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1. Introduction

Consider the initial value problem (IVP for short) for higher order iter-
ated Volterra integrodifferential equation of the form

(1) y(n) (t) = f
(
t, y (t) , y′ (t) , ..., y(n−1) (t) ,K (t, y)

)
,

for t ∈ I = [t0, T ] and n ≥ 1 is an arbitrary integer, with the given initial
conditions

(2) y(k) (t0) = ck, k = 0, 1, ..., n− 1,

where

(3) K (t, y) =

t∫
t0

g
(
t, σ, y (σ) , y′ (σ) , ..., y(n−1) (σ) , L (t, σ, y)

)
dσ,

in which

(4) L (t, σ, y) =

σ∫
t0

h
(
t, σ, τ, y (τ) , y′ (τ) , ..., y(n−1) (τ)

)
dτ,
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and f, g, h are the elements of R , the set of real numbers and ck are given
real constants. Let I = [t0, T ] (T > t0 ≥ 0 is a constant) and R+ = [0,∞)
be the given subsets of R and C (S1, S2) denotes the class of continuous
functions from the set S1 to the set S2 . For t0 ≤ τ ≤ σ ≤ t ≤ T, we assume
that f ∈ C

(
I ×Rn+1, R

)
, g ∈ C

(
I2 ×Rn+1, R

)
, h ∈ C

(
I3 ×Rn, R

)
.

We define B = Cn−1 (I) = Cn−1 (I,R) to be the Banach space of the
functions u such that u(n−1) is continuous on I endowed with norm ‖u‖ =
max
t∈I

{
|u|0 , |u′|0 , ...,

∣∣u(n−1)
∣∣
0

}
, where |u|0 = max {|u (t)| : t ∈ I} and we also

define B0 = Cn−1
0 (I) =

{
u ∈ Cn−1 (I) : u (t0) = 0} .

The problems of existence and other properties of solutions of the special
versions of IVP (1)-(2) have been studied by many authors by using different
techniques. In [7] Morchalo and in [9] Pachpatte studied the special versions
of IVP (1)-(2) when the term L (t, σ, y) in (3) is absent. The IVP (1)-(2)
considered here is in the general spirit of the investigations in [7, 9], see
also [3, 6]. In this paper, our main objective is to study the existence
and other properties of solutions of IVP (1)-(2). The application of the
topological transversality theorem also known as Leray-Schauder alternative
and a certain integral inequality with explicit estimate are used to establish
the results.

2. Global existence

Our approach and arguments are based on the formula, namely, any solu-
tion y(t) of IVP (1)-(2) and its derivatives are represented by the equivalent
integral equations

y(j) (t) =
n−1∑
i=j

ci (t− t0)
i−j

(i− j)!
(5)

+

t∫
t0

(t− s)n−j−1

(n− j − 1)!
f
(
s, y (s) , y′ (s) , ..., y(n−1) (s) ,K (s, y)

)
,

for 0 ≤ j ≤ n − 1. In proving existence of solutions of IVP (1)-(2) we will
use the following version of the topological transversality theorem given by
Granas [2, p. 61].

Lemma 1. Let B be a convex subset of a normed linear space E and
assume 0 ∈ B. Let S : B → B be a completely continuous operator and let
U (S) = {y : y = λSy} for 0 < λ < 1. Then either U (S) is unbounded or S
has a fixed point.

Now, we are able to state and prove the following theorem which deals
with the global existence of solutions of IVP (1)-(2).
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Theorem 1. Suppose that the functions f , g, h in (1), (3), (4) satisfy
the conditions∣∣∣f (t, y (t) , y′ (t) , ..., y(n−1) (t) ,K (t, y)

)∣∣∣(6)

≤ p (t) w1

(
n−1∑
i=0

∣∣∣y(i) (t)
∣∣∣)+ |K (t, y)| ,

∣∣∣g (t, σ, y (σ) , y′ (σ) , ..., y(n−1) (σ) , L (t, σ, y)
)∣∣∣(7)

≤ q (t, σ) w2

(
n−1∑
i=0

∣∣∣y(i) (σ)
∣∣∣)+ |L (t, σ, y)| ,

∣∣∣h(t, σ, τ, y (τ) , y′ (τ) , ..., y(n−1) (τ)
)∣∣∣(8)

≤ r (t, σ, τ) w3

(
n−1∑
i=0

∣∣∣y(i) (τ)
∣∣∣) ,

for t0 ≤ τ ≤ σ ≤ t ≤ T, where p (t) ∈ C (I,R+) , q (t, σ) ∈ C
(
I2, R+

)
,

r (t, σ, τ) ∈ C
(
I3, R+

)
, and for i = 1, 2, 3, wi : R+ → (0,∞) are continu-

ous and nondecreasing functions. Let w (u) = max {w1 (u) , w2 (u) , w3 (u)} .
Then the IVP (1)-(2) has a solution y(t) defined on I provided T satisfies

(9) N

T∫
t0

F (s) ds <

∞∫
M

ds

w (s)
,

where

(10) N =
n−1∑
j=0

(T − t0)
n−j−1

(n− j − 1)!
,

(11) M =
n−1∑
j=0

n−1∑
i=j

|ci| (T − t0)
i−j

(i− j)!

,

and

(12) F (t) = p (t) +

t∫
t0

q (t, σ) +

σ∫
t0

r (t, σ, τ) dτ

dσ,

for t ∈ I.
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Proof. First, we establish the priori bounds independent of λ for the
solutions of the family of problems

(13) y(n) (t) = λf
(
t, y (t) , y′ (t) , ..., y(n−1) (t) ,K (t, y)

)
,

for t ∈ I and λ ∈ (0, 1) , with the given initial conditions (2). If y(t) is a
solution of IVP (13)-(2), then the solution y(t) and its derivatives can be
written as

y(j) (t) =
n−1∑
i=j

ci (t− t0)
i−j

(i− j)!
(14)

+ λ

t∫
t0

(t− s)n−j−1

(n− j − 1)!
f
(
s, y (s) , y′ (s) , ..., y(n−1) (s) ,K (s, y)

)
ds,

for 0 ≤ j ≤ n− 1. From (14) and using the hypotheses (6)-(8) we obtain

n−1∑
j=0

∣∣∣y(j) (t)
∣∣∣ ≤ n−1∑

j=0

n−1∑
i=j

|ci| (t− t0)
i−j

(i− j)!

(15)

+
n−1∑
j=0

t∫
t0

(t− s)n−j−1

(n− j − 1)!

∣∣∣f (s, y (s) , y′ (s) , ..., y(n−1) (s) ,K (s, y)
)∣∣∣ ds

≤
n−1∑
j=0

n−1∑
i=j

|ci| (T − t0)
i−j

(i− j)!

+
n−1∑
j=0

t∫
t0

(T − t0)
n−j−1

(n− j − 1)!

∣∣∣f (s, y (s) , y′ (s) , ..., y(n−1) (s) ,K (s, y)
)∣∣∣ ds

≤ M + N

t∫
t0

p (s) w1

n−1∑
j=0

∣∣∣y(j) (s)
∣∣∣


+

s∫
t0

 q (s, σ) w2

n−1∑
j=0

∣∣∣y(j) (σ)
∣∣∣


+

σ∫
t0

r (s, σ, τ) w3

n−1∑
j=0

∣∣∣y(j) (τ)
∣∣∣
 dτ

 dσ

 ds.

Define a function u(t) by the right hand side of (15), then we have
n−1∑
j=0

∣∣∣y(j) (t)
∣∣∣ ≤ u (t) , u (t0) = M,
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and

u′ (t) = N

 p (t) w1

n−1∑
j=0

∣∣∣y(j) (t)
∣∣∣
+

t∫
t0

 q (t, σ) w2

n−1∑
j=0

∣∣∣y(j) (σ)
∣∣∣


+

σ∫
t0

r (t, σ, τ) w3

n−1∑
j=0

∣∣∣y(j) (τ)
∣∣∣
 dτ

 dσ


≤ N

p (t) w1 (u (t)) +

t∫
t0

{
q (t, σ)w2 (u (σ))

+

σ∫
t0

r (t, σ, τ) w3 (u (τ)) dτ

 dσ


≤ Nw (u (t))

p (t) +

t∫
t0

q (t, σ) +

σ∫
t0

r (t, σ, τ) dτ

 dσ


= NF (t) w (u (t)) ,

i.e.,

(16)
u′ (t)

w (u (t))
≤ NF (t) .

Integration of (16) from t0 to t ∈ I and the use of the change of variable
and the condition (9) gives

(17)

u(t)∫
M

ds

w (s)
≤ N

t∫
t0

F (s) ds ≤ N

T∫
t0

F (s) ds <

∞∫
M

ds

w (s)
.

From (17) we conclude that there is a constant Q independent of λ ∈ (0, 1)

such that u (t) ≤ Q for t ∈ I and hence
n−1∑
j=0

∣∣y(j) (t)
∣∣ ≤ Q for t ∈ I. Thus we

have
∣∣y(j) (t)

∣∣ ≤ Q , t ∈ I for 0 ≤ j ≤ n− 1 and consequently ‖y‖ ≤ Q.
In the next step we rewrite the IVP (1)-(2) as follows. If y(t) = e(t)+z(t),

where e (t) =
n−1∑
i=0

ci(t−t0)i

i! , t ∈ I, then it is easy to see that z(t) satisfies

z (t0) = 0,

(18) z (t) =
1

(n− 1)!

t∫
t0

(t− s)n−1 f∗ (z (s)) ds,
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if and only if y(t) satisfies IVP (1)-(2) or its equivalent integral equation

y (t) =
n−1∑
i=0

ci (t− t0)
i

i!
(19)

+
1

(n− 1)!

t∫
t0

(t− s)n−1 f
(
s, y (s) , y′ (s) , ..., y(n−1) (s) ,K (s, y)

)
ds.

In (18) for convenience we have set

f∗ (z (s)) = f
(
s, e (s) + z (s) , e′ (s) + z′ (s) , ...,(20)

e(n−1) (s) + z(n−1) (s) ,K (s, e + z)
)

.

Define S : B0 → B0 by

(21) Sz (t) =
1

(n− 1)!

t∫
t0

(t− s)n−1 f∗ (z (s)) ds,

for t ∈ I. Then S is clearly continuous. Now we shall show that S is
completely continuous.

Let {ak} be a bounded sequence in B0, i.e., ‖ak‖ ≤ b for all k, where b is a
positive constant. Using the hypotheses (6)-(8), letting F̄ = sup {F (t) : t ∈ I}
and ē = sup

{
e(j) (t) : t ∈ I, 0 ≤ j ≤ n− 1

}
, from (20) we obtain

|f∗ (ak (s))| ≤ p (s) w1

n−1∑
j=0

{∣∣∣e(j) (s)
∣∣∣+ ∣∣∣a(j)

k (s)
∣∣∣}
(22)

+

s∫
t0

q (s, σ) w2

n−1∑
j=0

{∣∣∣e(j) (σ)
∣∣∣+ ∣∣∣a(j)

k (σ)
∣∣∣}


+

σ∫
t0

r (s, σ, τ) w2

n−1∑
j=0

{∣∣∣e(j) (τ)
∣∣∣+ ∣∣∣a(j)

k (τ)
∣∣∣}
 dτ

 dσ

≤ p (s) w1 (n {ē + b}) +

s∫
t0

{
q (s, σ) w2 (n {ē + b})

+

σ∫
t0

r (s, σ, τ) w3 (n {ē + b}) dτ

 dσ ≤ F (s) w (n {ē + b}) .
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Now from (21) and (22) we observe that∣∣∣(Sak (t))(j)
∣∣∣ ≤ 1

(n− j − 1)!

t∫
t0

(t− s)n−j−1 |f∗ (ak (s))|ds(23)

≤ (T − t0)
n−j−1

(n− j − 1)!
w (n {ē + b})

T∫
t0

F (s) ds

≤ (T − t0)
n−j

(n− j − 1)!
w (n {ē + b}) F̄ = Nj ,

for 0 ≤ j ≤ n − 1. Hence from (23) we obtain ‖Sak‖ ≤ N̄ , where N̄ =
max {Nj : 0 ≤ j ≤ n− 1} . This means that {Sak} is uniformly bounded.

Now we shall show that the sequence {Sak} is equicontinuous. Let
t0 ≤ t1 ≤ t2 ≤ T . Then from (21) and using the hypotheses (6)-(8), the
elementary inequality (see [4, p. 39]) xr − yr ≤ rxr−1 (x− y) for r ≥ 1
and x, y nonnegative reals, (22) and letting {ak} , F̄ , ē as defined above, we
observe the following cases.

Case I. If j = 0, 1, 2, ..., n− 2, then n− j − 1 ≥ 1, and∣∣∣(Sak (t2))
(j) − (Sak (t1))

(j)
∣∣∣ = 1

(n− j − 1)!

∣∣∣∣∣∣
t2∫

t1

(t2 − s)n−j−1 f∗ (ak (s)) ds

+

t1∫
t0

[
(t2 − s)n−j−1 − (t1 − s)n−j−1

]
f∗ (ak (s)) ds

∣∣∣∣∣∣
≤ 1

(n− j − 1)!

 t2∫
t1

(t2 − s)n−j−1 |f∗ (ak (s))| ds

+

t1∫
t0

(n− j − 1) (t2 − s)n−j−2 (t2 − t1) |f∗ (ak (s))| ds


≤ 1

(n− j − 1)!

(T − t0)
n−j−1

t2∫
t1

F (s) w (n {ē + b}) ds

+(n− j − 1) (T − t0)
n−j−2 (t2 − t1)

t1∫
t0

F (s) w (n {ē + b}) ds


≤ 1

(n− j − 1)!

 t2∫
t1

(T − t0)
n−j−1 F̄w (n {ē + b}) ds
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+(n− j − 1) (T − t0)
n−j−2 (t2 − t1)

T∫
t0

F̄w (n {ē + b}) ds

 .

Case II. If j = n− 1, then n− j − 1 = 0 and

∣∣∣(Sak (t2))
(n−1) − (Sak (t1))

(n−1)
∣∣∣ =

∣∣∣∣∣∣
t2∫

t1

f∗ (ak (s)) ds

∣∣∣∣∣∣
≤

t2∫
t1

|f∗ (ak (s))| ds ≤
t2∫

t1

F (s) w (n {ē + b}) ds

≤
t2∫

t1

F̄w (n {ē + b}) ds.

From the above estimates we conclude that {Sak} is equicontinuous and
hence by the Arzela-Ascoli theorem the operator S is completely continuous.

Moreover, the set U (S) = {z ∈ B0 : z = λSz, λ ∈ (0, 1)} is bounded,
since for every z in U (S) the function y(t) = e(t)+ z(t) is a solution of IVP
(13)-(2), for which we have proved that ‖y‖ ≤ Q and hence ‖z‖ ≤ ē + Q.
By applying Lemma 1, the IVP (1)-(2) has a solution y(t) on I .

The proof is complete. �

Remark 1. We note that our Theorem 1 extends the well known theorem
of Wintner [16] on the global existence of solution of Cauchy problem for
first order differential equation to the IVP (1)-(2). If we choose NF (t) = 1
in (9) and the integral on the right hand side of (9) is assumed to diverge,
then the solution of IVP (1)-(2) exists for every T < ∞, that is, on the
entire interval R+. Further, we note that our Theorem 1 contains in the
special cases the global existence of solutions of the equations studied in [1,
7, 9, 10]. For the detailed account on the applications of the topological
transversality method, see [5, 8].

3. Properties of solutions

In this section we study the uniqueness, boundedness and continuous
dependence of solutions of IVP (1)-(2) under some suitable conditions on
the functions involved in (1), (3), (4). The following inequality due to Bykov
and Salpagarov (see [14, Theorem 1.4.2, p. 32]) is crucial in the analysis
which follows. For detailed account on such inequalities, see [11, 14].
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Lemma 2. Let u (t) , p (t) ∈ C (R+, R+) and for 0 ≤ τ ≤ σ ≤ t < ∞,
q (t, σ) ∈ C

(
R2

+, R+

)
, r (t, σ, τ) ∈ C

(
R3

+, R+

)
. If

u (t) ≤ k +

t∫
0

p (s) u (s) +

s∫
0

 q (s, σ) u (σ)

+

σ∫
0

r (s, σ, τ) u (τ)dτ

 dσ

 ds,

for t ∈ R+, where k ≥ 0 is a constant, then

u (t) ≤ k exp

 t∫
0

F (s) ds

 ,

for t ∈ R+, where

F (t) = p (t) +

t∫
0

q (t, σ) +

σ∫
0

r (t, σ, τ) dτ

 dσ,

for t ∈ R+

First, we shall give the following theorem which deals with the uniqueness
of solutions of IVP (1)-(2).

Theorem 2. Suppose that the functions f, g, h in (1), (3), (4) satisfy
the conditions∣∣∣f (t, y (t) , y′ (t) , ..., y(n−1) (t) ,K (t, y)

)
(24)

− f
(
t, z (t) , z′ (t) , ..., z(n−1) (t) ,K (t, z)

)∣∣∣
≤ p (t)

n−1∑
i=0

∣∣∣y(i) (t)− z(i) (t)
∣∣∣+ |K (t, y)−K (t, z)| ,

∣∣∣g (t, σ, y (σ) , y′ (σ) , ..., y(n−1) (σ) , L (t, σ, y)
)

(25)

− g
(
t, σ, z (σ) , z′ (σ) , ..., z(n−1) (σ) , L (t, σ, z)

)∣∣∣
≤ q (t, σ)

n−1∑
i=0

∣∣∣y(i) (t)− z(i) (t)
∣∣∣+ |L (t, σ, y)− L (t, σ, z)| ,

∣∣∣h(t, σ, τ, y (τ) , y′ (τ) , ..., y(n−1) (τ)
)

(26)
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− h
(
t, σ, τ, z (τ) , z′ (τ) , ..., z(n−1) (τ)

)∣∣∣
≤ r (t, σ, τ)

n−1∑
i=0

∣∣∣y(i) (τ)− z(i) (τ)
∣∣∣,

where p, q, r are as defined in Theorem 1 and

(27)

T∫
t0

F (s) ds < ∞,

in which F (t) is given by (12). Then IVP (1)-(2) has at most one solution
on I .

Proof. Let y1 (t) and y2 (t) for t ∈ I be two solutions of IVP (1)-(2).
Then from (5) we have

y
(j)
1 (t)− y

(j)
2 (t) =

t∫
t0

(t− s)n−j−1

(n− j − 1)!
(28)

×
{

f
(
s, y1 (s) , y′1 (s) , ..., y

(n−1)
1 (s) ,K (s, y1)

)
− f

(
s, y2 (s) , y′2 (s) , ..., y

(n−1)
2 (s) ,K (s, y2)

)}
ds,

for 0 ≤ j ≤ n− 1. From (28) and using the hypotheses (24)-(26) we have
n−1∑
j=0

∣∣∣y(j)
1 (t)− y

(j)
2 (t)

∣∣∣(29)

≤
n−1∑
j=0

t∫
t0

(t− s)n−j−1

(n− j − 1)!

∣∣∣f (s, y1 (s) , y′1 (s) , ..., y
(n−1)
1 (s) ,K (s, y1)

)
− f

(
s, y2 (s) , y′2 (s) , ..., y

(n−1)
2 (s) ,K (s, y2)

)∣∣∣ ds

≤
t∫

t0

N

p (s)
n−1∑
j=0

∣∣∣y(j)
1 (s)− y

(j)
2 (s)

∣∣∣
+

s∫
t0

 q (s, σ)
n−1∑
j=0

∣∣∣y(j)
1 (σ)− y

(j)
2 (σ)

∣∣∣
+

σ∫
t0

r (s, σ, τ)
n−1∑
j=0

∣∣∣y(j)
1 (τ)− y

(j)
2 (τ)

∣∣∣dτ

 dσ

 ds,

where N is given by (10). Now a suitable application of Lemma 2 (when
k = 0) to (29) yields
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n−1∑
j=0

∣∣∣y(j)
1 (t)− y

(j)
2 (t)

∣∣∣ ≤ 0,

which implies y1 (t) = y2 (t), that is, the IVP (1)-(2) has at most one solution
on I. �

The next theorem deals with the boundedness of solutions of IVP (1)-(2).

Theorem 3. Suppose that the functions f , g, h in (1), (3), (4) satisfy
the conditions∣∣∣f (t, y (t) , y′ (t) , ..., y(n−1) (t) ,K (t, y)

)∣∣∣(30)

≤ p (t)
n−1∑
i=0

∣∣∣y(i) (t)
∣∣∣+ |K (t, y)| ,

∣∣∣g (t, σ, y (σ) , y′ (σ) , ..., y(n−1) (σ) , L (t, σ, y)
)∣∣∣(31)

≤ q (t, σ)
n−1∑
i=0

∣∣∣y(i) (σ)
∣∣∣+ |L (t, σ, y)| ,

∣∣∣h(t, σ, τ, y (τ) , y′ (τ) , ..., y(n−1) (τ)
)∣∣∣(32)

≤ r (t, σ, τ)
n−1∑
i=0

∣∣∣y(i) (τ)
∣∣∣ ,

where p, q, r are as in Theorem 1 and the condition (27) holds. Then all
solutions of IVP (1)-(2) are bounded on I .

Proof. Any solution y(t) of IVP (1)-(2) and its derivatives are repre-
sented by (5). From (5) and using the hypotheses (30)-(32) we have

n−1∑
j=0

∣∣∣y(i) (t)
∣∣∣ ≤ n−1∑

j=0

n−1∑
i=j

|ci| (t− t0)
i−j

(i− j)!

(33)

+
n−1∑
j=0

t∫
t0

(t− s)n−j−1

(n− j − 1)!

∣∣∣f (s, y (s) , y′ (s) , ..., y(n−1) (s) ,K (s, y)
)∣∣∣ ds

≤ M +

t∫
t0

N

p (s)
n−1∑
j=0

∣∣∣y(j) (s)
∣∣∣+ s∫

t0

{
q (s, σ)

n−1∑
j=0

∣∣∣y(j) (σ)
∣∣∣

+

σ∫
t0

r (s, σ, τ)
n−1∑
j=0

∣∣∣y(j) (τ)
∣∣∣ dτ

 dσ

 ds,
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where N,M are given by (10), (11). Now a suitable application of Lemma
2 to (33) yields

(34)
n−1∑
j=0

∣∣∣y(j) (t)
∣∣∣ ≤ M exp

N

t∫
t0

F (s) ds

 ,

where F (t) is given by (31). The estimation (34) in view of the assumption
(27) implies the boundedness of all solutions of IVP (1)-(2) on I . �

The following theorem deals with the dependency of solutions of equation
(1) on given initial values.

Theorem 4. Suppose that the functions f , g, h in (1),(3),(4) satisfy the
conditions (24)-(27). Let y(t) and z(t) be the solutions of equation (1) with
the given initial conditions

(35) y(k) (t0) = ck, k = 0, 1, ...n− 1,

and

(36) z(k) (t0) = dk, k = 0, 1, ...n− 1,

where ck and dk are given constants. Then

(37)
n−1∑
j=0

∣∣∣y(j) (t)− z(j) (t)
∣∣∣ ≤ M̄ exp

N

t∫
t0

F (s) ds

 ,

for t ∈ I, where

M̄ =
n−1∑
j=0

n−1∑
i=j

(T − t0)
i−j

(i− j)!
|ci − di|

,

and N and F (t) are given by (10) and (12).

Proof. Since y(t) and z(t) are the solutions of IVP (1)-(35) and IVP
(1)-(36) we have

y(j) (t)− z(j) (t) =
n−1∑
i=j

(t− t0)
i−j

(i− j)!
(ci − di)(38)

+

t∫
t0

(t− s)n−j−1

(n− j − 1)!

{
f
(
s, y (s) , y′ (s) , ..., y(n−1) (s) ,K (s, y)

)
− f

(
s, z (s) , z′ (s) , ..., z(n−1) (s) ,K (s, z)

)}
ds,
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for 0 ≤ j ≤ n− 1. From (38) and using the hypotheses (24)-(26) we have

n−1∑
j=0

∣∣∣y(j) (t)− z(j) (t)
∣∣∣ ≤ n−1∑

j=0

n−1∑
i=j

(t− t0)
i−j

(i− j)!
|ci − di|

(39)

+
n−1∑
j=0

t∫
t0

(t− s)n−j−1

(n− j − 1)!

∣∣∣f (s, y (s) , y′ (s) , ..., y(n−1) (s) ,K (s, y)
)

− f
(
s, z (s) , z′ (s) , ..., z(n−1) (s) ,K (s, z)

)∣∣∣ ds

≤ M̄ +

t∫
t0

N

p (s)
n−1∑
j=0

∣∣∣y(j) (s)− z(j) (s)
∣∣∣

+

s∫
t0

 q (s, σ)
n−1∑
j=0

∣∣∣y(j) (σ)− z(j) (σ)
∣∣∣

+

σ∫
t0

r (s, σ, τ)
n−1∑
j=0

∣∣∣y(j) (τ)− z(j) (τ)
∣∣∣dτ

 dσ

 ds.

Now a suitable application of Lemma 2 to (39) yields the estimate (37),
which shows the dependency of solutions of equation (1) on given initial
values. �

Remark 2. We note that the results obtained in this paper can be
extended to the integrodifferential equation of the form

(40) D(n)
r y (t) = f

(
t, D(0)

r y (t) , D(1)
r y (t) , ..., D(n−1)

r y (t) , K̄
(
t, D(0)

r y
))

,

for t ∈ I and n > 1, with the given initial conditions

(41) D(m)
r y (t0) = cm,m = 0, 1, ..., n− 1,

where

K̄
(
t, D(0)

r y
)

(42)

=

t∫
t0

g
(
t, σ, D(0)

r y (σ) , D(1)
r y (σ) , ..., D(n−1)

r y (σ) , L̄
(
t, σ, D(0)

r y
))

dσ,

in which

L̄
(
t, σ, D(0)

r y
)

(43)

=

σ∫
t0

h
(
t, σ, τ,D(0)

r y (τ) , D(1)
r y (τ) , ..., D(n−1)

r y (τ)
)

dτ.
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In (40)-(43) for sufficiently smooth functions ri (t) > 0, i = 1, ..., n − 1 and
y(t) defined on I, the r-derivatives of a function y(t) are defined by (see [13,
p. 312])

D(0)
r y = y,

D(k)
r y = rk

(
D(k−1)

r y
)

, k = 1, ..., n− 1,

(
′ =

d

dt
= D

)
,

D(n)
r y =

(
D(n−1)

r y
)′

,

and cm are given real constants. Naturally, these considerations will make
the analysis more complicated, here we do not discuss the details. For the
study of special version of IVP (40)-(41), see [12].
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