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1. Introduction and preliminaries

Metric fixed point theory is a branch of fixed point theory which finds
its primary applications in functional analysis. The interplay between the
geometry of Banach spaces and fixed point theory has been very strong and
fruitful. In particular, geometric conditions on mappings and/or underlying
spaces play a crucial role in metric fixed point problems. Although it has
a purely metric flavor, it is also a major branch of nonlinear functional
analysis with close ties to Banach space geometry, see for example [10] and
references mentioned therein. Several results concerning the existence and
approximation of a fixed point of a mapping rely on convexity hypotheses
and geometric properties of the Banach spaces. Takahashi [21] introduced
the notion of a convexity on metric spaces. Afterwards, Beg and Abbas ([4],
[5]), Ciric [8], Ding [9], Guay, Singh and Whitfield [11] and other authors
have studied fixed point theorems in convex metric spaces (see also [6],
[19]). On the other hand, Shahzad [18] introduced a class of noncommuting
mappings called R− subweakly commuting mappings, and applied it to S−
nonexpansive mappings in normed spaces. In this paper, common fixed
points, for Cq− commuting maps which are more general than weakly com-
patible maps, are obtained in the setting of a convex metric space. Apply-
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ing uniformly Cq−commuting mappings to asymptotically S−nonexpansive
mappings, common fixed point theorems are proved. As an application,
invariant approximation results for these mappings are also derived.

For the sake of convenience, we gather some basic definitions and set out
the terminology needed in the sequel.

Definition 1. Let (X, d) be a metric space. A mapping W : X × X ×
[0, 1] → X is said to be a convex structure on X, if, for each (x, y, λ) ∈
X ×X × [0, 1] and u ∈ X,

d(u, W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y).

A metric space X together with a convex structure W is called a convex
metric space. Obviously, W (x, x, λ) = x.

Let X be a convex metric space. A nonempty subset E of X is said
to be convex if, W (x, y, λ) ∈ E whenever (x, y, λ) ∈ E × E × [0, 1]. A
subset E of a convex metric space is said to be q−starshaped or starshaped
with respect to q, if there exist q in E such that W (x, q, λ) ∈ E, whenever
(x, λ) ∈ E × [0, 1]. Obviously q- starshaped subsets of X contain all convex
subsets of X as a proper subclass. Takahashi [21] has shown that open
spheres B(x, r) = {y ∈ X : d(y, x) < r} and closed spheres B[x, r] = {y ∈
X : d(y, x) ≤ r} are convex in a convex metric space X. A convex metric
space X is said to have property (A) if: d(W (y, x, λ),W (z, x, λ)) ≤ λd(y, z),
for all x, y, z ∈ X and λ ∈ (0, 1). Property (A) is a convex metric space
analogue of condition (I) for the starshaped metric spaces of Guay, Singh
and Whitfield, see, Definition 3.2 [11]. Throughout this paper, a convex
metric space X is assumed to have a property (A).

Also note that every normed space is a convex metric space. There are
many examples of convex metric spaces which cannot be embedded in any
normed space [21].

Example 1. Let X = {(x1, x2, x3) ∈ R3 : x1, x2, x3 > 0}. For x =
(x1, x2, x3), y = (y1, y2, y3) and z = (z1, z2, z3) in X, and α, β, γ ∈ [0, 1] with
α + β + γ = 1, define a mapping W : X3 × [0, 1]3 → X by

W (x, y, z, α, β, γ) = (αx1 + βx2 + γx3, αy1 + βy2 + γy3, αz1 + βz2 + γz3),

and a metric d : X × X → [0,∞) by, d(x, y) = |x1y1 + x2y2 + x3y3|. Here
X is a convex metric space but it is not a normed space.

Example 2. Let X = {(x1, x2) ∈ R2 : x1, x2 > 0}. For x = (x1, x2),
y = (y1, y2) in X and α ∈ [0, 1]. Define a mapping W : X ×X × [0, 1] → X
by

W (x, y, α) =
(

αx1 + (1− α)y1,
αx1x2 + (1− α)y1y2

αx1 + (1− α)y1

)
,
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and a metric d : X ×X → [0,∞) by d(x, y) = |x1 − y1| + |x1x2 − y1y2|. It
can be verified that X is a convex metric space but not a normed space.

Definition 2. Let T, S : X → X. A point x ∈ X is called:

(1) a fixed point of T if T (x) = x;

(2) a coincidence point of the pair {T, S} if Tx = Sx;

(3) a common fixed point of the pair {T, S} if x = Tx = Sx.

F (T ), C(T, S) and F (T, S) denote set of all fixed points of T, the set of all
coincidence points of the pair {T, S}, and the set of all common fixed points
of the pair {T, S}, respectively.

Definition 3. Let E be a q−starshaped subset of a convex metric space
X, q ∈ F (S), with E is both T and S invariant where, T, S : X → X. Put

Y Tx
q = {yλ : yλ = W (Tx, q, λ) and λ ∈ [0, 1]},

and, for each x in X, d(Sx, Y Tx
q ) = inf{d(Sx, yλ) : λ ∈ [0, 1]}. The map T

is said to be:

(1) an S− contraction if there exists k ∈ (0, 1) such that

d(Tx, Ty) ≤ kd(Sx, Sy);

(2) asymptotically S−nonexpansive if there exists a sequence {kn}, kn ≥
1, with lim

n→∞
kn = 1 such that d(Tnx, Tny) ≤ kn d(Sx, Sy), for each

x, y in E and n ∈ N. If kn = 1, for all n ∈ N , then T is called an
S− nonexpansive mapping. If S = I (the identity map), then T is an
asymptotically nonexpansive mapping;

(3) R−weakly commuting if there exists a real number R > 0 such that

d(STx, TSx) ≤ Rd(Tx, Sx)

for all x in E;

(4) R−subweakly commuting if there exists a real number R > 0 such that

d(TSx, STx) ≤ Rd(Sx, Y Tx
q );

for all x ∈ E;

(5) uniformly R-subweakly commuting if there exists a real number R > 0
such that

d(TnSx, STnx) ≤ Rd(Sx, Y T nx
q );

for all x ∈ E.
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(6) Cq− commuting if STx = TSx for all x ∈ Cq(S, T ), where Cq(S, T ) =
U{C(S, Tk) : 0 ≤ k ≤ 1}, and Tkx = W (Tx, q, k).
Clearly Cq− commuting maps are weakly compatible but converse is not
true in general ( see for example [2] ).

A self mapping T on a convex metric space X is said to be
(7) affine on E if

T (W (x, y, λ)) = W (Tx, Ty, λ),

for all x, y ∈ E and λ ∈ (0, 1);
(8) uniformly asymptotically regular on E if, for each ε > 0, there exists
a positive integer N such that d(Tnx, Tny) < ε for all n ≥ N and for all
x in E.

Definition 4. Let E be a q-starshaped subset of a convex metric space
X, and T, S : E → E be maps with q ∈ F (S). Then T and S are said to be
uniformly Cq−commuting on E if STnx = TnSx for all x ∈ Cq(S, T ) and
n ∈ N .

Clearly, uniformly Cq-commuting maps on E are Cq-commuting but not
conversely in general, as the following example shows.

Example 3. Let X be set of all real numbers with usual metric and
E = [1,∞). Define, Tx = 2x − 1 and Sx = x2, for all x ∈ E. Take, q = 1.
Then E is q− starshaped with Sq = q and Cq(S, T ) = {1}. Note that S
and T are Cq-commuting maps but not uniformly Cq-commuting, because
ST 21 6= T 2S1.

Uniformly R− subweakly commuting maps are uniformly Cq -commuting
but the converse does not hold in general, for this, we consider a following
example.

Example 4. Let X be set of all real numbers with usual metric, and
E = [0,∞). If,

Sx =

{
x
2 if 0 ≤ x < 1,

x if x ≥ 1

and

Tx =

{
1
2 if 0 ≤ x < 1,

x2 if x ≥ 1,

then E is 1− starshaped with S1 = 1 and Cq(S, T ) = [1,∞]. Note that S
and T are uniformly Cq− commuting but not R−weakly commuting for all
R > 0. Thus S and T are neither R− subweakly commuting nor uniformly
R− subweakly commuting maps.



Common fixed point results with applications . . . 9

2. Common fixed point results

In this section, the existence of common fixed points of uniformly Cq−
commuting, Cq− commuting, and uniformly R− subweakly commuting map-
pings is established in a convex metric space.

Theorem 1. Let E be a nonempty q− starshaped complete subset of
convex metric space, and T , f and g be self mappings on X. Suppose q ∈
F (f) ∩ F (g), T is continuous, f and g are continuous and affine on E,
cl(T (E)) is compact and T (E) ⊂ f(E) = g(E). If the pairs {T, f} and
{T, g} are Cq− commuting and satisfy, for all x, y ∈ E,

d(Tx, Ty) ≤ max{d(fx, gy), d(fx, Y Tx
q ), d(gy, Y Ty

q ),(1)
1
2
[d(fx, Y Ty

q ) + d(gy, Y Tx
q )]},

then T, f and g have a common fixed point in E.

Proof. Define Tn : E → E by

Tnx = W (Tx, q, λn),

where λn ∈ (0, 1) with lim
n→∞

λn = 1. Since E is q− starshaped, Tn is the self
mapping on E for each n ≥ 1. As f and T are Cq− commuting and f is
affine on E with fq = q, if, x ∈ C(f, Tn) ⊂ Cq(f, T ), then

fTnx = f(W (Tx, q, λn)) = W (fTx, q, λn) = W (Tfx, q, λn) = Tnfx.

Thus f and Tn are weakly compatible for all n. Also since g and T are Cq−
commuting and g is affine on E with gq = q, g and Tn are weakly compatible
for all n. Also,

d(Tnx, Tny) = d(W (Tx, q, λn),W (Ty, q, λn)) ≤ λnd(Tx, Ty)
≤ λn max{d(fx, gy), d(fx, Y Tx

q ), d(gy, Y Ty
q ),

1
2
[d(fx, Y Ty

q ) + d(gy, Y Tx
q )]}

≤ λn max{d(fx, gy), d(fx, Tnx), d(gy, Tny),
1
2
[d(fx, Tny) + d(gy, Tnx)]}.

By Corollary 3.1 of [7], for each n ≥ 1, there exist xn in E such that xn is
a common fixed point of f, g, and Tn. The compactness of cl(T (E)) implies
that there exists a subsequence {Txk} of {Txn} such that Txk → y as
k →∞. The definitions of Tkxk and convexity structure on X give xk → y.
From the continuity of T, f and g, we have y ∈ F (T ) ∩ F (f) ∩ F (g). �
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Corollary 1. Let E be a nonempty q− star shaped complete subset of
a convex metric space X, and T , f and g be self mappings on X. Suppose
that q ∈ F (f) ∩ F (g), T is continuous, f and g are continuous and affine
on E, cl(T (E)) is compact and T (E) ⊂ f(E) = g(E). If the pairs {T, f}
and {T, g} are R− subweakly commuting mappings satisfying (1), then T ,
f and g have a common fixed point in E.

Corollary 2. Let E be a nonempty closed q− star shaped subset of
convex metric space X, and T and S be R− subweakly commuting mappings
on E such that T (E) ⊂ S(E), cl(T (E)) is compact where q ∈ F (S). If T
is continuous S− nonexpansive and S is affine on E, then F (T ) ∩ F (S) is
nonempty.

Theorem 2 ([15]). Let E be a subset of a metric space (X, d), and S
and T be weakly compatible self-maps of E. Assume that clT (E) ⊂ S(E),
clT (E) is complete, and T and S satisfy, for all x, y ∈ E and 0 ≤ h < 1,

d(Tx, Ty) ≤ h max {d(Sx, Sy), d(Sx, Tx),(2)
d(Sy, Ty), d(Sx, Ty), d(Sy, Tx)} .

Then E ∩ F (S) ∩ F (T ) is a singleton.

Theorem 3. Let E be a nonempty closed q−starshaped subset of a convex
complete metric space X, and T and S be uniformly Cq− commuting map-
pings on E −{q} such that S(E) = E and T (E −{q}) ⊂ S(E −{q}), where
q ∈ F (S). Suppose that T is continuous asymptotically S− nonexpansive
with sequence {kn} and S is affine on E. For each n ≥ 1, define a mapping

Tn on E by Tnx = W (Tnx, q, αn), where αn =
λn

kn
and {λn} is a sequence in

(0, 1) with lim
n→∞

λn = 1. Then for each n ∈ N , F (Tn) ∩ F (S) is a singleton.

Proof. For all x, y ∈ E, we have

d(Tn(x), Tn(y)) = d(W (Tnx, q, αn),W (Tny, q, αn))
≤ αnd(Tnx, Tny) ≤ λnd(Sx, Sy).

Moreover, as T and S are uniformly Cq− commuting and S is affine on
E with Sq = q, for each, x ∈ C(S, Tn) ⊆ Cq(S, T ),

STnx = S(W (Tnx, q, λn)) = W (STnx, q, λn)
= W (TnSx, q, λn) = TnSx.

Hence S and Tn are weakly compatible for all n. The result now follows
from Theorem 2. �
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Corollary 3. Let E be a nonempty closed q−starshaped subset of convex
complete metric space X and T and S be Cq− commuting mappings on
E−{q} such that S(E) = E and T (E−{q}) ⊂ S(E−{q}), where q ∈ F (S).
Suppose that T is continuous asymptotically S− nonexpansive with sequence
{kn} and S is affine on E. For each n ≥ 1, define a mapping Tn on E by

Tnx = W (Tnx, q, αn), where αn =
λn

kn
and {λn} is a sequence in (0, 1) with

lim
n→∞

λn = 1. Then for each n ∈ N , F (Tn) ∩ F (S) is singleton.

Theorem 4. Let E be a nonempty closed q− starshaped subset of convex
metric space X, and T and S be continuous self mappings on E such that
S(E) = E and T (E−{q}) ⊂ S(E−{q}), q ∈ F (S). Suppose T is uniformly
asymptotically regular, asymptotically S- nonexpansive, and S is affine on
E. If cl(E − {q}) is compact and S and T are uniformly Cq− commuting
mappings on E − {q}. Then F (T ) ∩ F (S) is a singleton in E.

Proof. From Theorem 3, for each n ∈ N, F (Tn) ∩ F (S) is singleton in
E. Thus,

Sxn = xn = W (Tnxn, q, αn).

Also,

d(xn, Tnxn) = d(W (Tnxn, q, αn), Tnxn))
≤ (1− αn)d(q, Tnxn) ≤ (1− αn)d(q, Tnxn).

Since T (E − {q}) is bounded, d(xn, Tnxn) → 0 as n →∞. Now,

d(xn, Txn) ≤ d(xn, Tnxn) + d(Tnxn, Tn+1xn) + d(Tn+1xn, Txn)
≤ d(xn, Tnxn) + d(Tnxn, Tn+1xn) + k1d(STnxn, Sxn)
≤ d(xn, Tnxn) + d(Tnxn, Tn+1xn) + k1d(STnxn, SW (Tnxn, q, αn))
≤ d(xn, Tnxn) + d(Tnxn, Tn+1xn) + k1d(STnxn,W (STnxn, q, αn))
≤ d(xn, Tnxn) + d(Tnxn, Tn+1xn) + k1(1− αn)d(STnxn, Sq)
≤ d(xn, Tnxn) + d(Tnxn, Tn+1xn) + k1(1− αn)d(STnxn, Sq),

which implies that, d(xn, Txn) → 0, as n →∞. As cl(E − {q}) is compact
and E is closed, there exists a subsequence {xni} of {xn} such that xni →
x0 ∈ E as i → ∞. The continuity of T implies that T (x0) = x0. Since
T (E − {q}) ⊂ S(E − {q}), it follows that x0 = T (x0) = Sy for some y ∈ E.

Moreover,

d(Txni , T y) ≤ k1d(Sxni , Sy) = k1d(xni , x0).

Taking the limit as i → ∞, we get Tx0 = Ty. Thus Tx0 = Sy = Ty = x0.
Since S and T are uniformly Cq− commuting on E − {q}, and y ∈ C(S, T ),

d(Tx0, Sx0) = d(TSy, STy) = 0.
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Hence the result follows. �

Corollary 4. Let E be a nonempty closed q-starshaped subset of a convex
metric space X, and T and S be continuous self mappings on E such that
S(E) = E and T (E − {q}) ⊂ S(E − {q}), q ∈ F (S). Suppose that T is
uniformly asymptotically regular, asymptotically S- nonexpansive and S is
affine on E. If cl(E − {q}) is compact and S and T are Cq− commuting
mappings on E − {q}, then F (T ) ∩ F (S) is a singleton in E.

3. Invariant approximation results

Meinardus [16] was the first to employ a fixed point theorem to prove the
existence of an invariant approximation in Banach spaces. Subsequently,
several interesting and valuable results have appeared in the literature of
approximation theory ([1], [18] and [20]). In this section we obtain results on
best approximation as a fixed point of uniformly Cq− commuting mappings
and Cq− commuting in a convex metric space.

Definition 5. Let X be a metric space and M be a closed subset of X. If
there exists a y0 ∈ M such that d(x, y0) = d(x,M) = inf{d(x, y) : y ∈ M},
then y0 is called a best approximation to x out of M. We denote by PM (x),
the set of all best approximations to x out of M.

Remark 1. Let M be a closed convex subset of a convex metric space.
As, W (u, v, λ) ∈ M for (u, v, λ) ∈ M ×M × [0, 1], the definition of convexity
structure on X further implies that W (u, v, λ) ∈ PM (x). Hence PM (x) is a
convex subset of X. Also, PM (x) is a closed subset of X. Moreover, it can
also be shown that PM (x) ⊂ ∂M , where ∂M stands for the boundary of M .

Theorem 5. Let M be a nonempty subset of a convex metric space X,
T, f and g be self maps on X such that u is common fixed point of f, g and
T and T (∂M ∩M) ⊂ M . Suppose that f and g are affine and continuous
on PM (u) with PM (u) q− starshaped, f(PM (u)) = PM (u) = g(PM (u)) and,
q ∈ F (f) ∩ F (g). If the pairs {T, f} and {T, g} are Cq− commuting and
satisfy,

d(Tx, Ty) ≤


d(fx, gu) if y = u,

max{d(fx, gy), d(fx, Y Tx
q ),

d(gy, Y Ty
q ), 1

2 [d(fx, Y Ty
q ) + d(gy, Y Tx

q )]} if y ∈ PM (u)

for all x ∈ PM (u)∪{u}, and if cl(PM (u)) is compact and PM (u) is complete,
then PM (u) ∩ F (T ) ∩ F (f) ∩ F (g) is nonempty.
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Proof. Let x ∈ PM (u), then d(x, u) = d(x, M). Note that for any
λ ∈ (0, 1)

d(yλ, u) = d(W (x, u, λ), u) ≤ λd(x, u) < d(x, u) = d(x, M),

which shows that, Y x
u = {yλ : yλ = W (x, u, λ)}∩M is empty so x ∈ ∂M∩M

and Tx ∈ M. Since fx ∈ PM (u), u is common fixed point of f, g and T,
from the given contractive condition we obtain

d(Tx, u) = d(Tx, Tu) ≤ d(fx, gu) = d(fx, u) = d(u, M).

Thus PM (u) is T - invariant. Also,

T (PM (u)) ⊂ PM (u) = f(PM (u)) = g(PM (u)),

and result follows from Theorem 1. �

Theorem 6. Let M be a nonempty subset of a convex metric space X,
and T , S be two continuous self mappings on X such that and T (∂M ∩
M) ⊂ M , u ∈ F (S) ∩ F (T ) for some u in X. Suppose that T is uniformly
asymptotically regular, asymptotically S− nonexpansive and S is affine on
PM (u) with S(PM (u)) = PM (u), q ∈ F (S) and PM (u) is q− starshaped. If
cl(PM (u)) is compact, PM (u) is complete and the pair {S, T} is uniformly
Cq− commuting on PM (u) ∪ {u} satisfying d(Tx, Tu) ≤ d(Sx, Su), then
PM (u) ∩ F (T ) ∩ F (S) 6= φ.

Proof. Let x ∈ PM (u), then d(x, u) = d(x, M). Note that for any
λ ∈ (0, 1),

d(yλ, u) = d(W (x, u, λ), u) ≤ λd(x, u) < d(x, u) = d(x,M),

which shows that, Y x
u = {yλ : yλ = W (x, u, λ)}∩M is empty so x ∈ ∂M∩M

and Tx ∈ M . Since Sx ∈ PM (u), u is common fixed point of S and T , and
therefore, by given contractive condition, we obtain

d(Tx, u) = d(Tx, Tu) ≤ d(Sx, Su) = d(Sx, u) = d(u, M).

Thus PM (u) is T - invariant. Also,

T (PM (u)) ⊂ PM (u) = S(PM (u)).

The result now follows from Theorem 4. �
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Corollary 5. Let M be a nonempty subset of convex metric space X, and
T and S be two continuous self mappings on X such that and T (∂M ∩M) ⊂
M , u ∈ F (S)∩F (T ) for some u in X. Suppose that T is uniformly asymp-
totically regular, asymptotically S- nonexpansive, S is affine on PM (u) with
S(PM (u)) = PM (u), q ∈ F (S) and, PM (u) is q− starshaped. If cl(PM (u))
is compact, PM (u) is complete and pair {S, T} is uniformly R−subweakly
commuting on PM (u)∪{u} satisfying d(Tx, Tu) ≤ d(Sx, Su), then PM (u)∩
F (T ) ∩ F (S) 6= φ.

Remark 2. Theorem 4 extends and improves Theorem 6 of [3] to convex
metric spaces. The results of this paper generalize the comparable results
of [5] along with the reference in [5].

Acknowledgement: Author is grateful to Professor B.E. Rhoades for
his suggestions to improve the presentation of the paper.
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