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ANTI-PERIODIC BOUNDARY VALUE PROBLEMS

FOR NONLINEAR IMPULSIVE FUNCTIONAL

DIFFERENTIAL EQUATIONS∗

Abstract. This paper is concerned with the anti-periodic bound-
ary value problems for nonlinear impulsive functional differential
equations

x′(t) = f(t, x(t), x(α1(t)), · · · , x(αn(t))), a.e. t ∈ [0, T ],
∆x(tk) = Ik(x(tk)), k = 1, · · · ,m,
x(0) = −x(T ).

The sufficient conditions for the existence of at least one solution
to above problem are established. The results generalize and im-
prove the known ones. Examples are presented to illustrate the
main results.
Key words: Anti-Periodic boundary value problem; impulsive
differential equation; fixed-point theorem; growth condition.
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1. Introduction

In paper [1], Luo, Shen and Neito studied the anti-periodic problem of
impulsive differential equation

x′(t) = f(t, x(t)), t ∈ [0, T ], t 6= tk, k = 1, · · · ,m,
∆x(tk) = Ik(x(tk)), k = 1, · · · ,m,
x(0) = −x(T ).

Following results are obtained.

Theorem A. Suppose λ > 0. Assume that there are a function ψ :
[0,+∞) → (0,+∞) and a positive function ρ ∈ L1([0, T ]) with

|f(t, x) + λx| ≤ ρ(t)ψ(|x|),
∗ The author was supported by the Science Foundation of Guangdong Province and

the National Natural Sciences Foundation of P.R.China
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and there exist bk ≥ 0 such that

(1) |Ik(x)| ≤ bk|x| and
m∑

k=1

bk < 1 + e−λT .

Furthermore, suppose

(2) sup
c≥0

c

ψ(c)
>

||ρ||L1

1 + e−λT −
∑m

k=1 bk
.

Then (∗) has at least one solution.

Under the assumptions

(3) f(t, u)− f(t, v) ≥ −λ(u− v) +M(u− v)

and that there are a pair of coupled lower and upper solutions for (∗),
and Ik are nondecreasing, and other assumptions, the existence result was
also proved by authors in [1] using lower and upper solutions methods and
monotone iterative technique.

We note that equation (2) or (3) implies that f(t, x) is at most linear in x,
(1) implies that Ik is a t most linear. So the problem have not been solved
when f(t, x) is super-linear in x. Furthermore, there no paper concerned
with the solvability of anti-periodic problems for functional differential equa-
tions with nonlinear impulses effects which are not nondecreasing or do not
satisfy |Ik(x)| ≤ bk|x|.

There exist other papers concerned with the solvability of anti-periodic
boundary value problems for first order differential equations with impulses
effects, see [8, 9, 10, 13, 14, 15] and the references therein, or for higher
order differential equations, we may see [2-7, 11] and the references cited
there, but the methods used are lower and upper solutions methods and
monotone iterative technique. It seems that there is no paper discussed the
solvability of anti-periodic boundary value problems for first order functional
differential equations with impulses effects.

In this paper, we are concerned with the existence of solutions of the
anti-periodic boundary value problems for nonlinear impulsive functional
differential equations

(4)


x′(t) = f(t, x(t), x(α1(t)), · · · , x(αn(t))),

t ∈ [0, T ], t 6= tk, k = 1, · · · ,m,
∆x(tk) = Ik(x(tk)), k = 1, · · · ,m,
x(0) = −x(T ).

where T > 0, 0 = t0 < t1 < · · · < tm < tm+1 = T are constants,
αk ∈ C1([0, T ], [0, T ]) for all k = 1, · · · , n, the inverse function of αi is
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denoted by βi(i = 1, · · · , n), f is an impulsive Carathedeodory function, Ik
are continuous functions.

The purpose of this paper is to improve Theorem A by using new methods
and we also present new results for the existence of solutions of problem
(4). The existence results for solutions of (4) will be established when f is
super-linear. We don’t need the assumptions that f is at most linear and Ik
are nondecreasing. Some examples are presented to illustrate our theorems.

2. Main results and proofs

In this section, we establish the main results. To define solutions of (4),
we introduce the Banach space.

Let u : J = [0, T ] → R, and 0 = t0 < t1 < · · · < tm < tm+1 = T , for
k = 0, · · · ,m, define the function uk : (tk, tk+1] → R by uk(t) = u(t). We
will use the following Banach space

X =

{
u : J → R, uk ∈ C0(tk, tk+1], k = 0, · · · ,m, there exist the limits
lim

t→t+k

u(t), lim
t→0+

u(t) = u(0), lim
t→T−

u(t) = u(T )

}

and
Y = X ×Rm

with the norms
||x|| = sup

t∈[0,T ]
|x(t)|

for x ∈ X and

||(y, a1, · · · , am)|| = max {||y||, |ai|, k = 0, · · · ,m}

for (y, a1, · · · , am) ∈ Y .
A function f is an impulsive Carathedeodory function if
∗ f(•, u0, u1, · · · , un) ∈ X for each u = (u0, · · · , un) ∈ Rn+1;
∗ f(t, •, · · · , •) is continuous for a.e. t ∈ J ;
∗ for each r > 0 there is hr ∈ L1(J) so that

|f(t, u0, u1, · · · , un)| ≤ hr(t), a.e.t ∈ J \ {t1, · · · , tm}

and every u satisfying ||(u0, u1, · · · , un)|| < r.
By a solution of (4) we mean a function u ∈ X satisfying (4).

Lemma 1. For each σ ∈ L1(J), the linear problem

(5)

{
x′(t) = σ(t), a.e. t ∈ J,
x(0) = −x(T ).
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has unique solution

(6) x(t) = −1
2

∫ T

t
σ(s)ds+

1
2

∫ t

0
σ(s)ds.

Proof. Integrating (5) from 0 to T and using x(0) = −x(T ), we get

x(0) = −1
2

∫ T

0
σ(s)ds.

Integrating (5) from 0 to t, we have (6). �

Lemma 2. For each σ ∈ L1(J), θk ∈ R, then the linear problem

(7)


x′(t) = σ(t), a.e. t ∈ J,
∆x(tk) = θk, k = 1, · · · ,m,
x(0) = −x(T ).

has unique solution

(8) x(t) =
1
2

∫ t

0
σ(s)ds− 1

2

∫ T

t
σ(s)ds− 1

2

∑
t≤tk<T

σk +
1
2

∑
0<tk<t

θk.

Proof. Integrating (7) from 0 to T and using x(0) = −x(T ), we get

x(0) = −1
2

∫ T

0
σ(s)ds− 1

2

m∑
k=1

σk.

Integrating (7) from 0 to t, we have (8). One may see the details in the
references [16, 17].

Now, we define a linear operator L : D(L) ⊆ X → Y and a nonlinear
operator N : X → Y :

Lx(t) =



x′(t)
∆x(t1)

·
·
·

∆x(tm)

 for x ∈ D(L)

where D(L) = {u ∈ X, uk ∈ C1(tk, tk+1], k = 0, 1, · · · ,m, x(0) = −x(T )}
and

Nx(t) =



f(t, x(t), x(α1(t)), · · · , x(αn(t)))
I1(x(t1))

·
·
·

Im(x(tm))

 for x ∈ X.
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It is easy to see that L is a Fredholm operator of index zero with KerL = {0},
N is L−compact on any open bounded subset of X and that x ∈ X is a
solution of problem (4) if and only if x is a solution of the operator equation
Lx = Nx. �

We set the following assumptions which should be used in the main re-
sults.

(A1). Ik(x)(2x+ Ik(x) ≤ 0 for all x ∈ R and k = 1, · · · ,m.
(A2). x(x+ Ik(x)) ≥ 0 for all x ∈ R and k = 1, · · · ,m.
(A3). Ik(x)(2x+ Ik(x) ≥ 0 for all x ∈ R and k = 1, · · · ,m.
(A4). xIk(x) ≥ 0 for all x ∈ R and k = 1, · · · ,m.

(C1). There exist impulsive Carathedeodory functions h : [0, T ]×Rn →
R, r ∈ X and gi : [0, T ]×R→ R such that

(i) f(t, x0, · · · , xn) = h(t, x0, · · · , xn) +
∑n

i=0 gi(t, xi) + r(t) holds for all
(t, x0, · · · , xn) ∈ [0, T ]×Rn+1.

(ii) There exist constants q ≥ 0 and β > 0 such that

h(t, x0, · · · , xn)x0 ≤ −β|x0|q+1

holds for all (t, x0, · · · , xn) ∈ [0, T ]×Rn+1.
(iii) lim|x|→+∞ supt∈[0,T ]

|gi(t,x)|
|x|q = ri ∈ [0,+∞) for i = 0, · · · , n.

(C2). There exist impulsive Carathedeodory functions h : [0, T ]×Rn →
R, r ∈ X and gi : [0, T ]×R→ R so that

(i) f(t, x0, · · · , xn) = h(t, x0, · · · , xn) +
∑n

i=0 gi(t, xi) + r(t) holds for all
(t, x0, · · · , xn) ∈ [0, T ]×Rn+1.

(ii) There are constants q ≥ 0 and β > 0 so that

h(t, x0, · · · , xn)x0 ≥ β|x0|q+1

holds for all (t, x0, · · · , xn) ∈ [0, T ]×Rn+1.
(iii) lim|x|→+∞ supt∈[0,T ]

|gi(t,x)|
|x|q = ri ∈ [0,+∞) for i = 0, · · · , n.

(C3). There exist exist impulsive Carathedeodory functions h : [0, T ] ×
Rn → R, r ∈ X and gi : [0, T ]×R→ R so that

(i) f(t, x0, · · · , xn) = h(t, x0, · · · , xn) +
∑n

i=0 gi(t, xi) + r(t) holds for all
(t, x0, · · · , xn) ∈ [0, T ]×Rn+1.

(ii) For (t, x0, · · · , xn) ∈ [0, T ]×Rn+1, h(t, x0, · · · , xn)x0 ≤ 0 holds.
(iii) lim|x|→+∞ supt∈[0,T ]

|gi(t,x)|
|x| = ri ∈ [0,+∞) for i = 0, · · · , n.

(C4). There exist exist impulsive Carathedeodory functions h : [0, T ] ×
Rn → R, r ∈ X and gi : [0, T ]×R→ R so that
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(i) f(t, x0, · · · , xn) = h(t, x0, · · · , xn) +
∑n

i=0 gi(t, xi) + r(t) holds for all
(t, x0, · · · , xn) ∈ [0, T ]×Rn+1.

(ii) For (t, x0, · · · , xn) ∈ [0, T ]×Rn+1, h(t, x0, · · · , xn)x0 ≥ 0 holds.
(iii) lim|x|→+∞ supt∈[0,T ]

|gi(t,x)|
|x| = ri ∈ [0,+∞) for i = 0, · · · , n.

Theorem 1. Assume that there exist functions ψi : [0,+∞) → (0,+∞)
and positive functions ρi ∈ L1([0, T ]) such that

|f(t, x0, · · · , xn)| ≤
n∑

i=0

ρi(t)ψi(|x|),

and there exist bk ≥ 0 such that

|Ik(x)| ≤ bk|x| and
m∑

k=1

bk < 2, k = 1, · · · ,m.

Furthermore, suppose

(9) sup
c>0

c∫ T
0 ρ0(s)dsψ0(c) +

∑n
i=1

∫ T
0 ρi(s)dsψi(c)

>
1

2−
∑m

k=1 bk
.

Then (4) has at least one solution.

Proof. Suppose λ ∈ (0, 1), consider the operator equation Lx = λNx,
i.e.,

(10)


x′(t) = λf(t, x(t), x(α1(t)), · · · , x(αn(t))), t ∈ [0, T ],

t 6= tk, k = 1, · · · ,m,
∆x(tk) = λIk(x(tk)), k = 1, · · · ,m,
x(0) = −x(T ).

It follows from Lemma 2 that

x(t) = λ
1
2

∫ t

0
f(s, x(s), x(α1(s)), · · · , x(αn(s)))ds

− λ
1
2

∫ T

t
f(s, x(s), x(α1(s)), · · · , x(αn(s)))ds

− λ
1
2

∑
t≤tk<T

Ik(x(tk)) + λ
1
2

∑
0<tk<t

Ik(x(tk)).
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Hence

|x(t)| ≤ 1
2

∫ T

0
|f(s, x(s), x(α1(s)), · · · , x(αn(s)))|ds+

1
2

m∑
k=1

|Ik(x(tk))|

≤ 1
2

∫ T

0
ρ0(s)ψ0(|x(s)|)ds+

1
2

n∑
i=1

∫ T

0
ρi(s)ψi(|x(αi(s))|)ds

+
1
2

p∑
k=1

bk||x||∞ ≤ 1
2

(∫ T

0
ρ0(s)dsψ0(||x||∞)

+
n∑

i=1

∫ T

0
ρi(s)dsψi(||x||∞) +

p∑
k=1

bk||x||∞

)
.

Then we get(
2−

m∑
k=1

bk

)
||x||∞ ≤

∫ T

0
ρ0(s)dsψ0(||x||∞) +

n∑
i=1

∫ T

0
ρi(s)dsψi(||x||∞).

So
||x||∞

T∫
0

ρ0(s)dsψ0(||x||∞) +
n∑

i=1

T∫
0

ρi(s)dsψi(||x||∞)
≤ 1

2−
m∑

k=1

bk

.

From (9), there exists a constant c0 > 0 such that ||x|| < c0.
Let Ω1 = {x ∈ X : ||X|| < c0}. It follows that ||x||∞ 6= c0 for x ∈ {x ∈

X : Lx = λNx, λ ∈ [0, 1]}.
Choose the operator T = L−1N . Consider

(11) (I − λT )(x) = (I − λL−1N)(x) = 0, λ ∈ [0, 1].

It follows that every solution of (11) satisfies x ∈ Ω1. Therefor, (I−λT )(x) 6=
0 for all λ ∈ [0, 1] and x ∈ ∂Ω1. The degree is defined on the bounded, open
set Ω1 and we have, by the invariance of the degree under homotopy (see
[12]),

d((I − λT )(x),Ω1, 0) = d((I − T )(x),Ω1, 0) = d(I,Ω1, 0) = 1( 6= 0)

since 0 ∈ Ω1. Therefor T has a fixed point, and thus, there exists a solution
x to x = Tx. Thus, Lx = Nx has at least one solution x ∈ D(L) ∩ Ω1, So
x is a solution of (4). The proof is complete. �

Remark 1. We apply Theorem 1 to problem (∗), we get that if there
exist a function ψ : [0,+∞) → (0,+∞) and a function ρ ∈ L1([0, T ]) with

|f(t, x)| ≤ ρ(t)ψ(|x|),
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and there exist bk ≥ 0 such that

|Ik(x)| ≤ bk|x| and
m∑

k=1

bk < 2.

Furthermore, suppose

sup
c≥0

c∫ T
0 ρ(s)dsψ(c)

>
1

2−
∑m

k=1 bk
.

Then (∗) has at least one solution. Theorem 1 generalizes and improves
Theorem A.

Theorem 2. Suppose (A1), (A2) and (C3) hold. Then (4) has at least
one solution if

(12) r0 +
n∑

k=1

rk <
1

4T
.

Proof. Similar to the proof of Theorem 1, we get (10). Then

x′(t)x(t) = λf(t, x(t), x(α1(t)), · · · , x(αn(t)))x(t).

It follows from (A2) that

x(t+k )x(tk) = x(tk)(x(tk) + λIk(x(tk)))
≥ λx(tk)(x(tk) + Ik(x(tk))) ≥ 0 for k = 1, · · · ,m.

Together with x(0) = −x(T ), there is ξ ∈ [0, T ] such that x(ξ) = 0. Hence
for t ≥ ξ, we have from (A1) and (C3) that

1
2
x2(t) =

1
2
x2(ξ) + λ

∑
ξ≤tk<t

Ik(x(tk)(2x(tk) + λIk(x(tk)))

+ λ

∫ t

ξ
f(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds

≤ 1
2
x2(ξ) + λ

∑
ξ≤tk<t

Ik(x(tk)(2x(tk) + Ik(x(tk)))

+ λ

∫ t

ξ
f(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds

≤ λ

∫ t

ξ
h(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds

+ λ

∫ t

ξ
x(s)g0(x(s))ds+ λ

n∑
i=1

∫ t

ξ
x(s)gi(x(αi(s)))ds

+ λ

∫ t

ξ
x(s)r(s)ds
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≤
∫ T

0
|x(s)g0(x(s))|ds

+
n∑

i=1

∫ T

0
|x(s)gi(x(αi(s)))|ds+

∫ T

0
|x(s)||r(s)|ds.

Let ε > 0 satisfy that

(13) (r0 + ε) +
n∑

k=1

(rk + ε) <
1

4T
.

For such ε > 0, there is δ > 0 so that for every i = 0, 1, · · · , n,

(14) |gi(t, x)| < (ri + ε)|x| uniformly for t ∈ [0, T ] and |x| > δ.

Let, for i = 1, · · · , n, ∆1,i = {t : t ∈ [0, T ], |x(αi(t))| ≤ δ}, ∆2,i = {t :
t ∈ [0, T ], |x(αi(t))| > δ}, gδ,i = maxt∈[0,T ],|x|≤δ |gi(t, x)|, and ∆1 = {t ∈
[0, T ], |x(t)| ≤ δ}, ∆2 = {t ∈ [0, T ], |x(t)| > δ}. Then we get

1
2
x2(t) =

∫
∆1

|x(s)g0(x(s))|ds+
∫

∆2

|x(s)g0(x(s))|ds

≤
n∑

i=1

∫
∆1,i

|x(s)gi(x(αi(s)))|ds+
n∑

i=1

∫
∆2,i

|x(s)gi(x(αi(s)))|ds

+
∫ T

0
|x(s)||r(s)|ds

≤
n∑

i=0

gδ,i||x||∞ +
n∑

i=1

(ri + ε)
∫

∆2,i

|x(s)x(αi(s))|ds

+ (r0 + ε)
∫

∆2

|x(s)|2ds+ ||x||∞
∫ T

0
|r(t)|dt

≤
n∑

i=0

gδ,i||x||∞ +
n∑

i=1

(ri + ε)T ||x||2∞

+ (r0 + ε)T ||x||2∞ + ||x||∞
∫ T

0
|r(t)|dt.

Then

1
2
x2(t) ≤

n∑
i=0

gδ,i||x||∞ +
n∑

i=1

(ri + ε)T ||x||2∞

+ (r0 + ε)T ||x||2∞ + ||x||∞
∫ T

0
|r(t)|dt.
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We get

1
2
x2(0) =

1
2
x2(T ) ≤

n∑
i=0

gδ,i||x||∞ +
n∑

i=1

(ri + ε)T ||x||2∞

+ (r0 + ε)T ||x||2∞ + ||x||∞
∫ T

0
|r(t)|dt.

Then, for t ∈ [0, ξ], we have by a similar way that

1
2
x2(t) =

1
2
x2(0) + λ

∑
0≤tk<t

Ik(x(tk)(2x(tk) + λIk(x(tk)))

+ λ

∫ t

0
f(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds

≤ 1
2
x2(0) + λ

∫ t

0
f(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds

≤ 2
n∑

i=0

gδ,i||x||∞ + 2
n∑

i=1

(ri + ε)T ||x||2∞

+ 2(r0 + ε)T ||x||2∞ + 2||x||∞
∫ T

0
|r(t)|dt.

It follows that that

1
2
||x||2∞ ≤ 2

n∑
i=0

gδ,i||x||∞ + 2
n∑

i=1

(ri + ε)T ||x||2∞

+ 2(r0 + ε)T ||x||2∞ + 2||x||∞
∫ T

0
|r(t)|dt.

It follows from (13) that there exists a constant c0 > 0 such that ||x||∞ < c0.
The remainder of the proof is similar to that of the proof of Theorem 1 and
is omitted. �

Theorem 3. Suppose (A2), (A3) and (C4) hold. Then (4) has at least
one solution if (12) holds.

Proof. Similar to the proof of Theorem 1, we get (10). Then

x′(t)x(t) = λf(t, x(t), x(α1(t)), · · · , x(αn(t)))x(t).

It follows from (A2) that

x(t+k )x(tk) = x(tk)(x(tk) + λIk(x(tk)))
≥ λx(tk)(x(tk) + Ik(x(tk))) ≥ 0 for k = 1, · · · ,m.
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Together with x(0) = −x(T ), there is ξ ∈ [0, T ] such that x(ξ) = 0. Hence
for t ≤ ξ, we get from (A3) and (C4) that

1
2
x2(t) =

1
2
x2(ξ)− λ

∑
t≤tk<ξ

Ik(x(tk)(2x(tk) + λIk(x(tk)))

−λ
∫ ξ

t
f(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds

≤ −λ
∫ ξ

t
f(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds

≤ −λ
∫ ξ

t
h(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds

−λ
∫ ξ

t
x(s)g0(x(s))ds− λ

n∑
i=1

∫ ξ

t
x(s)gi(x(αi(s)))ds

− λ

∫ ξ

t
x(s)r(s)ds

≤ −λ
∫ ξ

t
x(s)g0(x(s))ds− λ

n∑
i=1

∫ ξ

t
x(s)gi(x(αi(s)))ds

− λ

∫ ξ

t
x(s)r(s)ds

≤
∫ T

0
|x(s)g0(x(s))|ds+

n∑
i=1

∫ T

0
|x(s)gi(x(αi(s)))|ds

+
∫ T

0
|x(s)||r(s)|ds.

The remainder of the proof is similar to that of the proof of Theorem 2 and
is omitted. �

Theorem 4. Suppose (A4) and (C2) hold. Then problem (4) has at least
one solution if

(15) r0 +
n∑

k=1

rk||β′k||q/(q+1)
∞ < β.

Proof. Let λ ∈ (0, 1). Suppose x is a solution of the system (10). We
divide the remainder of the proof into two steps.

Step 1. Prove that there is a constant M > 0 so that
∫ T
0 |x(s)|q+1ds ≤

M .
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Multiplying both sides of the equation of (10) by x(t), integrating it from
0 to T , we get

1
2

(x(T ))2 − 1
2

(x(0))2 − 1
2

m∑
k=1

[(
x(t+k )

)2 − (x(t−k )
)2]

= λ

∫ T

0
f(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds

= λ

(∫ T

0
h(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds

+
∫ T

0
g0(s, x(s))x(s)ds

+
n∑

i=1

∫ T

0
gi(s, x(αi(s))x(s)ds+

∫ T

0
r(s)x(s)ds

)
.

It follows from (A4) that(
x(t+k )

)2 − (x(t−k )
)2 =

(
x(t+k )− x(t−k )

) (
x(t+k ) + x(t−k )

)
= λ∆x(t−k )

(
2x(t−k ) + λ∆x(t−k )

)
= λIk(x(t−k ))

(
2x(t−k ) + λIk(x(t−k ))

)
≥ λ2x(t−k )Ik(x(t−k )) ≥ 0.

We get∫ T

0
h(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds+

∫ T

0
g0(s, x(s))x(s)ds

+
n∑

i=1

∫ T

0
gi(s, x(αi(s))x(s)ds+

∫ T

0
r(s)x(s)ds ≤ 0.

It follows from (C2) that

β

∫ T

0
|x(s)|q+1ds ≤ −

∫ T

0
g0(s, x(s))x(s)ds

−
n∑

i=1

∫ T

0
gi(s, x(αi(s))x(s)ds−

∫ T

0
r(s)x(s)ds

≤
∫ T

0
|g0(s, x(s))|x(s)|ds+

n∑
i=1

∫ T

0
|gi(s, x(αi(s))||x(s)|ds

+
∫ T

0
|r(s)||x(s)|ds.

Let ε > 0 satisfy that

(16) (r0 + ε) +
n∑

k=1

(rk + ε)||β′k||q/(q+1)
∞ < β.
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For such ε > 0, there is δ > 0 so that for every i = 0, 1, · · · , n,

(17) |gi(t, x)| < (ri + ε)|x|q uniformly for t ∈ [0, T ] and |x| > δ.

Let, for i = 1, · · · , n, ∆1,i = {t : t ∈ [0, T ], |x(αi(t))| ≤ δ}, ∆2,i = {t :
t ∈ [0, T ], |x(αi(t))| > δ}, gδ,i = maxt∈[0,T ],|x|≤δ |gi(t, x)|, and ∆1 = {t ∈
[0, T ], |x(t)| ≤ δ}, ∆2 = {t ∈ [0, T ], |x(t)| > δ}. Then we get

β

∫ T

0
|x(s)|q+1ds

≤ (r0 + ε)
∫ T

0
|x(s)|q+1ds+

n∑
k=1

(rk + ε)
∫ T

0
|x(αi(s))|q|x(s)|ds

+
∫ T

0
|r(s)||x(s)|ds + δ

∫ T

0
|x(s)|ds+ δ

n∑
k=1

∫ T

0
|x(s)ds

≤ (r0 + ε)
∫ T

0
|x(s)|q+1ds

+
n∑

k=1

(rk + ε)
(∫ T

0
|x(αi(s))|q+1ds

)q/(q+1)(∫ T

0
|x(s)|q+1ds

)1/(q+1)

+
(∫ T

0
|r(s)|ds

)q/(q+1)(∫ T

0
|x(s)|q+1ds

)1/(q+1)

+ (n+ 1)δ
∫ T

0
|x(s)|ds

= (r0 + ε)
∫ T

0
|x(s)|q+1ds+

n∑
k=1

(rk + ε)

×

(∫ αk(T )

αk(0)
|x(u)|q+1|β′k(u)|du

)q/(q+1)(∫ T

0
|x(s)|q+1ds

)1/(q+1)

+
(∫ T

0
|r(s)|ds

)q/(q+1)(∫ T

0
|x(s)|q+1ds

)1/(q+1)

+ (n+ 1)δT q/(q+1)

(∫ T

0
|x(s)|q+1ds

)1/(q+1)

≤ (r0 + ε)
∫ T

0
|x(s)|q+1ds+

n∑
k=1

(rk + ε)||β′k||q/(q+1)
∞

×
(∫ T

0
|x(u)|1+q|du

)q/(q+1)(∫ T

0
|x(s)|q+1ds

)1/(q+1)

+
(∫ T

0
|r(s)|ds

)q/(q+1)(∫ T

0
|x(s)|q+1ds

)1/(q+1)
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+ (n+ 1)δT q/(q+1)

(∫ T

0
|x(s)|q+1ds

)1/(q+1)

=

(
(r0 + ε) +

n∑
k=1

(rk + ε)||β′k||q/(q+1)
∞

)∫ T

0
|x(s)|q+1ds

+
(∫ T

0
|r(s)|ds

)q/(q+1)(∫ T

0
|x(s)|q+1ds

)1/(q+1)

+ (n+ 1)δT q/(q+1)

(∫ T

0
|x(s)|q+1ds

)1/(q+1)

.

It follows from (16) that there is a constantM > 0 so that
∫ T
0 |x(s)|q+1ds ≤ M .

Step 2. Prove that there is a constant M1 > 0 so that ||x||∞ ≤M1.
It follows from Step 1 that there is ξ ∈ [0, T ] so that |x(ξ)| ≤ (M/T )1/(q+1).

Case 1. If t < ξ, multiplying two sides of the equation of (11) by x(t),
integrating it from t to ξ, we get, using (A2), that

1
2

(x(t))2 =
1
2
(x(ξ))2 − 1

2

∑
t≤tk<ξ

[(
x(t+k )

)2 − (x(t−k )
)2]

− λ

∫ ξ

t
f(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds

≤ 1
2

(M/T )2/(q+1) − λ

∫ ξ

t
f(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds

≤ 1
2

(M/T )2/(q+1) − λ

(∫ ξ

t
h(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds

+
∫ ξ

t
g0(s, x(s))x(s)ds

+
n∑

i=1

∫ ξ

t
gi(s, x(αi(s))x(s)ds+

∫ ξ

t
r(s)x(s)ds

)

≤ 1
2

(M/T )2/(q+1) −
∫ ξ

t
g0(s, x(s))x(s)ds

−
n∑

i=1

∫ ξ

t
gi(s, x(αi(s))x(s)ds−

∫ ξ

t
r(s)x(s)ds

≤ 1
2

(M/T )2/(q+1) +
∫ T

0
|g0(s, x(s))||x(s)|ds

+
n∑

i=1

∫ T

0
|gi(s, x(αi(s))||x(s)|ds+

∫ T

0
|r(s)||x(s)|ds
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≤ 1
2

(M/T )2/(q+1) +

[(
(r0 + ε) +

n∑
k=1

(rk + ε)||β′k||q/(1+q)
∞

)

×
∫ T

0
|x(s)|q+1ds

+
(∫ T

0
|r(s)|(q+1)/qds

)q/(q+1)(∫ T

0
|x(s)|q+1ds

)1/(q+1)
]

+ (n+ 1)δT q/(q+1)

(∫ T

0
|x(s)|q+1ds

)1/(q+1)

≤ 1
2

(M/T )2/(q+1) +

[(
(r0 + ε) +

n∑
k=1

(rk + ε)||β′k||q/(1+q)
∞

)
M

+
(∫ T

0
|r(s)|(q+1)/qds

)q/(q+1)

M1/(q+1)

]
+ (n+ 1)δT q/(q+1)M1/(q+1) =: M2.

Hence one sees that

x2(t) ≤ 2M2 =: M3, for t ∈ [0, ξ].

This implies x2(0) ≤M3. So x2(T ) = x2(0) ≤M3. For t ∈ [ξ, T ], we have

1
2

(x(t))2 =
1
2
(x(T ))2 − 1

2

∑
t≤tk<T

[(
x(t+k )

)2 − (x(t−k )
)2]

− λ

∫ T

t
f(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds.

Similar to above discussion, we get that there exists M4 > 0 so that x2(t) ≤
M4 for t ∈ [ξ, T ]. All above discussion implies that there exists a constant
d0 > 0 such that |x(t)| ≤ d0 < d0 +1 = c0. Thus ||x||∞ < c0. The remainder
of the proof is similar to that of the proof of Theorem 1 and is omitted. �

Theorem 5. Suppose (A1) and (C1) hold. Then (4) has at least one
solution if

(18) r0 +
n∑

k=1

rk||β′k||q/(1+q)
∞ < β.

Proof. The proof is similar to that of Theorem 4. We consider system
(10). Multiplying both sides of the equation of (10) by x(t), integrating it
from 0 to T , we get
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1
2

(x(T ))2 − 1
2

(x(0))2 − 1
2

m∑
k=1

[(
x(t+k )

)2 − (x(t−k )
)2]

= λ

∫ T

0
f(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds

= λ

(∫ T

0
h(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds

+
∫ T

0
g0(s, x(s))x(s)ds

+
n∑

i=1

∫ T

0
gi(s, x(αi(s))x(s)ds+

∫ T

0
r(s)x(s)ds

)
.

It follows from (A1) that(
x(t+k )

)2 − (x(t−k )
)2 =

(
x(t+k )− x(t−k )

) (
x(t+k ) + x(t−k )

)
= λ∆x(t−k )

(
2x(t−k ) + λ∆x(t−k )

)
= λIk(x(t−k ))

(
2x(t−k ) + λIk(x(t−k ))

)
≤ λIk(x(t−k ))

(
2x(t−k ) + Ik(x(t−k ))

)
≤ 0.

It follows that∫ T

0
h(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds+

∫ T

0
g0(s, x(s))x(s)ds

+
n∑

i=1

∫ T

0
gi(s, x(αi(s))x(s)ds+

∫ T

0
r(s)x(s)ds ≥ 0.

The remainder of the proof is similar to that of Theorem 4 and is omitted. �

Remark 2. In Theorem 2, Theorem 3, Theorem 4 and Theorem 5, f
and Ik need not be superlinear and Ik need not either satisfy |Ik(x)| ≤ bk|x|
or be nondecreasing. Hence the results (Theorems 2-5) are different from
those in known papers.

3. Examples

In this section, we give examples, which can not be solved by the results
in known papers, to illustrate the main results.

Example 1. Consider the problem

(19)

 x′(t)) =
∑2m+1

k=0 akx
k(t) + r(t), a.e. t ∈ [0, T ],

∆x(tk) = bk[x(tk)]3, k = 1, · · · , p,
x(0) = −x(T )
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where m is a positive integer, T > 0, bk ≥ 0 for all k = 1, · · · , p, a2m+1 > 0
and ak ∈ R for all k = 1, · · · , 2m, r ∈ X. Corresponding to Theorem 4,
choose

Ik(x) = bkx
3,

f(t, x0) =
2m+1∑
k=0

akx
k
0 + r(t),

h(t, x0) = a2m+1x
2m+1
0 ,

g0(t, x0) =
2m∑
k=0

akx
k
0.

It follows from Theorem 4 that problem (19) has at least one solution.

Example 2. Consider the problem

(20)


x′(t) =

2m+1∑
k=0

akx
k(t) +

2m+1∑
k=1

ckx
k
(

1
k t
)

+ r(t), a.e. t ∈ [0, T ],

∆x(tk) = bkx(tk), k = 1, · · · , p,
x(0) = −x(T )

where m is a positive integer, T > 0, bk(2 + bk) ≤ 0 for all k = 1, · · · , p,
a2m+1 < 0 and ak, ck ∈ R for all k = 1, · · · , 2m, a2m+1 < 0, c2m+1 ∈ R,
r ∈ X.

It follows from Theorem 5 that problem (20) has at least one solution if
|c2m+1| < (2m+ 1)2m+2a2m+1.

Example 3. Consider the problem

(21)


x′(t) = ax(t) +

2m+1∑
k=1

ckx
(

1
k t
)

+ r(t), a.e. t ∈ [0, T ],

∆x(tk) = bkx(tk), k = 1, · · · , p,
x(0) = −x(T )

where m is a positive integer, T > 0,
m∑

k=1

|bk| < 2 for all k = 1, · · · , p, and

ak, ck ∈ R for all k = 1, · · · , 2m, c2m+1 ∈ R, r ∈ X.
It follows from Theorem 1 that problem (21) has at least one solution if

T

(
|a|+

2m+1∑
k=1

|ck|

)
< 2−

m∑
k=1

|bk|.
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Example 4. Consider the problem

(22)


x′(t) = − [x(t)]2m+1

1+
nP

i=1
[x(t/i)]2

+
n∑

i=1
aix(1

i t) + r(t), a.e. t ∈ [0, T ],

∆x(tk) = bkx(tk), k = 1, · · · , p,
x(0) = −x(T )

where ai, bi ∈ R, m is a positive integer, T > 0.
Corresponding to Theorem 2,

h(t, x0, · · · , xn) = − x2m+1
0

1 +
n∑

i=1
x2

i

.

It follows from Theorem 2 that (22) has at least one solution if
n∑

k=0

|ai| < 1
4T .

Remark 3. Above examples can not be solved by know theorems in
[1-11].
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