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ABSTRACT. In this paper we study the existence and other prop-
erties of solutions of a certain iterated Volterra integrodifferen-
tial equation of higher order. The tools employed in the analysis
are based on application of the Leray-Schauder alternative and a
certain integral inequality which provides explicit bound on the
unknown function.
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1. Introduction

Consider the initial value problem (IVP for short) for higher order iter-
ated Volterra integrodifferential equation of the form

(M) y () = (ty®).9 O™V () K (1))

for t € I = [tp,T)and n > 1 is an arbitrary integer, with the given initial
conditions

(2) y ) () =cp, k=0,1,...,n—1,

where
B K= [9(b0s@).v©), sV (@) Litow)do

in which
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and f, g, h are the elements of R , the set of real numbers and ¢ are given
real constants. Let I = [to,T] (T >ty > 0 is a constant) and R4 = [0, 00)
be the given subsets of R and C (Si1,S2) denotes the class of continuous
functions from the set S7 to the set Sy . For tg <7 <o <t < T, we assume
that f € C(I xR R) , g € C(I*xR", R), h € C(I?xR",R).
We define B = C"~!1(I) = C"'(I,R) to be the Banach space of the
functions u such that (") is continuous on I endowed with norm |ju|| =
max {lulg,|W]g s ‘u("*l)‘o} , where |u|, = max {|u ()| : t € I'} and we also

define By = C{~' (I) = {u € C" L (1) : u(ty) =0} .

The problems of existence and other properties of solutions of the special
versions of IVP (1)-(2) have been studied by many authors by using different
techniques. In [7] Morchalo and in [9] Pachpatte studied the special versions
of IVP (1)-(2) when the term L (¢,0,y) in (3) is absent. The IVP (1)-(2)
considered here is in the general spirit of the investigations in [7, 9], see
also [3, 6]. In this paper, our main objective is to study the existence
and other properties of solutions of IVP (1)-(2). The application of the
topological transversality theorem also known as Leray-Schauder alternative
and a certain integral inequality with explicit estimate are used to establish
the results.

2. Global existence

Our approach and arguments are based on the formula, namely, any solu-
tion y(t) of IVP (1)-(2) and its derivatives are represented by the equivalent
integral equations

n—1

(5) y(]) (t) _ Z C; (t — to)ifj

—
= (=)
/ (t - S)ni‘jil ( )
/ n—1
+ /(n—j—l)'f (Svy(s)ay (8),-y (3)7K(3=y))7
to
for 0 < j < n — 1. In proving existence of solutions of IVP (1)-(2) we will
use the following version of the topological transversality theorem given by
Granas [2, p. 61].

Lemma 1. Let B be a convexr subset of a normed linear space E and
assume 0 € B. Let S : B — B be a completely continuous operator and let
U(S)={y:y=ASy} for 0 < XA < 1. Then either U (S) is unbounded or S
has a fized point.

Now, we are able to state and prove the following theorem which deals
with the global existence of solutions of IVP (1)-(2).
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Theorem 1. Suppose that the functions f, g, h in (1), (3), (4) satisfy
the conditions

(6) s (t,y<t>, Y (1) ey (1), K (1)

(Z\y \) + 1K (t.y)

() 9(t0.9(0).5/ @),y (). Lit.0vy))

. (g,ym o)) st
1=0

(8) ‘h (t, o,y (1), y (7), ..,y (7‘)) ’
<r t o, 7' (Z ’y( ) D

fortg <7 <o <t<T, where p(t) € C(I,Ry) , q(t,0) € C(I*,Ry),
r(t,o,T)eC (I3,R+), and for i =1,2,3, w; : Ry — (0,00) are continu-
ous and nondecreasing functions. Let w (u) = max {w; (u),ws (u),ws (u)}.
Then the IVP (1)-(2) has a solution y(t) defined on I provided T' satisfies

where
n—1 n—j—1

o (T =)
(10 A SRy

n—1 |n—1 i— 7

_ |ci| (T —to)"™

(11) M_j:0 Lj i) ]
and
(12) F(t)=p(t) —l—/{q(t,a) +/7‘(t,0’,7’)d7‘}d0’,

fortel.



50 B.G. PACHPATTE

Proof. First, we establish the priori bounds independent of A for the
solutions of the family of problems

13) YO =2 (ty®) .5 Oy @)K (1))

for t € I and A € (0,1), with the given initial conditions (2). If y(¢) is a
solution of IVP (13)-(2), then the solution y(t) and its derivatives can be
written as
n—1
; C t — to
(14 E:’
(i —J)!
i=j
t

tsnjl _
A [ (50060 ()™ (). () s,
n
to

for 0 < j <n—1. From (14) and using the hypotheses (6)-(8) we obtain

n—1 n—1{n-1, . i—7
<w>§j@@a><§ijQ§???j}
> 2

i=j i—j)!
+ ]Z%Z tn—_sj" i—1 <s7y(s),y/(8),...,y(”*1) (s),K(s,y))‘ds
n—1n— 1|c\
< S bl
Jj=0 i=j
n—1 1 i1
+ ;/m‘f(s,y(S),y’(s),.._,y(n—l) (3),K(3,y)>’ds
! n—1
s)w () (g
< M+NJ p(s) 1(%)@/ ()))
; n—1
$,0) w @) (o
+t0/{q( ) 2(]20y ()))

+/U (s,0.7 (Zy]) ) }da]ds.

Define a function u(t) by the right hand side of (15), then we have

n—1
SO W| <u), ulto) =,
=0
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and
n—1 . ¢ n—1 ‘
! (t) = 1 (Z [yt <t>\) +f { a(t,0) wy (Z [y <o>)
j=0 to j=0
+ (t,o,7) Z Y dr p do
reanes (S
< N p@u o)+ [{ oo o)
+ /r(t,J,T) ws (u (7)) dT p do
< Nw(u(t)) |:p(t)—{—/{q(t,a) —|—/r(t,0,7)d7}da]
= NF(t)w(u(t)),
(16) qu/u(g)) < NF(1).

Integration of (16) from ¢y to ¢ € I and the use of the change of variable
and the condition (9) gives

u(t) o0

(17) A[ wd(i < N/ s)ds < N/ s) ds </wd(‘1).

to

From (17) we conclude that there is a constant () independent of A € (0,1)
n—1 )

such that u (t) < @ for t € I and hence )’ ‘y(]) (t)| < Q for t € I. Thus we
j=0

have ‘y(j) (t)] <Q,telfor 0<j<n-—1and consequently [y < Q.
In the next step we rewrite the IVP (1)-(2) as follows. If y(t) = e(t)+z(t),

n—1
where e (t) = > M t € I, then it is easy to see that z(t) satisfies

=0

Z(to) = 0,

(18) 20 = gy [ =T ) s
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if and only if y(t) satisfies IVP (1)-(2) or its equivalent integral equation

(19) y(1) = > (ti_!toy
=0
T (8 6y ) K (s s

n (18) for convenience we have set

(20) [ (2(5)) = f(s.e(s) +2(s),€ (s) +2'(s),
eV (5) + 27V (), K (s,e + z)) :

Define S : By — By by

t

/ (t— "L * (2 (5)) ds,

to

1
(21) Sz (t) = =)
for t € I. Then S is clearly continuous. Now we shall show that S is
completely continuous.
Let {ay} be a bounded sequence in By, i.e., ||ag|| < b for all k, where bis a
positive constant. Using the hypotheses (6)-(8), letting F' = sup {F (t) : t € I}
and € = sup {e(j) (t):te€l,0<j<n-—1}, from (20) we obtain

(22)  1f* (a ()] < p (s (Z{ D ( +a§3’<s>})
+ /{q(s,a)wg (T'Ll{e(ﬂ') (a)’—i—‘ag) (0)’})

to =0
‘ Jn—l '
+ /r(s 0, T) wa (JZO {‘e(]) (T)‘ + ‘a,(j) (T))}) dr} do

< p<s>w1<n{é+b}>+/{ 4 (5.0)w (n {& + b))

to
g

+ /T(S,G,T)wg (n{e+b})d¢}da< Fs)w(n{e+b}).

to
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Now from (21) and (22) we observe that
¢

/ (t— 57370 (g (5)) ds

to

1

(23) ‘(Sak O ’\ mn—j—1)

IN

(T — to)" 771
= (n —; - 1!

—

w(n{e+b}) | F(s)ds
to
n—j

< mw(n{e+b})F— N,
for 0 < j < n— 1. Hence from (23) we obtain |Say| < N, where N =
max {N; : 0 < j <n—1} . This means that {Sa} is uniformly bounded.

Now we shall show that the sequence {Say} is equicontinuous. Let
to < t1 <ty < T. Then from (21) and using the hypotheses (6)-(8), the
elementary inequality (see [4, p. 39]) 2" —y" < ra"l(z —y) for r > 1
and z,y nonnegative reals, (22) and letting {as} , F', € as defined above, we
observe the following cases.

Case I.If j =0,1,2,....n—2,thenn —j5—1>1, and
[2)

(S 1) = (Sax (1)) = ——5 / (12— )" f* (g (s)) ds
+ / [(tg — )" (4 — S)"_j_l} [ (ax (s))ds
1 7 n—j— *
< a5 /<t2_s> 7 g ()] ds
[ == 1)t - ) I (e ()] ds
1 v f i}
< T (T —to) 1/F(s)w(n{e+b})ds
Hn =g = DT =) I 1) [ Fo)wnle+b))ds
1 7 i o
S P g /(T—to) Fw (n{e+b})ds

t1



54 B.G. PACHPATTE

T
+(n—j—1)(T—t0)"j2t2—t1/ w(n{e+b})ds

to

CaseIl.If j=n—1,thenn—j—1=0and

(Son (02) ") = (San (0) ") = | [ (@ () s

IN
=
*
)
o
—~
VA
=
QU
VA
IA
|
—~
—~
)
+
S
ot

IN

/Fw (n{e+ b})ds

t1

From the above estimates we conclude that {Sax} is equicontinuous and
hence by the Arzela-Ascoli theorem the operator S is completely continuous.
Moreover, the set U (S) = {z € Bp:2z=MASz, A€ (0,1)} is bounded,
since for every z in U (S) the function y(t) = e(t) + z(¢) is a solution of IVP
(13)-(2), for which we have proved that |y|| < @ and hence ||z]| < &+ Q.
By applying Lemma 1, the IVP (1)-(2) has a solution y(t) on I .
The proof is complete. |

Remark 1. We note that our Theorem 1 extends the well known theorem
of Wintner [16] on the global existence of solution of Cauchy problem for
first order differential equation to the IVP (1)-(2). If we choose NF(t) =
in (9) and the integral on the right hand side of (9) is assumed to diverge,
then the solution of IVP (1)-(2) exists for every T' < oo, that is, on the
entire interval R,. Further, we note that our Theorem 1 contains in the
special cases the global existence of solutions of the equations studied in [1,
7,9, 10]. For the detailed account on the applications of the topological
transversality method, see [5, 8].

3. Properties of solutions

In this section we study the uniqueness, boundedness and continuous
dependence of solutions of IVP (1)-(2) under some suitable conditions on
the functions involved in (1), (3), (4). The following inequality due to Bykov
and Salpagarov (see [14, Theorem 1.4.2, p. 32]) is crucial in the analysis
which follows. For detailed account on such inequalities, see [11, 14].
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Lemma 2. Let u(t),p(t) € C(R+,R+) and for 0 <7 < o0 <t < o0,

q(t,o)eC (Ri,R.i_), r(t,o,7) e C (Ri,R+). If

fort € Ry, where

t)—i—/t{q(t,a)—i—jr(t,a,v-)dT}da,
0 0

forte Ry

First, we shall give the following theorem which deals with the uniqueness

of solutions of IVP (1)-(2).

Theorem 2. Suppose that the functions f,g,h in (1), (3), (4) satisfy

the conditions
@) £ (by® . @y 1)K (L)
- f(t,z(t),z’ (1) oy 2D (t),K(t,z))(

n—1
DY [0 (0~ 20 )] + K (t.y) K (1.2)].
=0

@) |9 (toy(@) .y @),y (0), Ltoy))

—g (t, 0,2(0),2 (0),....2" "V (o), L(to0, z))‘

<q tgz\y D)) +IL(toy) - L(t0.2)],

(26) ‘h (t, o,y (1), Y (1), ..., y("_l) (7'))
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— h (t, 0,7,z (T) 2 G Z(n=1) (T))‘
n—1
< (o) Y |y (1) -0 (),
i=0

where p, q, v are as defined in Theorem 1 and
(27) /F(s) ds < o0,
t

in which F(t) is given by (12). Then IVP (1)-(2) has at most one solution
on I .

Proof. Let y; (t) and y2 (t) for t € I be two solutions of IVP (1)-(2).

Then from (5) we have .

' ' — s n—j—1
(25) o () - (1) = / ((’;_3_1).

to

X {f (57y1 (S) 7yi (S) ) "'7y£n_1) (S) 7K (57?/1))
L (502(8), 95 ()t () K (5.02) ) | s
for 0 < j <n—1. From (28) and using the hypotheses (24)-(26) we have

n—1 )
29) | 0 - o8 )
j=0

n 1

IN

(n—j7—1)!

Q

t

/t_s - (S,yl(8),yi(s),...,y§”‘1)(s),K(s,yl))
to
f( ds

5,02 (5) 0 () 0" (5) K (5,0

IN
—

e [u? () = o8 (s)]
to J=0
+ / { q<570>7§§ v (0) =48 ()]

/ s,0,T Z ‘ygj —ygj) (T)dT} da] ds,

to

where N is given by (10). Now a suitable application of Lemma 2 (when
k =0) to (29) yields
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n—1
S - | <o,
j=0
which implies y; (t) = yo (), that is, the IVP (1)-(2) has at most one solution
on I. |
The next theorem deals with the boundedness of solutions of IVP (1)-(2).

Theorem 3. Suppose that the functions f, g, h in (1), (3), (4) satisfy
the conditions

(30) (@ Oy (0. K ()]
Z\y O] + 15 (1)1,
(31) 9(t0.9(@).5/ @),y (@) L(t.0vy))|
< q(t,0) Z]y o) +IL(t,0y)].
(32) h(tory @)y (1), ey ()]

n—1
< r(ton)Y |y ()
=0

where p,q,r are as in Theorem 1 and the condition (27) holds. Then all
solutions of IVP (1)-(2) are bounded on I .

Proof. Any solution y(t) of IVP (1)-(2) and its derivatives are repre-
sented by (5). From (5) and using the hypotheses (30)-(32) we have

n—1 | n— 1|C‘ t—t
w S| < (Sl
=0 | i=j (i = J)!

)TL] 1

;/ i; Sj —)i ‘f (s,y(S),y’ (8) oy ™Y (8),K(s,y))‘ds

n—1 n—1

gM+/Np )3 [u ) + /{ 1(5:0) Yy (o)

j=0 to Jj=0

/ $,0,T Z’y(] ‘d’f do | ds,

to



58 B.G. PACHPATTE

where N, M are given by (10), (11). Now a suitable application of Lemma
2 to (33) yields

n—1 t
(34) Z ’y(j) (t)’ < M exp N/F(s) ds |,
Jj=0 to

where F(t) is given by (31). The estimation (34) in view of the assumption
(27) implies the boundedness of all solutions of IVP (1)-(2) on I . [ |

The following theorem deals with the dependency of solutions of equation
(1) on given initial values.

Theorem 4. Suppose that the functions f, g, h in (1),(3),(4) satisfy the
conditions (24)-(27). Let y(t) and z(t) be the solutions of equation (1) with
the given initial conditions

(35) y(k) (to)) =cx, k=0,1,..n—1,
and
(36) 20 (t) =dp, k=0,1,..n—1,

where ¢, and di are given constants. Then
n—1 ¢

(37) Z ‘y(j) (t) — 29 (t)‘ < M exp N/F (s)ds |,
Jj=0 to

fort € I, where

n—1 n—l

M=) Z lci — dil |,

j=0 |i=j (@ =)t
and N and F(t) are given by (10) and (12).

Proof. Since y(t) and z(t) are the solutions of IVP (1)-(35) and IVP
(1)-(36) we have

n—1

0 (1) — 50) t—tow
(38) (1) — 2 Z — o (e — di)

Z
i=j J

— S

- /M {f (S»y(S)vy’ (5), 0y ™Y (S)’K(S’m

— f (s, 2(s),2 (s),....2" D (s), K (s, z)) } ds,
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for 0 < j <n—1. From (38) and using the hypotheses (24)-(26) we have

n—1 [n—1

n—1
(3) Z\yﬁ‘)(w—z(ﬂ‘)(w\sz > t;_“ i~ i

=0 | i=j J

S T (0. 00, K 00)

7=0 to

1

< Wt [N @S] ) -0 )

to J=0

+/S{ saZ‘yJ) —z])()‘
/ $,0,T) Z‘y(j —Z(j)(T)‘dT do | ds.
j=

to

Now a suitable application of Lemma 2 to (39) yields the estimate (37),
which shows the dependency of solutions of equation (1) on given initial
values. m

Remark 2. We note that the results obtained in this paper can be
extended to the integrodifferential equation of the form

(10) DPy (&) = f (1. DOy (1), DOy (1), .... DI Vy (1), K (£.Dy) ).
for t € I and n > 1, with the given initial conditions

(41) D™y (tg) = em,m =0,1,...,n —1,

where

42) K (t, D(0>y)

r

t
_ /g (t, o, Dﬁﬂ)y (U) 7D7(“1)y (0),...,D,(,”_1)y( ) L (t o, D(O) )) dO',
to

in which

(43) L (t, o, Dfﬂo)y)
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In (40)-(43) for sufficiently smooth functions r; (¢) >0,¢=1,...,n — 1 and
y(t) defined on I, the r-derivatives of a function y(t) are defined by (see [13,
p. 312])

d
D7(~k)y =Ty (Dﬁk_l)y> , k=1,..n—-1, (' = — = D> ,
!

DMy = (Dﬁ'“l)y)

and ¢, are given real constants. Naturally, these considerations will make
the analysis more complicated, here we do not discuss the details. For the
study of special version of IVP (40)-(41), see [12].
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