BINOD C. TRIPATHY AND STUTI BORGOHAIN*

THE SEQUENCE SPACE $m(\phi, \Delta_m, p)^F$

ABSTRACT. The sequence space $m(\phi, \Delta_m, p)^F$ of fuzzy real numbers for $0 and <math>1 \leq p < \infty$, are introduced. Some properties of the sequence space like solidness, symmetricity, convergence-free etc. are studied.

KEY WORDS: symmetric space; solid space; convergence-free; metric space; completeness.

AMS Mathematics Subject Classification: 40A05, 40A25, 40A30, 40C05.

1. Introduction

The concept of fuzzy set theory was introduced by Zadeh [16]. Later on sequences of fuzzy numbers have been discussed by Matloka [6], Tripathy and Nanda [15], Nuray and Savas [7], Kwon [5] and many others.

Kizmaz [4] defined the difference sequence spaces $\ell_{\infty}(\Delta), c(\Delta)$ and $c_0(\Delta)$ for crisp sets as follows

$$Z(\Delta) = \{ x = (x_k) : (\Delta x_k) \in Z \},\$$

for $Z = \ell_{\infty}, c$ and c_0 , where $\Delta x = (\Delta x_k) = (x_k - x_{k+1}).$

The above spaces are Banach spaces, normed by,

$$\parallel x \parallel_{\Delta} = |x_1| + \sup_k |\Delta x_k|.$$

The idea of Kizmaz [4] was applied to introduce different type of difference sequence spaces and study their different properties by Tripathy ([11],[12]), Tripathy and Esi [13] and many others.

Tripathy and Esi [13] introduced the new type of difference sequence spaces, for fixed $m \in N$ by

$$Z(\Delta_m) = \{ x = (x_k) : (\Delta_m X_k) \in Z \},\$$

 $^{^{*}\,}$ The work of the authors was carried under University Grants Commision of India project No.-F. No. 30 - 240/2004 (RS).

for $Z = \ell_{\infty}$, c and c_0 where $\Delta_m x = (\Delta_m x_k) = (x_k - x_{k+m})$.

This generalizes the notion of difference sequence spaces studied by Kizmaz [4].

The above spaces are Banach spaces, normed by

$$||x||_{\Delta_m} = \sum_{r=1}^m |x_r| + \sup_k |\Delta_m x_k|.$$

Sargent [9] introduced the crisp set sequence space $m(\phi)$ and studied some properties of this space. Later on it was studied from the sequence space point of view and some matrix classes were characterized with one member as $m(\phi)$ by Rath and Tripathy [8], Tripathy [11], Tripathy and Sen [14] and others. In this article we introduce the space $m(\phi, \Delta_m, p)^F$ of fuzzy real numbers for $0 and <math>m \ge 0$, an integer.

Throughout the article w^F , ℓ^F , ℓ^F_{∞} represent the classes of all, absolutely summable and bounded sequences of fuzzy real numbers respectively.

2. Definitions and background

A fuzzy real number X is a fuzzy set on R i.e. a mapping $X : R \to I$ (= [0,1]) associating each real number t with its grade of membership X(t).

A fuzzy real number X is called *convex* if $X(t) \ge X(s) \land X(r) = \min\{X(s), X(r)\}$, where s < t < r.

If there exists $t_0 \in R$ such that $X(t_0) = 1$, then the fuzzy real number X is called *normal*.

A fuzzy real number X is said to be upper semi continuous if for each $\varepsilon > 0, X^{-1}([0, a + \varepsilon))$, for all $a \in I$ is open in the usual topology of R.

The class of all upper semi continuous, normal, convex fuzzy real numbers is denoted by R(I). For $X \in R(I)$, the α -level set X^{α} for $0 < \alpha \leq 1$ is defined by, $X^{\alpha} = \{t \in R : X(t) \geq \alpha\}$. The 0-level i.e. X^{0} is the closure of strong 0-cut, i.e. $X^{0} = cl\{t \in R : X(t) > 0\}$.

The absolute value of $X \in R(I)$ i.e. |X| is defined as(see Kaleva and Seikkala [4])

$$X|(t) = \begin{cases} \max\{X(t), X(-t)\} & \text{for } t \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$

For $r \in R, \overline{r} \in R(I)$ is defined as,

$$\overline{r}(t) = \begin{cases} 1 & \text{for } t = r, \\ 0 & \text{otherwise.} \end{cases}$$

89

The additive identity and multiplicative identity of R(I) are denoted by $\overline{0}$ and $\overline{1}$ respectively. The zero sequence of fuzzy real numbers is denoted by $\overline{\theta}$.

Let D be the set of all closed bounded intervals $X = [X^L, X^R]$.

Define $d: D \times D \to R$ by $d(X, Y) = \max\{|X^L - Y^L|, |X^R - Y^R|\}$. Then clearly (D, d) is a complete metric space.

Define $\overline{d}: R(I) \times R(I) \to R$ by $\overline{d}(X,Y) = \sup_{0 < \alpha \leq 1} d(X^{\alpha},Y^{\alpha})$, for $X,Y \in R(I)$. Then it is well known that $(R(I),\overline{d})$ is a complete metric space.

A sequence $X = (X_k)$ of fuzzy real numbers is said to converge to the fuzzy number X_0 , if for every $\varepsilon > 0$, there exists $k_0 \in N$ such that $\overline{d}(X_k, X_0) < \varepsilon$, for all $k \ge k_0$.

A sequence space E is said to be *solid* if $(Y_n) \in E$, whenever $(X_n) \in E$ and $|Y_n| \leq |X_n|$, for all $n \in N$.

A sequence space E is said to be *monotone* if E contains the canonical pre-images of all its step spaces.

Let $X = (X_n)$ be a sequence, then S(X) denotes the set of all permutations of the elements of (X_n) i.e. $S(X) = \{(X_{\pi(n)}) : \pi \text{ is a permutation of } N\}$. A sequence space E is said to be *symmetric* if $S(X) \subset E$ for all $X \in E$.

A sequence space E is said to be *convergence-free* if $(Y_n) \in E$ whenever $(X_n) \in E$ and $X_n = \overline{0}$ implies $Y_n = \overline{0}$.

Remark. A sequence space E is solid implies that E is monotone.

Let \wp_s be the class of all subsets of N those do not contain more than S number of elements.

Throughout (ϕ_n) is a non-decreasing sequence of positive real numbers such that $n\phi_{n+1} \leq (n+1)\phi_n$ for all $n \in N$.

The space $m(\phi)$ introduced by Sargent [9] is defined as,

$$m(\phi) = \{ (x_k) \in w : \| x \|_{m(\phi)} = \sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{\phi_s} \sum_{k \in \sigma} |x_k| < \infty \}.$$

Tripathy and Sen [14] generalized this sequence space and introduced the sequence space $m(\phi, p)$ defined as follows

$$m(\phi, p) = \{(x_k) \in w : || x ||_{m(\phi, p)}$$

=
$$\sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{\phi_s} \sum_{k \in \sigma} |x_k|^p < \infty \} \quad \text{for } 0 < p < \infty.$$

We introduce the sequence space $m(\phi, \Delta_m, p)^F$ of fuzzy real numbers as follows

$$m(\phi, \Delta_m, p)^F = \{ X = (X_k) : \sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{\phi_s} \sum_{k \in \sigma} (\overline{d}(\Delta_m X_k, \overline{0}))^p < \infty \}$$

for $0 .$

3. Main results

In this section, we prove some results involving the sequence space $m(\phi, \Delta_m, p)^F$ with two values of p such that 0 .

Theorem 1. (a) The sequence space $m(\phi, \Delta_m, p)^F$ for 0 is a complete metric space by the metric,

$$\rho(X,Y) = \sum_{r=1}^{m} \overline{d}(X_r,Y_r) + \sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{\phi_s} \sum_{k \in \sigma} \left[\overline{d}(\Delta_m X_k, \Delta_m Y_k) \right]^p$$

for $X, Y \in m(\phi, \Delta_m, p)^F$.

(b) The sequence space $m(\phi, \Delta_m, p)^F$ for 0 is a complete metric space by the metric,

$$\eta(X,Y) = \sum_{r=1}^{m} \overline{d}(X_r,Y_r) + \sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{\phi_s} \left[\sum_{k \in \sigma} \left[\overline{d}(\Delta_m X_k, \Delta_m Y_k) \right]^p \right]^{\frac{1}{p}} for \ X,Y \in m(\phi, \Delta_m, p)^F.$$

Proof. (a) Clearly, $m(\phi, \Delta_m, p)^F$ is a metric space with the above defined metric ρ .

We have to prove that it is a complete metric space.

Let $(X^{(i)})$ be a Cauchy sequence in $m(\phi, \Delta_m, p)^F$ such that $X^{(i)} = (X^{(i)})_{n=1}^{\infty}$. Then we have for any $\epsilon > 0$, there exists a positive integer $n_0 = n_0(\varepsilon)$ such that,

$$\rho(X^{(i)}, X^{(j)}) < \varepsilon \quad \text{for} \quad i, j \ge n_0$$

(1)
$$\Rightarrow \sum_{r=1}^{m} \overline{d}(X_{r}^{(i)}, X_{r}^{(j)}) + \sup_{s \ge 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma} \left[\overline{d}(\Delta_{m} X_{k}^{(i)}, \Delta_{m} X_{k}^{(j)}) \right]^{p} < \varepsilon$$

for all $i, j \ge n_{0}$.

Which implies that,

$$\sum_{r=1}^{m} \overline{d}(X_r^{(i)}, X_r^{(j)}) < \varepsilon \quad \text{for all} \quad i, j \ge n_0$$

$$\Rightarrow \overline{d}(X_r^{(i)}, X_r^{(j)}) < \varepsilon \quad \text{for all} \quad i, j \ge n_0, \quad r = 1, 2, 3, \dots m.$$

Hence, $(X_r^{(i)})$ is a Cauchy sequence in R(I), so it is convergent in R(I), by the completeness property of R(I), for r = 1, 2, 3, ...m.

Let

$$\lim_{i \to \infty} X_r^{(i)} = X_r, \quad \text{for} \quad r = 1, 2, 3, \dots m.$$

Also, $\sup_{\substack{s \ge 1, \sigma \in \wp_s}} \frac{1}{\phi_s} \sum_{k \in \sigma} [\overline{d}(\Delta_m X_k^{(i)}, \Delta_m X_k^{(j)})]^p < \varepsilon, \text{ for all } i, j \ge n_0.$

On taking s = 1, we have,

$$\overline{d}(\Delta_m X_k^{(i)}, \Delta_m X_k^{(j)}) < (\varepsilon \phi_1)^{\frac{1}{p}}, \quad \text{for all} \quad i, j \ge n_0 \text{ and } k \in N.$$

Which implies that for each fixed $k(1 \le k < \infty)$, the sequence $(\Delta_m X_k^{(i)})$ is a Cauchy sequence in R(I), hence converges in R(I).

Let, $\lim_{i\to\infty} \Delta_m X_k^{(i)} = Y_k$ (say), in R(I), for each $k \in N$.

For k = 1, we get, $(X_1^{(i)})$ and $(X_1^{(i)} - X_{m+1}^{(i)})$ are convergent. Hence $(X_{m+1}^{(i)})$ is convergent.

On applying the principle of induction, we get, $\lim_{i\to\infty} X_k^{(i)} = X_k$ exists for each $k \in N$.

Taking limit as $j \to \infty$ in (1), we have,

(2)
$$\sum_{r=1}^{m} \overline{d}(X_{r}^{(i)}, X_{r}) + \sup_{s \ge 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma} [\overline{d}(\Delta_{m} X_{k}^{(i)}, \Delta_{m} X_{k})]^{p} < \varepsilon,$$

for all $i \ge n_{0}, m \ge 0.$

$$\Rightarrow \rho(X^{(n)}, X) < \varepsilon, \quad \text{for all} \quad n \ge n_0.$$

Since $(X^{(i)}) \in m(\phi, \Delta_m, p)^F$ and by (2), for all $i \ge n_0$, we have, $\rho(X, \theta) \le \rho(X^{(i)}, X) + \rho(X^{(i)}, \theta) < \infty$. Hence, $X \in m(\phi, \Delta_m, p)^F$. Hence, $m(\phi, \Delta_m, p)^F$ is a complete metric space.

This completes the proof of the theorem.

(b) This part can be proved by following similar techniques.

Theorem 2. The sequence space $m(\phi, \Delta_m, p)^F$ is not solid for 0 .

Proof. The proof follows from the following example.

Example 1. Let m = 3, p = 2 and $\phi_s = 1$, for all $s \in N$.

Let $X_k = \overline{1}$ for all $k \in N$. Then, we have, $\overline{d}(\Delta_3 X_k, \overline{0}) = 0$ for all $k \in N$. Hence, $\sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{\phi_s} \sum_{k \in \sigma} [\overline{d}(\Delta_m X_k, \overline{0})]^p = 0$. Which implies that, $(X_k) \in m(\phi, \Delta_3, 2)^F$. Consider the sequence (α_k) of scalars defined by

$$\alpha_k = \begin{cases} 1 & \text{for } k \text{ is even,} \\ 0 & \text{otherwise.} \end{cases}$$

So, $\overline{d}(\Delta_3 \alpha_k X_k, \overline{0}) = 1$ for all $k \in N$. Which implies that,

$$\sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{\phi_s} \sum_{k \in \sigma} [\overline{d}(\Delta_m X_k, \overline{0})]^p = \sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{1} \sum_{k \in \sigma} 1 = \sup_{s \ge 1, \sigma \in \wp_s} s = \infty.$$

Which shows that, $(\alpha_k X_k) \notin m(\phi, \Delta_3, 2)^F$. Hence, $m(\phi, \Delta_m, p)^F$ is not solid.

Theorem 3. The sequence space $m(\phi, \Delta_m, p)^F$ is not symmetric for 0 .

Proof. The result follows from the following example.

Example 2. Let m = 1, $\phi_s = s$, for all $s \in N$. Let, $X_k = \overline{k}$, for all $k \in N$. Then, $\overline{d}(\Delta X_k, \overline{0}) = 1$, for all $k \in N$. Let (Y_k) be a rearrangement of (X_k) such that,

$$(Y_k) = (X_1, X_2, X_4, X_3, X_9, X_5, X_{16}, X_6, X_{25}, ...).$$

Which shows that, $\sup_{s \ge 1, \sigma \in \varphi_s} \frac{1}{\phi_s} \sum_{k \in \sigma} [\overline{d}(\Delta_m Y_k, \overline{0})]^p = \infty$. Hence, $(Y_k) \notin m(\phi, \Delta_m, p)^F$. Thus, $m(\phi, \Delta_m, p)^F$ is not symmetric.

Proposition 1. The sequence space $m(\phi, \Delta_m, p)^F$ is not convergence-free, for $0 and <math>1 \le p < \infty$.

Proof. The result follows from the following example.

Example 3. Let $p = \frac{1}{2}$ and $\phi_s = s$ for all $s \in N$. Consider the sequence (X_k) defined as follows:

$$X_{k}(t) = \begin{cases} 1 + kt & \text{for } t \in [-\frac{1}{k}, 0], \\ 1 - kt & \text{for } t \in [0, \frac{1}{k}], \\ 0 & \text{otherwise.} \end{cases}$$

Then,

$$\Delta_m X_k(t) = \begin{cases} 1 + \frac{k(k+m)}{2k+m}t & \text{for} \quad t \in \left[-\frac{2k+m}{k(k+m)}, 0\right], \\ 1 - \frac{k(k+m)}{2k+m}t & \text{for} \quad t \in \left[0, \frac{2k+m}{k(k+m)}\right], \\ 0 & \text{otherwise}. \end{cases}$$

Such that, $\overline{d}(\Delta_m X_k, \overline{0}) = \frac{2k+m}{k(k+m)} = \frac{2}{(k+m)} + \frac{m}{k(k+m)} < \infty, m \ge 1.$

Then,

$$\sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{\phi_s} \sum_{k \in \sigma} \left[\overline{d}(\Delta_m X_k, \overline{0}) \right]^p$$
$$= \sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{s} \sum_{k \in \sigma} \left[\frac{2}{(k+m)} + \frac{m}{k(k+m)} \right]^{\frac{1}{2}} < \infty.$$

Thus, $(X_k) \in m(s, \Delta_m, \frac{1}{2})^F$.

Now, let us take another sequence (Y_k) such that,

$$Y_k(t) = \begin{cases} 1 + \frac{t}{k^2} & \text{for } t \in [-k^2, 0], \\ 1 - \frac{t}{k^2} & \text{for } t \in [0, k^2], \\ 0 & \text{otherwise.} \end{cases}$$

for all $k \in N$. So that,

$$\Delta_m Y_k(t) = \begin{cases} 1 + \frac{t}{2k^2 + 2km + m^2} & \text{for} \quad t \in \left[-(2k^2 + 2km + m^2), 0 \right], \\ 1 - \frac{t}{2k^2 + 2km + m^2} & \text{for} \quad t \in \left[0, (2k^2 + 2km + m^2) \right], \\ 0 & \text{otherwise}. \end{cases}$$

for all $k \in N$. But, $\overline{d}(\Delta_m Y_k, \overline{0}) = (2k^2 + 2km + m^2)$, for all $m \geq 1$. Which implies that, $\sup_{s \geq 1, \sigma \in \wp_s} \frac{1}{s} \sum_{k \in \sigma} (2k^2 + 2km + m^2)^{\frac{1}{2}} = \infty$. Thus, $(Y_k) \notin m(s, \Delta_m, \frac{1}{2})^F$. Hence $m(\phi, \Delta_m, p)^F$ is not convergence-free, for 0 . $Similarly, it can be proved that <math>m(\phi, \Delta_m, p)^F$ is not convergence-free for $1 \leq p < \infty$. The following result is a consequence of Lemma and Proposition 1.

Proposition 2. $m(\phi, \Delta_m)^F \subseteq m(\phi, \Delta_m, p)^F$.

Proof. Let $X \in m(\phi, \Delta_m)^F$, then we have

$$\sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{\phi_s} \sum_{k \in \sigma} \overline{d}(\Delta_m X_k, \overline{0}) = K(<\infty).$$

Hence, for each fixed s, we have

$$\sum_{k \in \sigma} \overline{d}(\Delta_m X_k, \overline{0}) \le K \phi_s, \quad \text{for} \quad \sigma \in \wp_s, \ m \ge 1$$
$$\Rightarrow \left[\sum_{k \in \sigma} \left\{ \overline{d} \left(\Delta_m X_k, \overline{0} \right) \right\}^p \right]^{\frac{1}{p}} \le K \phi_s$$

$$\Rightarrow \sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{\phi_s} \left[\sum_{k \in \sigma} \left\{ \overline{d} \left(\Delta_m X_k, \overline{0} \right) \right\}^p \right]^{\frac{1}{p}} \le K, \quad m \ge 1.$$

i.e.
$$\sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{\phi_s} \left[\sum_{k \in \sigma} \left\{ \overline{d} \left(\Delta_m X_k, \overline{0} \right) \right\}^p \right]^{\frac{1}{p}} < \infty.$$

Which implies that, $X \in m(\phi, \Delta_m, p)^F$, for $1 \le p < \infty$. This completes the proof.

Proposition 3. $m(\phi, \Delta_m, p)^F \subseteq m(\psi, \Delta_m, p)^F$, if and only if $\sup_{s>1}(\frac{\phi_s}{\psi_s})$ $< \infty$.

Proof. Suppose, $\sup_{s>1} (\frac{\phi_s}{\psi_s}) = K(<\infty)$, then we have, $\phi_s \leq K\psi_s$. Now, if $(X_k) \in m(\phi, \Delta_m, p)^F$, then

$$\sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{\phi_s} \left[\sum_{k \in \sigma} \left\{ \overline{d} \left(\Delta_m X_k, \overline{0} \right) \right\}^p \right]^{\frac{1}{p}} < \infty$$
$$\Rightarrow \sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{K \psi_s} \left[\sum_{k \in \sigma} \left\{ \overline{d} \left(\Delta_m X_k, \overline{0} \right) \right\}^p \right]^{\frac{1}{p}} < \infty$$

i.e. $(X_k) \in m(\psi, \Delta_m, p)^F$. Hence, $m(\phi, \Delta_m, p)^F \subseteq m(\psi, \Delta_m, p)^F$. Conversely, suppose that $m(\phi, \Delta_m, p)^F \subseteq m(\psi, \Delta_m, p)^F$. To show that, $\sup_{s \ge 1} (\frac{\phi_s}{\psi_s}) =$ $\sup_{s\geq 1}(\eta_s)<\infty$. Suppose if possible, $\sup_{s\geq 1}(\eta_s)=\infty$. Then there exists a subsequence (η_{s_i}) of (η_s) such that,

$$\lim_{i \to \infty} (\eta_{s_i}) = \infty.$$

Then for $(X_k) \in m(\phi, \Delta_m, p)^F$, we have $\sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{\psi_s} \left[\sum_{k \in \sigma} \{\overline{d}(\Delta_m X_k, \overline{0})\}^p \right]^{\frac{1}{p}} \ge$ $\sup_{s \ge 1, \sigma \in \wp_s} \frac{\eta_{s_i}}{\phi_{s_i}} \left[\sum_{k \in \sigma} \{\overline{d}(\Delta_m X_k, \overline{0})\}^p \right]^{\frac{1}{p}} = \infty$. i.e. $\sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{\psi_s} \left[\sum_{k \in \sigma} \{\overline{d}(\Delta_m X_k, \overline{0})\}^p \right]^{\frac{1}{p}} = \infty$, which implies that $(X_k) \notin m(\psi, \Delta_m, p)^F$, a contradiction.

This completes the proof.

Corollary 1. $m(\phi, \Delta_m, p)^F = m(\psi, \Delta_m, p)^F$, if and only if $\sup_{s \ge 1} (\eta_s) < \infty$ and $\sup_{s \ge 1} (\eta_s^{-1}) < \infty$, where $\eta_s = \frac{\phi_s}{\psi_s}$ for 0 .

Theorem 4. $\ell_p(\Delta_m)^F \subseteq m(\phi, \Delta_m, p)^F \subseteq \ell_\infty(\Delta_m)^F$ for $1 \leq p < \infty$.

Proof. Since $m(\phi, \Delta_m, p)^F = \ell_p(\Delta_m)^F$ for $\phi_n = 1$ and $0 and for all <math>n \in N$.

So, the first inclusion is clear. Next, suppose that, $(X_k) \in m(\phi, \Delta_m, p)^F$, that implies that,

$$\sup_{s \ge 1, \sigma \in \wp_s} \frac{1}{\phi_s} \left[\sum_{k \in \sigma} \{ \overline{d}(\Delta_m X_k, \overline{0}) \}^p \right]^{\frac{1}{p}} = K(<\infty).$$

For s = 1, $\overline{d}(\Delta_m X_k, \overline{0}) \le K\phi_1, k \in \sigma$, which implies that, $\sup_{k \ge 1} \{\overline{d}(\Delta_m X_k, \overline{0})\} < 0$

 ∞ which implies that, $X_k \in \ell_{\infty}(\Delta_m)^F$. This completes the proof.

Putting $\psi_n = 1$, for all $n \in N$, in Corollary 1, we get

Proposition 4. $m(\phi, \Delta_m, p)^F = \ell_p(\Delta_m)^F$ if and only if $\sup_{s \ge 1} (\phi_s) < \infty$ and $\sup_{s \ge 1} (\phi_s^{-1}) < \infty$.

Using the properties of ℓ_p spaces, we get the following results.

Proposition 5. If p < q, then $m(\phi, \Delta_m, p)^F \subset m(\phi, \Delta_m, q)^F$.

Proposition 6. $m(\phi, \Delta_m, p)^F \subset m(\psi, \Delta_m, q)^F$ if p < q and $\sup_{s \ge 1} (\frac{\phi_s}{\psi_s}) < \infty$.

Corollary 2.
$$m(\phi, \Delta_m, p)^F = \ell_p(\Delta_m)^F$$
 if $\lim_{s \to \infty} (\frac{\phi_s}{s}) > 0$.

Acknowledgements. The author is extremely thankful to the referee for giving valuable suggestions to improve the paper.

References

- ALTIN Y., ET M., COLAK R., Lacunary statistical and lacunary strongly convergence of generalized difference sequences of fuzzy numbers, *Comput. Math. Appl.*, 52(6-7)(2006), 1011-1020.
- [2] ET M., ALTIN Y., ALTINOK H., On almost statistical convergence of generalized difference sequences of fuzzy numbers, *Math. Model. Anal.*, 10(4)(2005), 345-352.
- [3] KALEVA O., SEIKKALA S., On fuzzy metric spaces, *Fuzzy Sets and Systems*, 12(1984), 215-229.
- [4] KIZMAZ H., On certain sequence spaces, Canad. Math. Bull., 24(2)(1981), 169-176.
- [5] KWON J.S., On statistical and p-Cesaro convergence of fuzzy numbers, Korean J. Compute. & Appl. Math., 7(1)(2000), 195-203.
- [6] MATLOKA M., Sequences of fuzzy numbers, BUSEFAL, 28(1986), 28-37.

- [7] NURAY F., SAVAS E., Statistical convergence of sequences of fuzzy real numbers, *Math. Slovaca*, 45(3)(1995), 269-273.
- [8] RATH D., TRIPATHY B.C., Characterization of certain matrix operators, J. Orissa Math. Soc., 8(1989), 121-134.
- [9] SARGENT W.L.C., Some sequence spaces related to l^p spaces, J. London Math. Soc., 35(1960), 161-171.
- [10] TRIPATHY B.C., Matrix maps on the power series convergent on the unit disc, J. Analysis, 6(1998), 27-31.
- [11] TRIPATHY B.C., A class of difference sequences related to the *p*-normed space ℓ^p , Demonstratio Math, 3694(2003), 867-872.
- [12] TRIPATHY B.C., On some class of difference paranormed sequence spaces associated with multiplier sequences, *Internet. J. Math. Sci.*, 2(1)(2003), 159-166.
- [13] TRIPATHY B.C., ESI A., A new type of difference sequence spaces, International Journal of Science and Technology, 1(1)(2006), 11-14.
- [14] TRIPATHY B.C., SEN M., On a class of sequences related to the *p*-normed space, *Journal of Beijing University of Technology*, 31(2005), 112-115.
- [15] TRIPATHY B.K., NANDA S., Absolute value of fuzzy real numbers and fuzzy sequence spaces, *Jour. Fuzzy Math.*, 8(4)(2000), 883-892.
- [16] ZADEH L.A., Fuzzy sets, Information and control, 8(1965), 338-353.

Bind Chandra Tripathy

MATHEMATICAL SCIENCES DIVISION

INSTITUTE OF ADVANCED STUDY IN SCIENCE AND TECHNOLOGY PASCHIM BORAGAON, GARCHUK, GUWAHATI-781035, INDIA *e-mail:* tripathybc@yahoo.com *or* tripathybc@rediffmail.com

Stuti Borgohain

MATHEMATICAL SCIENCES DIVISION INSTITUTE OF ADVANCED STUDY IN SCIENCE AND TECHNOLOGY PASCHIM BORAGAON, GARCHUK, GUWAHATI-781035, INDIA *e-mail:* stutiborgohain@yahoo.com

Received on 08.03.2007 and, in revised form, on 13.08.2007.