7) forces us to assume
(H1). The above results remain true when G is linear or sublinear. The
prototype of G satisfying the hypothesis of the above results is G(u) =
|u|γsgnu, γ ≤ 1.

3. Main results - the case when σi ≥ δi, i = 1, · · · , n.

In the following, we shall replace the assumption (H7) by (H8). Hence
the following results remains true for all types of G.

Theorem 6. Let ci(t), i = 1, · · · , l be in the range (A2) or (A3) or (A5).
Further, suppose that (H2) and (H8) hold. Then every solution of (1) is
oscillatory or tends to zero as t →∞.

Proof. let x(t) be a eventually positive solution of (1). Then w(t) > 0 or
< 0 for large t. If w(t) < 0 for large t, then x(t) < F (t) for large t and hence
x(t) → 0 as t →∞. If w(t) > 0 for large t, then w′(t) > 0 for large t, say for
t ≥ t2. Integration (3) from t2 to t and using (H2) and the nondecreasing
property of G, we see that x(t) → 0 as t → ∞. The above line holds when
x(t) < 0 for large t. The proof is complete. ¥

Theorem 7. Suppose that ci(t), i = 1, · · · , l be in the range (A1). If
(H2) and (H8) hold, then every solution of (1) is oscillatory or tends to zero
as t →∞.

Proof. If x(t) is an eventually positive solution of (1). Setting w(t) as in
(2), we obtain (3) for large t. Hence w(t) > 0 or < 0 for large t. If w(t) > 0
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for large t, then w′(t) > 0 eventually. Then integration of (3) from t1, t1
large enough, to ∞, in view of (H2) and the nondecreasing property of G,
we see that x(t) → 0 as t →∞. Let w(t) < 0 for large t. then

(10) x(t) < F (t) + w(t) +
l∑

i=1

ci(t)x(t− τi).

If limt→∞w(t) = −λ, λ > 0, then there exists a ε > 0 such that for 0 < ε < λ,
we obtain, for large t

lim sup
t→∞

x(t) < −(λ− ε) + c lim sup
t→∞

x(t)

or,
(1− c) lim sup

t→∞
x(t) < −(λ− ε) < 0

a contradiction to the fact that x(t) > 0 eventually. If limt→∞w(t) = 0,
then taking lim sup both sides in (10) we have

lim sup
t→∞

x(t) < c lim sup
t→∞

x(t),

which ultimately yields that x(t) → 0 as t →∞. The proof of the theorem
is same if x(t) < 0 eventually. This completes the proof of the theorem. ¥

Theorem 8. Let ci(t), i = 1, · · · , l be in the range (A4). If (H2), (H8)
and

(H12)
n∑

i=1

∫ ∞

t0

∫ s−δi+σi

s
qi(θ) dθ ds < 1,

then every bounded solution of (1) is oscillatory or tend to zero as t →∞.

Proof. If x(t) > 0 for large t, and bounded, then (H12) implies that w(t)
is bounded. If lim supt→∞ x(t) > 0, then integration of (3) from t2 to ∞, t2
large enough, we have w′(t) → −∞ a contradiction to the boundedness of
w(t). Hence x(t) → 0 as t →∞. The proof of the theorem may be treated
similarly if we assume x(t) < 0 for large t. The proof is complete. ¥

Remark 3. From the above results, it follows that when G(u) = u, that
is for the linear case, the assumption αi ≥ σi or αi ≤ σi is not required
though the authors have assumed (see [4], [5]). It would be interesting if
one removes the restriction (H1) on G for δi ≥ σi, i = 1, · · · , n (see Section
2).
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