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Abstract. The implied volatility, i.e. volatility calculated on
the basis of option price is a very important parameter in finan-
cial econometrics. Usually, it is calculated from the Black-Scholes
option pricing formula, but it doesn’t have any analytical so-
lution. There are many ways to find it numerically. Unfortu-
nately, all fast estimators give non rigorous results for deep-in or
deep-out-of-the-money options. In this paper there are compared
some estimators of implied volatility and there are estimated er-
rors for many cases of option price, strike price and real volatility.
Furthermore, to reduce error using least squares surface approxi-
mation, a new estimator basing on the Corrado-Miller estimator
is constructed. There are shown some cases in which the modified
Corrado-Miller estimator gives more exact results.
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1. Implied volatility

The volatility is one of the most important notions in financial market.
Recall that volatility is often regarded as a measure of the risk in forecasts
of returns of financial assets. An interest in volatility is manifested both
on theoretical plane, for risk management models, and with practical causes
e.g. decrease in risk of investment or achievement of larger incomes.

A special case of volatility is an implied volatility − a certain kind of
volatility, determined from option values. In this section the method of
determination of implied volatility on the basis of the Black-Scholes pricing
formula for the call options will be presented. By the implied volatility of
a financial instrument we mean the volatility implied by the market price
of a derivative based on a theoretical pricing model. In our case, put and
call options are the derivatives and to find value of implied volatility, we
use Black-Scholes pricing formula. The implied volatility have a larger value
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than realized volatility, whenever participants of market forecast that future
volatility of stocks are bigger than volatility observed in the past. There is
the opposite situation in the case on a waiting lesser market fragility.

In the Black-Scholes model, the value of a European call option on a
non-dividend paying stock is stated as

(1) CE
0 = SΦ(d1)−Ke−rT Φ (d2) ,

where

(2) d1 =
ln S

K +
(
r + 1

2σ2
)
T

σ
√

T
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√
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)
T
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√
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The stock price, strike price, interest rate, and time to expiration are denoted
by S, K, r, T , respectively and Φ is the standard normal distribution. The
annualized variance of the continuously compounded return on the under-
lying stock is denoted by σ2. The value of a put option is given by the
following formula

(4) PE
0 = −SΦ(−d1) + Ke−rT Φ(−d2) .

Since a closed-form solution for an implied standard deviation from Equa-
tion (1) is not possible, the implied volatility must be calculated numerically.
One of the most popular algorithms is the Newton-Raphson algorithm. By
this algorithm, we have the following formula

pn − pn−1 − f(pn−1)
f ′(pn−1)

.

In our case we have

σn = σn−1 − CE
0 (σn−1)− C

VC
,

where C is known call option value and VC is a V-sensitivity coefficient for
call options that is given by the following formula

VC =
∂CE

0

∂σ
= Sn (d1)

√
T .

We can calculate implied volatility from Equation (4) analogously. We have

σn = σn−1 − PE
0 (σn−1)− P

VP
,
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where VP is a V-sensitivity coefficient for put options and it is equal to VC .
S. Manaster and G. Koehler proposed also the optimal initial approxi-

mation

σ2 =
2
T

∣∣∣∣ln
S

K
+ rT

∣∣∣∣
for this algorithm. Using this method, we can obtain very good approxi-
mation, but the algorithm is quite time consuming because in all iterations
we must evaluate two integrals numerically. Moreover, very good precision
is not necessary, because all models basing on the Black-Scholes formula
have introduced bias into the implied volatility measure. The reason of it
is assumption of constant volatility in the Black-Scholes model. Therefore,
during last ten years there were constructed many estimators of implied
volatility. Most popular are presented below. There are introduced estima-
tors for call options only, because estimators for put options can be obtained
by using the following put-call parity

CE
0 − PE

0 = S −Ke−rT .

To simplify notation, we replace CE
0 by C.

C. Corrado and T. Miller in [2] provided an improved quadratic formula
which is valid when stock prices deviate from discounted strike prices. Their
formula is given as

(5) σCM =
1√
T

√
2π

S + X


C − S −X

2
+

√(
C − S −X

2

)2

− (S −X)2

π


 ,

where X = Ke−rT .
Another less time-consuming method was introduced by S. Li in [6]. The

formulas presented by him approximate implied volatility for all cases with
better precision than the Corrado-Miller estimator. It bases on the third
order Taylor expansion of standard normal distributions. For at-the-money
options, the problem come down to solving 3’rd order polynomial. In other
situations they are polynomials of 4’th order. For facilitate very compound
calculation he has considered three cases. There were obtained three formu-
las, which could be reduced to the following two formulas

(6) σLD =
α̃ +

√
α̃2 − 4(η−1)2

1+η

2
√

T

for deep in- or out-of-the-money options and

(7) σLN =
2
√

2√
T

z̃ − 1√
T

√
8z̃2 − 6α̃√

2z̃
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for nearly at-the-money option options, where

α̃ =
√

2π

1 + η

[
2C

S
+ η − 1

]
,

z̃ = cos
[
1
3

cos−1

(
3α̃√
32

)]

and

η =
Ke−rT

S
.

M. Kelly in [5] proposed a method based on partial derivatives of σ(C)
and the 5’th order Taylor expansion of this function. His method gives very
good approximation for nearly at-the-money options, even if the initial value
is distant from the solution.

Unfortunately, as it was mentioned above, all models basing on the
Black-Scholes formula have introduced bias into the implied volatility mea-
sure. J. Hull and A. White in [4] found that the magnitude of the bias
in models basing on the Black-Scholes formula is the smallest for nearly
at-the-money and close-to-maturity options. Therefore in empirical research
only nearly at-the-money options should be used to computations.

2. Comparison of results

The following tables list absolute errors of implied volatility for some
cases of σ, η and calculated them from formulas (5), (6) and (7). There is
assumed 5% risk free-rate. The symbol dash ,,-” in a cell means that in this
case estimator does not give any real result.

Table 1. The absolute estimation errors of implied volatility calcu-
lated from the Corrado-Miller formula and the formulas (6) and (7).
There is assumed 5% risk free-rate and that the time to expiration is
equaled to 1.

σ 0.15 0.3 0.45
η (5) (6) (7) (5) (6) (7) (5) (6) (7)

0.75 - 0.66520 0.17522 0.02242 0.00907 0.08691 0.01069 0.03464 0.04802
0.8 - 0.72035 0.10636 0.00743 0.00382 0.03977 0.00690 0.00623 0.01278
0.85 0.02818 0.00296 0.05086 0.00302 0.00083 0.00520 0.00509 0.002730 0.01249
0.9 0.00221 0.00025 0.01062 0.00158 0.00060 0.01797 0.00423 0.00359 0.02916
0.95 0.00025 0.00002 0.01324 0.00120 0.00108 0.03100 0.00387 0.00379 0.03844
1 0.00014 0.00014 0.02092 0.00112 0.00112 0.03508 0.00377 0.00377 0.04132
1.05 0.00024 0.00045 0.01397 0.00119 0.00129 0.03139 0.00387 0.00392 0.03871
1.1 0.00151 0.00346 0.00503 0.00147 0.00227 0.02106 0.00414 0.00466 0.03136
1.15 0.00842 0.02043 0.03321 0.00226 0.00504 0.00516 0.00466 0.00639 0.01995
1.20 - 0.71824 0.01995 0.00399 0.01108 0.01539 0.00555 0.00965 0.00508
1.25 - 0.71611 0.10636 0.00743 0.02350 0.03977 0.00690 0.01503 0.01278
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Table 2. The absolute estimation errors of implied volatility calcu-
lated from the Corrado-Miller formula and the formulas (6) and (7).
There is assumed 5% risk free-rate and that the time to expiration is
equaled to 0.5.

σ 0.15 0.3 0.45
η (5) (6) (7) (5) (6) (7) (5) (6) (7)

0.75 - 0.71309 0.01278 - 0.01083 0.18440 0.02567 0.01238 0.11410
0.8 - 0.74012 0.20058 0.04051 0.00356 0.10096 0.00962 0.00486 0.04989
0.85 - 0.73679 0.10967 0.00709 0.00225 0.03756 0.00432 0.00073 0.00304
0.9 0.01236 0.00385 0.03832 0.00169 0.00042 0.00620 0.00252 0.00121 0.02829
0.95 0.00046 0.00004 0.00680 0.00067 0.00044 0.03123 0.00199 0.00184 0.04586
1 0.00007 0.00007 0.02186 0.00056 0.00056 0.03914 0.00188 0.00188 0.05136
1.05 0.00039 0.00084 0.00821 0.00065 0.00085 0.03198 0.00198 0.00212 0.04638
1.1 0.00677 0.01297 0.02801 0.00131 0.00302 0.01207 0.00237 0.00344 0.03246
1.15 0.00842 0.73391 0.07905 0.00400 0.01057 0.01811 0.00338 0.00706 0.01098
1.20 - 0.73190 0.13810 0.01181 0.03378 0.05650 0.00551 0.01472 0.01684
1.25 - 0.72844 0.20058 0.04051 0.57844 0.10096 0.00962 0.02977 0.04989

Table 3. The absolute estimation errors of implied volatility calcu-
lated from the Corrado-Miller formula and the formulas (6) and (7).
There is assumed 5% risk free-rate and that the time to expiration is
equaled to 0.1.

σ 0.15 0.3 0.45
η (5) (6) (7) (5) (6) (7) (5) (6) (7)

0.75 - - 0.86845 - - 0.71868 - - 0.57701
0.8 - 0.77898 0.62900 - 0.62898 0.48113 - 0.47898 0.35499

0.85 - 0.76291 0.41019 - 0.61291 0.27203 - 0.01859 0.17410
0.9 - 0.75342 0.21041 - 0.02159 0.10314 0.00826 0.00031 0.04156

0.95 0.02737 0.01521 0.045717 0.00145 0.00016 0.00692 0.00079 0.00000 0.03768
1 0.00001 0.00135 0.02306 0.00011 0.00011 0.04418 0.00038 0.00012 0.06327

1.05 0.01571 0.02371 0.03966 0.00111 0.00227 0.01033 0.00072 0.00143 0.04010
1.1 - 0.74644 0.17670 0.02666 0.05610 0.07818 0.00543 0.01221 0.02310

1.15 - 0.74314 0.32961 - 0.59314 0.20027 0.03490 0.09756 0.11611
1.20 - 0.73359 0.48103 - 0.58359 0.33811 - 0.43359 0.22943
1.25 - 0.71211 0.62900 - 0.56211 0.48113 - 0.41211 -0.35499

The following graphs show estimator errors for wider range of σ and η.

Table 4. Graphs of absolute estimation errors of implied volatility for
η ∈ [0.75, 1.25] , σ ∈ [0.1, 1] and T ∈ {0.1, 0.5, 1} . There is assumed 5%
risk free-rate.
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The above results confirm that all considered estimators give good ap-
proximation only for nearly at-the-money options and close-to-maturity op-
tions. We see also that for small values of T, the error is also big. Similar
result is obtained in [3]. In practice, e.g. in Polish stock market, there are
concluded few option contracts, therefore to find implied volatility we have
to use also deep-in or deep-out-of-the-money options. In the next paragraph
there is presented a modified Corrado-Miller estimator which has relatively
small errors for deep-in or deep-out-of-the-money options with long time to
maturity.

3. A modified Corrado-Miller estimator

As we have noticed, the Corrado-Miller estimator gives usually too small
values of implied volatility for deep-in or deep-out-of-the-money options.
The values are also understate for big value of volatility. Therefore, an
ε-function is added to the estimator. By the ε-function we mean an approx-
imated function of absolute error. We can assume that σCM depends on
two variables

x =
1√
T

√
2π

S + X
(8)

and y =


C − S −X

2
+

√(
C − S −X

2

)2

− (S −X)2

π


 ,
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where X = Ke−rT . To determine the function ε (x, y) , we use the discrete
set of values of function εd(xj , yi) being the accurate absolute error function.
Their values we can get as a difference between the estimator σCM and
the implied volatility σ calculated for some set of pairs (xi, yj) from the
Newton-Raphson algorithm. Now, the function ε (x, y) can be determined
by using the least-squares surface approximation. To this end we apply
ZunZun program to find the best surface fit for our data. Since a relatively
simple function ε (x, y).with small number of parameters is expected, we
decide to take into account the following families of ε-functions.

I. Polynomial Equations:
A) Simplified Linear: z = a + bx + cy
B) Simplified Quadratic: z = a + bx + cy + dx2 + ey2

C) Simplified Cubic: z = a + bx + cy + dx2 + ey2 + fx3 + gy3

II. Taylor Equations:
A) z = a + bx + cy + dx2 + ey2 + fxy
B) z = a + b/x + cy + d/x2 + ey2 + fy/x
C) z = a + bx + c/y + dx2 + e/y2 + fx/y
D) z = a + b/x + c/y + d/x2 + e/y2 + f/(xy)

III. Rational Equations:
A) z = (a + bx + cy)/(1 + dx + ey)
B) z = (a + b ln(x) + c ln(y))/(1 + dx + ey)
C) z = (a + bx + cy)/(1 + d ln(x) + e ln(y))
D) z = (a + b ln(x) + c ln(y))/(1 + ln(x) + eln(y))
E) z = (a + bx + cy)/(1 + dx + ey) + f
F) z = (a + b ln(x) + c ln(y))/(1 + dx + ey) + f
G) z = (a + bx + cy)/(1 + d ln(x) + e ln(y)) + f
H) z = (a + b ln(x) + c ln(y))/(1 + d ln(x) + e ln(y)) + f

IV. Power Equations:
A) z = a(xb + yc)
B) z = a + xb + yc

C) z = a + xbyc

D) z = axb + cyd

E) z = a(xb + yc) + d
F) z = axb + cyd + e

V. Sigmoid Equations:
A) Sigmoid: z = a/((1 + exp(b− cx))(1 + exp(d− ey)))
B) Sigmoid With Offset: z = a/((1 + exp(b− cx))(1 + exp(d− ey))) + f

VI. Optical Equations:
A) Sag For Asphere 0: z =

(
s2/r

)
/

(
1 +

√
1− (k + 1)(s/r)2

)
,

where s2 = x2 + y2
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B) Sag For Asphere 0 Borisovsky: z =
(
s2/r

)
/

(
1 +

√
1− (k + 1)(s/r)2

)
,

where s2 = (x− a)2 + (y − b)2.

The lowest SSQ of absolute error for 375 points is equal to 0.00179143
and it is found for equation 2(b) with parameters:

a = 4.62627532e-01,
b = -1.16851917e-02,
c = 9.63541838e-04,
d = 7.53502261e-05,
e = 1.42451646e-05,
f = -2.10237683e-05.
Therefore a modified Corrado-Miller estimator is stated as

σMCM =
1√
T

√
2π

S + X


C − S −X

2
+

√(
C − S −X

2

)2

− (S −X)2

π


(9)

+ a +
b

x
+ cy +

d

x2
+ ey2 + f

y

x
.

where X = Ke−rT , x, y are defined by the formulas (8) and values of
parammeters are presented above.

4. Error of the modified Corrado-Miller estimator
and conclusions

The following tables list absolute errors of implied volatility calculated
from the formula (9). There is assumed 5% risk free-rate. The symbol
dash-” in a cell means that in this case estimator does not give any real
result.

Table 6. The absolute estimation errors of implied volatility calcu-
lated from the modified Corrado-Miller estimator. There is assumed 5%
risk free-rate and time to expiration T ∈{0.1, 0.5, 1}.

σ 0.15 0.3 0.45
η T=1 T=0.5 T=0.1 T=1 T=0.5 T=0.1 T=1 T=0.5 T=0.1

0.75 - - - 0.00043 - - 0.00015 0.02154 -
0.8 - - - 0.00042 0.00141 - 0.00622 0.01984 -
0.85 0.00193 - - 0.00402 0.01733 - 0.01072 0.01237 -
0.9 0.01626 0.03479 - 0.00761 0.01215 - 0.01324 0.00628 0.03095
0.95 0.01235 0.03439 0.00986 0.00944 0.00770 0.02035 0.01406 0.00283 0.01516
1 0.01086 0.03013 0.01606 0.00952 0.00609 0.01269 0.01353 0.00202 0.00933
1.05 0.01230 0.03085 0.01263 0.00824 0.01925 0.01936 0.01198 0.00328 0.03687
1.1 0.01491 0.02974 - 0.00605 0.00954 0.01352 0.00978 0.00590 0.02865
1.15 0.01359 - - 0.00357 0.01151 - 0.00722 0.00897 0.01651
1.20 - - - 0.00143 0.00948 - 0.00468 0.01155 -
1.25 - - - 0.00059 0.01263 - 0.00239 0.01224 -

For better comparison we present tables with Mean Absolute Percentage
Error (MAPE) and Mean Absolute Error (MAE) of implied volatility cal-
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culated from formulas (5). (6), (7) and (9) for η from some given intervals
and for σ ∈ [0.1, 1] , and T = 1. There is assumed 5% risk free rate.

Table 7. Mean Absolute Percentage Error (MAPE) and Mean Ab-
solute Error (MAE) of implied volatility calculated from formulas (5).
(6), (7) and (9) for η from given intervals and for σ ∈ [0.1, 1] , and T = 1.

(5) (6) (7) (9)
η MAPE MAE MAPE MAE MAPE MAE MAPE MAE

[0.75, 0.8) 0.03430 0.02147 0.01969 0.01426 0.09221 0.04937 0.00707 0.00290
[0.8, 0.85) 0.02674 0.01725 0.01781 0.01348 0.04890 0.02394 0.00459 0.00196
[0.85, 0.9) 0.02604 0.01484 0.01662 0.01253 0.04578 0.01918 0.00686 0.00184
[0.9, 0.95) 0.02061 0.01266 0.01651 0.01196 0.05388 0.02248 0.00541 0.00110
[0.95, 1) 0.01560 0.01186 0.01536 0.01181 0.06511 0.02705 0.00515 0.00094
(1, 1.05] 0.01559 0.01185 0.01579 0.01190 0.06586 0.02720 0.00593 0.00126
(1.05, 1.1] 0.01836 0.01237 0.02157 0.01294 0.05337 0.02303 0.00469 0.00115
(1.1, 1.15] 0.02056 0.01375 0.02717 0.01548 0.04156 0.01949 0.00240 0.00083
(1.15, 1.2] 0.02715 0.01575 0.18710 0.04175 0.04482 0.01897 0.00466 0.00115
(1.2, 1.25] 0.02811 0.01764 0.15584 0.04641 0.05263 0.02518 0.00351 0.00126
[0.75, 1.25] 0.022555 0.01460 0.01187 0.01856 0.05702 0.02549 0.00505 0.00140

Table 8. Mean Absolute Percentage Error (MAPE) and Mean Ab-
solute Error (MAE) of implied volatility calculated from formulas (5).
(6), (7) and (9) for η from given intervals and for σ ∈ [0.1, 1] , and T = 0.5.

(5) (6) (7) (9)
η MAPE MAE MAPE MAE MAPE MAE MAPE MAE

[0.75, 0.8) 0.03318 0.02003 0.01254 0.00798 0.11018 0.06100 0.09453 0.06256
[0.8, 0.85) 0.02441 0.01393 0.00978 0.00687 0.05761 0.02406 0.10289 0.06180
[0.85, 0.9) 0.01643 0.00955 0.00852 0.00646 0.04730 0.02215 0.11288 0.0595
[0.9, 0.95) 0.01262 0.00734 0.00860 0.00628 0.06379 0.03317 0.12258 0.05540
[0.95, 1) 0.00839 0.00608 0.00786 0.00597 0.08557 0.04213 0.13277 0.05100
(1, 1.05] 0.00828 0.00606 0.00877 0.00616 0.08604 0.04238 0.11330 0.04390
(1.05, 1.1] 0.01341 0.00709 0.01904 0.00822 0.06987 0.03445 0.08982 0.03875
(1.1, 1.15] 0.01511 0.00871 0.02688 0.01233 0.05142 0.02574 0.06416 0.03389
(1.15, 1.2] 0.02015 0.01120 0.12239 0.03943 0.04762 0.01938 0.04693 0.02821
(1.2, 1.25] 0.02565 0.01443 0.19053 0.06854 0.06162 0.02536 0.03212 0.02211
[0.75, 1.25] 0.00706 0.00978 0.03744 0.02005 0.06974 0.03368 0.00300 0.00141

Table 9. Mean Absolute Percentage Error (MAPE) and Mean Ab-
solute Error (MAE) of implied volatility calculated from formulas (5).
(6), (7) and (9) for η from given intervals and for σ ∈ [0.1, 1] , and T = 0.1.

(5) (6) (7) (9)
η MAPE MAE MAPE MAE MAPE MAE MAPE MAE

[0.75, 0.8) 0.08781 0.07573 0.025337 0.022669 0.282240 0.24903 0.01940 0.17828
[0.8, 0.85) 0.05110 0.03733 0.011080 0.008993 0.180943 0.13780 0.26149 0.21096
[0.85, 0.9) 0.02741 0.01568 0.004914 0.003025 0.095038 0.05491 0.32852 0.22625
[0.9, 0.95) 0.01194 0.00543 0.003425 0.001575 0.071510 0.04242 0.40312 0.23033
[0.95, 1) 0.00867 0.00244 0.005132 0.001694 0.106737 0.06068 0.56486 0.22692
(1, 1.05] 0.00622 0.00205 0.008901 0.002654 0.106262 0.06117 0.54939 0.22014
(1.05, 1.1] 0.01101 0.00482 0.021477 0.009173 0.074208 0.04485 0.38482 0.21405
(1.1, 1.15] 0.02192 0.01138 0.110307 0.047473 0.076917 0.04145 0.31197 0.20406
(1.15, 1.2] 0.03281 0.02130 0.146392 0.087993 0.123252 0.08122 0.25635 0.19077
(1.2, 1.25] 0.05844 0.04225 0.196866 0.141562 0.196592 0.14975 0.20359 0.16605
[0.75, 1.25] 0.02207 0.01387 0.041509 0.024001 0.054209 0.07436 0.40155 0.21295

In the following graphs there are presented absolute errors values of es-
timators (9) for η and σ intervals taken as above.

Table 10. Graphs of absolute errors of implied volatility calculated
by using the modified Corrado-Miller estimator for η ∈ [0.75, 1.25] , σ ∈
[0.1, 1] and T ∈ {0.1, 0.5, 1} . There is assumed 5% risk free-rate.
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The formula (9) gives the smallest mean of relative errors and mean ab-
solute errors for big T. The smallest value of T, the highest value of absolute
error. The modified form of this estimator can be used for options with long
time to maturity. The reason of that situation is a big fluctuation of error
for a small difference between arguments. A good approximation of error
function in such a case is possible only by using high order polynomials or
high order Taylor equations. In such situation we would minimize values of
functions of several dozen variables. Obviously, that procedure is extremely
time consuming. It is the reason why we have not chosen that way.
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