
F A S C I C U L I M A T H E M A T I C I

Nr 39 2008

Valeriu Popa
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MULTIFUNCTIONS DEFINED ON CLOSED BALL

Abstract. We prove a common fixed point theorem for two mul-
tifunctions defined on a closed ball of a complete metric space
with values in the set of all nonempty and closed subsets of this
space, multifunctions which satisfy an implicit contractive relation
of Latif-Beg type.
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1. Introduction and preliminaries

Let X be a nonempty set. We denote by P (X) the set of all nonempty
subsets of X. Let T : X → P (X) be a multifunction. We denote by Fix(T )
the set of fixed points of T , i. e. Fix(T ) = {x ∈ X |x ∈ T (x) }.

Let (X, d) be a metric space, x0 ∈ X and r > 0. Further on we shall
use the notations: B(x0, r) = {x ∈ X | d(x0, x) ≤ r }, Pcl(X) = {Y ∈
P (X) |Y is a closed set }.

Assuming that (X, d) is complete, M. Frigon and A. Granas [2] proved a
fixed point theorem for a multifunction T : B(x0, r) → Pcl(X). A. Petruşel
[4] generalized the result of M. Frigon and A. Granas for multifunctions
which satisfy Reich type conditions. A fixed point theorem for a multifunc-
tion which satisfies a general condition was proved by R. P. Agarwal and D.
O’Regan in [1]. Recently, A. Ŝıntămărian [7] proved a common fixed point
theorem for two multifunctions T1, T2 : B(x0, r) → Pcl(X), which generalizes
the results of M. Frigon and A. Granas, A. Petruşel and R. P. Agarwal and
D. O’Regan.

Quite recently A. Ŝıntămărian [8] proved a common fixed point theorem
for two multivalued mappings T1, T2 : B(x0, r) → Pcl(X), which satisfy a
contractive condition of Latif-Beg type [3].

Theorem 1 ([8]). Let (X, d) be a complete metric space, x0 ∈ X, r > 0
and T1, T2 : B(x0, r) → Pcl(X) two multifunctions. We suppose that
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(i1) there exist a11, . . . , a15 ∈ R+, with a11 + a12 + a13 + 2a14 < 1, such
that for each x ∈ B(x0, r), any ux ∈ T1(x) and for all y ∈ B(x0, r), there
exists uy ∈ T2(y) so that

d(ux, uy) ≤ a11d(x, y)+a12d(x, ux)+a13d(y, uy)+a14d(x, uy)+a15d(y, ux);

(i2) there exist a21, . . . , a25 ∈ R+, with a21 + a22 + a23 + 2a24 < 1, such
that for each x ∈ B(x0, r), any ux ∈ T2(x) and for all y ∈ B(x0, r), there
exists uy ∈ T1(y) so that

d(ux, uy) ≤ a21d(x, y)+a22d(x, ux)+a23d(y, uy)+a24d(x, uy)+a25d(y, ux);

(ii) there exists y0 ∈ T1(x0) ∪ T2(x0) so that

d(x0, y0) ≤
(

1−max
{

a11 + a12 + a14

1− (a13 + a14)
,
a21 + a22 + a24

1− (a23 + a24)

})
r.

Then Fix(T1) = Fix(T2) ∈ Pcl(X).

In [5] and [6] is introduced the study of fixed points for mappings satisfy-
ing implicit relations. The purpose of this paper is to prove a common fixed
point theorem for two multifunctions T1, T2 : B(x0, r) → Pcl(X), which sat-
isfy a new type of implicit relation, which generalizes [8, Theorem 3.1]. Also,
we give a fixed point theorem for a multifunction T : B(x0, r) → Pcl(X)
satisfying an implicit relation, which generalizes [8, Theorem 3.2] .

2. Implicit relations

Let F be the set of all continuous multifunctions F (t1, . . . , t6) : R6
+ → R

satisfying the following conditions:
(F1) F is non-increasing in variables t3, . . . , t6;
(F2) there exist h ∈ [0, 1) and g ≥ 0 such that for every u, v, w ≥ 0 with

F (u, v, v + w, u + w, u + v + w,w) ≤ 0, we have u ≤ hv + gw.

Example 1. F (t1, . . . , t6) = t1 − a1t2 − a2t3 − a3t4 − a4t5 − a5t6, where
a1, . . . , a5 ∈ R+, with a1 + a2 + a3 + 2 a4 < 1.
(F1) Obviously.
(F2) Let F (u, v, v+w, u+w, u+v+w,w) = u−a1v−a2(v+w)−a3(u+w)−

a4(u+v+w)−a5w ≤ 0. Then u ≤ hv+gw, where 0 ≤ h = a1+a2+a4
1−(a3+a4) < 1

and g = a2+a3+a4+a5
1−(a3+a4) ≥ 0.

Example 2. F (t1, . . . , t6) = t1 − k max{t2, t3, t4, t5, t6}, where 0 ≤
k < 1/2.
(F1) Obviously.
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(F2) Let F (u, v, v + w, u + w, u + v + w,w) = u − k max{v, v + w, u +
w, u + v + w,w} = u − k(u + v + w) ≤ 0. Then u ≤ hv + gw, where
0 ≤ h = g = k/(1− k) < 1 .

Example 3. F (t1, . . . , t6) = t21 − k max{t22, t3t4, t5t6}, where 0 ≤ k <
1/4.
(F1) Obviously.
(F2) Let F (u, v, v + w, u + w, u + v + w,w) = u2 − k max{v2, (v + w)(u +

w), (u+v+w)w} ≤ 0. Then u2−k(u+v+w)2 ≤ 0 and u ≤
√

k(u+v+w).
Hence u ≤ hv + gw, where 0 ≤ h = g =

√
k

1−
√

k
< 1.

Example 4. F (t1, . . . , t6) = t31 + t21 + t1
1+t5t6

− (at22 + bt23 + ct24), where
a, b, c ≥ 0 and a + b + c < 1/4.
(F1) Obviously.
(F2) Let F (u, v, v +w, u+w, u+ v +w,w) = u3 +u2 + u

1+w(u+v+w) − [av2 +
b(v + w)2 + c(u + w)2] ≤ 0. Then u2− [av2 + b(v + w)2 + c(u + w)2] ≤ 0,
which implies u2 ≤ (a + b + c)(u + v + w)2. Hence u ≤ hv + gw, where
0 ≤ h = g =

√
a+b+c

1−
√

a+b+c
< 1.

3. Common fixed points

Theorem 2. Let (X, d) be a complete metric space, x0 ∈ X, r > 0 and
T1, T2 : B(x0, r) → Pcl(X) two multifunctions such that

(i) for each x ∈ B(x0, r), any ux ∈ T1(x) and for all y ∈ B(x0, r), there
exists uy ∈ T2(y) so that

F1(d(ux, uy), d(x, y), d(x, ux), d(y, uy), d(x, uy), d(y, ux)) ≤ 0,

where F1 ∈ F;

(ii) for each x ∈ B(x0, r), any ux ∈ T2(x) and for all y ∈ B(x0, r), there
exists uy ∈ T1(y) so that

F2(d(ux, uy), d(x, y), d(x, ux), d(y, uy), d(x, uy), d(y, ux)) ≤ 0,

where F2 ∈ F;

(iii) there exists y0 ∈ T1(x0) ∪ T2(x0) such that

d(x0, y0) ≤ (1−max {h1, h2})r,

where h1, h2 are from definition of F.

Then Fix(T1) = Fix(T2) ∈ Pcl(X).
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Proof. First, we prove that Fix(T1) = Fix(T2). Let x ∈ T2(x). By (ii),
for x = y = ux, there exists uy ∈ T1(x) such that

F2(d(x, uy), 0, 0, d(x, uy), d(x, uy), 0) ≤ 0.

Since F2 ∈ F, then d(x, uy) = 0. Therefore x = uy ∈ T1(x) and x ∈ Fix(T1),
hence Fix(T2) ⊆ Fix(T1).

Similarly, by (i), we obtain Fix(T1) ⊆ Fix(T2).
We put h = max{h1, h2} < 1 and we suppose, for example, that there

exists x1 = y0 ∈ T1(x0) such that d(x0, x1) ≤ (1 − h)r. It is clear that
x1 ∈ B(x0, r).

By (i) we have that there exists x2 ∈ T2(x1) such that

F1(d(x1, x2), d(x0, x1), d(x0, x1), d(x1, x2), d(x0, x2), 0) ≤ 0,

which implies that

F1(d(x1, x2), d(x0, x1), d(x0, x1), d(x1, x2), d(x0, x1) + d(x1, x2), 0) ≤ 0.

Since F1 ∈ F,

d(x1, x2) ≤ h1 d(x0, x1) ≤ h d(x0, x1) ≤ h(1− h)r.

Using the triangle inequality we obtain

d(x0, x2) ≤ d(x0, x1) + d(x1, x2) ≤ (1− h)r + h(1− h)r = (1− h2)r ≤ r,

hence x2 ∈ B(x0, r).
By (ii) we have that there exists x3 ∈ T1(x2) such that

F2(d(x2, x3), d(x1, x2), d(x1, x2), d(x2, x3), d(x1, x3), 0) ≤ 0,

which implies that

F2(d(x2, x3), d(x1, x2), d(x1, x2), d(x2, x3), d(x1, x2) + d(x2, x3), 0) ≤ 0.

Since F2 ∈ F,

d(x2, x3) ≤ h2 d(x1, x2) ≤ h d(x1, x2) ≤ h2(1− h)r.

Because

d(x0, x3) ≤ d(x0, x2)+d(x2, x3) ≤ (1−h)(1+h)r+h2(1−h)r = (1−h3)r ≤ r,

we have that x3 ∈ B(x0, r).
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By induction, we obtain that there exists a sequence {xn}n∈N with the
following properties:

x2n−1 ∈ T1(x2n−2), x2n ∈ T2(x2n−1),
d(xn−1, xn) ≤ hn−1(1− h)r,
d(x0, xn) ≤ (1− hn)r ≤ r, which implies that xn ∈ B(x0, r),

for each n ∈ N∗.
The inequality d(xn−1, xn) ≤ hn−1(1− h)r, which holds for each n ∈ N∗,

implies that {xn}n∈N is a convergent sequence, because h < 1 and (X, d) is
a complete metric space. Let x∗ = lim

n→∞
xn. Obviously x∗ ∈ B(x0, r).

We shall prove that x∗ is a fixed point of T1, for example. From x2n ∈
T2(x2n−1) we have by (ii) that there exists un ∈ T1(x∗) such that

F2(d(x2n, un), d(x2n−1, x
∗), d(x2n−1, x2n), d(x∗, un),

d(x2n−1, un), d(x∗, x2n)) ≤ 0,

for each n ∈ N∗.
Then we have

F2(d(x2n, un), d(x2n−1, x
∗), d(x2n−1, x

∗) + d(x∗, x2n), d(x∗, x2n)
+ d(x2n, un), d(x2n−1, x

∗) + d(x∗, x2n) + d(x2n, un), d(x∗, x2n)) ≤ 0.

Since F2 ∈ F, then d(x2n, un) ≤ h2 d(x2n−1, x
∗)+g2 d(x∗, x2n). On the other

hand, we have that

d(x∗, un) ≤ d(x∗, x2n)+d(x2n, un) ≤ d(x∗, x2n)+h2 d(x2n−1, x
∗)+g2 d(x∗, x2n).

Letting n tend to infinity we obtain that x∗ = limn→∞ un. Since un ∈
T1(x∗), for all n ∈ N∗ and T1(x∗) is closed, it follows that x∗ ∈ Fix(T1) =
Fix(T2).

Let us prove that Fix(T1) = Fix(T2) ∈ Pcl(X). For this purpose let
yn ∈ Fix(T1) = Fix(T2), for each n ∈ N∗, such that yn → y∗, as n → ∞.
Clearly y∗ ∈ B(x0, r). For example, for yn ∈ T1(yn) we have that there
exists vn ∈ T2(y∗) so that

F1(d(yn, vn), d(yn, y∗), 0, d(y∗, vn), d(yn, vn), d(y∗, yn)) ≤ 0,

which implies that

F1(d(yn, vn), d(yn, y∗), d(yn, y∗) + d(yn, y∗), d(y∗, yn) + d(yn, vn),
d(yn, vn) + d(yn, y∗) + d(yn, y∗), d(y∗, yn)) ≤ 0.
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Since F1 ∈ F, then d(yn, vn) ≤ h1 d(yn, y∗) + g1 d(yn, y∗). Letting n tend to
infinity we obtain that limn→∞ vn = y∗. Since vn ∈ T2(y∗), for each n ∈ N∗
and T2(y∗) is closed, it follows that y∗ ∈ T2(y∗). Therefore Fix(T1) =
Fix(T2) ∈ Pcl(X). �

Corollary 1. Theorem 1.

Proof. The proof follows from Theorem 2 and Example 1. �

If T1 = T2 = T in Theorem 2, then we obtain the following theorem.

Theorem 3. Let (X, d) be a complete metric space, x0 ∈ X, r > 0 and
T : B(x0, r) → Pcl(X) a multifunction such that :

(i) for each x ∈ B(x0, r), any ux ∈ T (x) and for all y ∈ B(x0, r), there
exists uy ∈ T (y) so that

F (d(ux, uy), d(x, y), d(x, ux), d(y, uy), d(x, uy), d(y, ux)) ≤ 0,

where F ∈ F;
(ii) there exists y0 ∈ T (x0) such that

d(x0, y0) ≤ (1− h)r,

where h is from definition of F.
Then Fix(T ) ∈ Pcl(X).

Corollary 2. [8, Ŝıntămărian] Let (X, d) be a complete metric space,
x0 ∈ X, r > 0 and T : B(x0, r) → Pcl(X) a multifunction for which there
exist a1, . . . , a5 ∈ R+, with a1 + a2 + a3 + 2 a4 < 1 such that :

(i) for each x ∈ B(x0, r), any ux ∈ T (x) and for all y ∈ B(x0, r), there
exists uy ∈ T (y) so that

d(ux, uy) ≤ a1 d(x, y)+a2 d(x, ux)+a3 d(y, uy)+a4 d(x, uy)+a5 d(y, ux);

(ii) there exists y0 ∈ T (x0) such that

d(x0, y0) ≤ [1− a1 + a2 + a4

1− (a3 + a4)
]r.

Then Fix(T ) ∈ Pcl(X).

Proof. The proof follows from Theorem 3 and Example 1, where h =
a1+a2+a4
1−(a3+a4) . �
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