F A S C I C U L I M A T H E M A T I C I

Nr 39

Binod C. Tripathy and Stuti Borgohain*
 THE SEQUENCE SPACE $m\left(\phi, \Delta_{m}, p\right)^{F}$

Abstract

The sequence space $m\left(\phi, \Delta_{m}, p\right)^{F}$ of fuzzy real numbers for $0<p<1$ and $1 \leq p<\infty$, are introduced. Some properties of the sequence space like solidness, symmetricity, convergence-free etc. are studied. KEY words: symmetric space; solid space; convergence-free; metric space; completeness.

AMS Mathematics Subject Classification: 40A05, 40A25, 40A30, 40C05.

1. Introduction

The concept of fuzzy set theory was introduced by Zadeh [16]. Later on sequences of fuzzy numbers have been discussed by Matloka [6], Tripathy and Nanda [15], Nuray and Savas [7], Kwon [5] and many others.

Kizmaz [4] defined the difference sequence spaces $\ell_{\infty}(\Delta), c(\Delta)$ and $c_{0}(\Delta)$ for crisp sets as follows

$$
Z(\Delta)=\left\{x=\left(x_{k}\right):\left(\Delta x_{k}\right) \in Z\right\}
$$

for $Z=\ell_{\infty}, c$ and c_{0}, where $\Delta x=\left(\Delta x_{k}\right)=\left(x_{k}-x_{k+1}\right)$.
The above spaces are Banach spaces, normed by,

$$
\|x\|_{\Delta}=\left|x_{1}\right|+\sup _{k}\left|\Delta x_{k}\right|
$$

The idea of Kizmaz [4] was applied to introduce different type of difference sequence spaces and study their different properties by Tripathy ([11],[12]), Tripathy and Esi [13] and many others.

Tripathy and Esi [13] introduced the new type of difference sequence spaces, for fixed $m \in N$ by

$$
Z\left(\Delta_{m}\right)=\left\{x=\left(x_{k}\right):\left(\Delta_{m} X_{k}\right) \in Z\right\}
$$

[^0]for $Z=\ell_{\infty}, c$ and c_{0} where $\Delta_{m} x=\left(\Delta_{m} x_{k}\right)=\left(x_{k}-x_{k+m}\right)$.
This generalizes the notion of difference sequence spaces studied by Kizmaz [4].

The above spaces are Banach spaces, normed by

$$
\|x\|_{\Delta_{m}}=\sum_{r=1}^{m}\left|x_{r}\right|+\sup _{k}\left|\Delta_{m} x_{k}\right|
$$

Sargent [9] introduced the crisp set sequence space $m(\phi)$ and studied some properties of this space. Later on it was studied from the sequence space point of view and some matrix classes were characterized with one member as $m(\phi)$ by Rath and Tripathy [8], Tripathy [11], Tripathy and Sen [14] and others. In this article we introduce the space $m\left(\phi, \Delta_{m}, p\right)^{F}$ of fuzzy real numbers for $0<p<\infty$ and $m \geq 0$, an integer.

Throughout the article $w^{F}, \ell^{F}, \ell_{\infty}^{F}$ represent the classes of all, absolutely summable and bounded sequences of fuzzy real numbers respectively.

2. Definitions and background

A fuzzy real number X is a fuzzy set on R i.e. a mapping $X: R \rightarrow I$ $(=[0,1])$ associating each real number t with its grade of membership $X(t)$.

A fuzzy real number X is called convex if $X(t) \geq X(s) \wedge X(r)=\min \{X(s)$, $X(r)\}$, where $s<t<r$.

If there exists $t_{0} \in R$ such that $X\left(t_{0}\right)=1$, then the fuzzy real number X is called normal.

A fuzzy real number X is said to be upper semi continuous if for each $\varepsilon>0, X^{-1}([0, a+\varepsilon))$, for all $a \in I$ is open in the usual topology of R.

The class of all upper semi continuous, normal, convex fuzzy real numbers is denoted by $R(I)$. For $X \in R(I)$, the α-level set X^{α} for $0<\alpha \leq 1$ is defined by, $X^{\alpha}=\{t \in R: X(t) \geq \alpha\}$. The 0-level i.e. X^{0} is the closure of strong 0 -cut, i.e. $X^{0}=\operatorname{cl}\{t \in R: X(t)>0\}$.

The absolute value of $X \in R(I)$ i.e. $|X|$ is defined as(see Kaleva and Seikkala [4])

$$
|X|(t)= \begin{cases}\max \{X(t), X(-t)\} & \text { for } t \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

For $r \in R, \bar{r} \in R(I)$ is defined as,

$$
\bar{r}(t)= \begin{cases}1 & \text { for } \quad t=r \\ 0 & \text { otherwise }\end{cases}
$$

The additive identity and multiplicative identity of $R(I)$ are denoted by $\overline{0}$ and $\overline{1}$ respectively. The zero sequence of fuzzy real numbers is denoted by $\bar{\theta}$.

Let D be the set of all closed bounded intervals $X=\left[X^{L}, X^{R}\right]$.
Define $d: D \times D \rightarrow R$ by $d(X, Y)=\max \left\{\left|X^{L}-Y^{L}\right|,\left|X^{R}-Y^{R}\right|\right\}$. Then clearly (D, d) is a complete metric space.

Define $\bar{d}: R(I) \times R(I) \rightarrow R$ by $\bar{d}(X, Y)=\sup _{0<\alpha \leq 1} d\left(X^{\alpha}, Y^{\alpha}\right)$, for $X, Y \in$ $R(I)$. Then it is well known that $(R(I), \bar{d})$ is a complete metric space.

A sequence $X=\left(X_{k}\right)$ of fuzzy real numbers is said to converge to the fuzzy number X_{0}, if for every $\varepsilon>0$, there exists $k_{0} \in N$ such that $\bar{d}\left(X_{k}, X_{0}\right)<\varepsilon$, for all $k \geq k_{0}$.

A sequence space E is said to be solid if $\left(Y_{n}\right) \in E$, whenever $\left(X_{n}\right) \in E$ and $\left|Y_{n}\right| \leq\left|X_{n}\right|$, for all $n \in N$.

A sequence space E is said to be monotone if E contains the canonical pre-images of all its step spaces.

Let $X=\left(X_{n}\right)$ be a sequence, then $S(X)$ denotes the set of all permutations of the elements of $\left(X_{n}\right)$ i.e. $S(X)=\left\{\left(X_{\pi(n)}\right): \pi\right.$ is a permutation of $N\}$. A sequence space E is said to be symmetric if $S(X) \subset E$ for all $X \in E$.

A sequence space E is said to be convergence-free if $\left(Y_{n}\right) \in E$ whenever $\left(X_{n}\right) \in E$ and $X_{n}=\overline{0}$ implies $Y_{n}=\overline{0}$.

Remark. A sequence space E is solid implies that E is monotone.
Let \wp_{s} be the class of all subsets of N those do not contain more than S number of elements.

Throughout $\left(\phi_{n}\right)$ is a non-decreasing sequence of positive real numbers such that $n \phi_{n+1} \leq(n+1) \phi_{n}$ for all $n \in N$.

The space $m(\phi)$ introduced by Sargent [9] is defined as,

$$
m(\phi)=\left\{\left(x_{k}\right) \in w:\|x\|_{m(\phi)}=\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma}\left|x_{k}\right|<\infty\right\}
$$

Tripathy and Sen [14] generalized this sequence space and introduced the sequence space $m(\phi, p)$ defined as follows

$$
\begin{aligned}
m(\phi, p) & =\left\{\left(x_{k}\right) \in w:\|x\|_{m(\phi, p)}\right. \\
& \left.=\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma}\left|x_{k}\right|^{p}<\infty\right\} \quad \text { for } 0<p<\infty .
\end{aligned}
$$

We introduce the sequence space $m\left(\phi, \Delta_{m}, p\right)^{F}$ of fuzzy real numbers as follows

$$
\begin{array}{r}
m\left(\phi, \Delta_{m}, p\right)^{F}=\left\{X=\left(X_{k}\right): \sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma}\left(\bar{d}\left(\Delta_{m} X_{k}, \overline{0}\right)\right)^{p}<\infty\right\} \\
\text { for } 0<p<\infty
\end{array}
$$

3. Main results

In this section, we prove some results involving the sequence space $m(\phi$, $\left.\Delta_{m}, p\right)^{F}$ with two values of p such that $0<p<\infty$.

Theorem 1. (a) The sequence space $m\left(\phi, \Delta_{m}, p\right)^{F}$ for $0<p<1$ is a complete metric space by the metric,

$$
\begin{aligned}
\rho(X, Y)= & \sum_{r=1}^{m} \bar{d}\left(X_{r}, Y_{r}\right)+\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma}
\end{aligned} \quad\left[\bar{d}\left(\Delta_{m} X_{k}, \Delta_{m} Y_{k}\right)\right]^{p} .
$$

(b) The sequence space $m\left(\phi, \Delta_{m}, p\right)^{F}$ for $0<p<1$ is a complete metric space by the metric,

$$
\begin{array}{r}
\eta(X, Y)=\sum_{r=1}^{m} \bar{d}\left(X_{r}, Y_{r}\right)+\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}}\left[\sum_{k \in \sigma}\left[\bar{d}\left(\Delta_{m} X_{k}, \Delta_{m} Y_{k}\right)\right]^{p}\right]^{\frac{1}{p}} \\
\text { for } X, Y \in m\left(\phi, \Delta_{m}, p\right)^{F}
\end{array}
$$

Proof. (a) Clearly, $m\left(\phi, \Delta_{m}, p\right)^{F}$ is a metric space with the above defined metric ρ.

We have to prove that it is a complete metric space.
Let $\left(X^{(i)}\right)$ be a Cauchy sequence in $m\left(\phi, \Delta_{m}, p\right)^{F}$ such that $X^{(i)}=$ $\left(X^{(i)}\right)_{n=1}^{\infty}$. Then we have for any $\epsilon>0$, there exists a positive integer $n_{0}=n_{0}(\varepsilon)$ such that,

$$
\begin{gathered}
\rho\left(X^{(i)}, X^{(j)}\right)<\varepsilon \quad \text { for } \quad i, j \geq n_{0} \\
(1) \Rightarrow \sum_{r=1}^{m} \bar{d}\left(X_{r}^{(i)}, X_{r}^{(j)}\right)+\sup _{s \geq 1, \sigma \wp_{\wp_{s}}} \frac{1}{\phi_{s}} \sum_{k \in \sigma}\left[\bar{d}\left(\Delta_{m} X_{k}^{(i)}, \Delta_{m} X_{k}^{(j)}\right)\right]^{p}<\varepsilon \\
\quad \text { for all } i, j \geq n_{0}
\end{gathered}
$$

Which implies that,

$$
\begin{aligned}
& \sum_{r=1}^{m} \bar{d}\left(X_{r}^{(i)}, X_{r}^{(j)}\right)<\varepsilon \quad \text { for all } \quad i, j \geq n_{0} \\
\Rightarrow & \bar{d}\left(X_{r}^{(i)}, X_{r}^{(j)}\right)<\varepsilon \quad \text { for all } \quad i, j \geq n_{0}, \quad r=1,2,3, \ldots . m
\end{aligned}
$$

Hence, $\left(X_{r}^{(i)}\right)$ is a Cauchy sequence in $R(I)$, so it is convergent in $R(I)$, by the completeness property of $R(I)$, for $r=1,2,3, \ldots m$.

Let

$$
\lim _{i \rightarrow \infty} X_{r}^{(i)}=X_{r}, \quad \text { for } \quad r=1,2,3, \ldots m
$$

Also, $\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma}\left[\bar{d}\left(\Delta_{m} X_{k}^{(i)}, \Delta_{m} X_{k}^{(j)}\right)\right]^{p}<\varepsilon$, for all $i, j \geq n_{0}$.
On taking $s=1$, we have,

$$
\bar{d}\left(\Delta_{m} X_{k}^{(i)}, \Delta_{m} X_{k}^{(j)}\right)<\left(\varepsilon \phi_{1}\right)^{\frac{1}{p}}, \quad \text { for all } \quad i, j \geq n_{0} \text { and } k \in N
$$

Which implies that for each fixed $k(1 \leq k<\infty)$, the sequence $\left(\Delta_{m} X_{k}^{(i)}\right)$ is a Cauchy sequence in $R(I)$, hence converges in $R(I)$.

Let, $\lim _{i \rightarrow \infty} \Delta_{m} X_{k}^{(i)}=Y_{k}$ (say), in $R(I)$, for each $k \in N$.
For $k=1$, we get, $\left(X_{1}^{(i)}\right)$ and $\left(X_{1}^{(i)}-X_{m+1}^{(i)}\right)$ are convergent. Hence $\left(X_{m+1}^{(i)}\right)$ is convergent.

On applying the principle of induction, we get, $\lim _{i \rightarrow \infty} X_{k}^{(i)}=X_{k}$ exists for each $k \in N$.

Taking limit as $j \rightarrow \infty$ in (1), we have,

$$
\begin{align*}
& \sum_{r=1}^{m} \bar{d}\left(X_{r}^{(i)}, X_{r}\right)+\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma}\left[\bar{d}\left(\Delta_{m} X_{k}^{(i)}, \Delta_{m} X_{k}\right)\right]^{p}<\varepsilon \tag{2}\\
& \quad \text { for all } i \geq n_{0}, m \geq 0 \\
& \Rightarrow \rho\left(X^{(n)}, X\right)<\varepsilon, \quad \text { for all } n \geq n_{0}
\end{align*}
$$

Since $\left(X^{(i)}\right) \in m\left(\phi, \Delta_{m}, p\right)^{F}$ and by (2), for all $i \geq n_{0}$, we have, $\rho(X, \theta) \leq$ $\rho\left(X^{(i)}, X\right)+\rho\left(X^{(i)}, \theta\right)<\infty$. Hence, $X \in m\left(\phi, \Delta_{m}, p\right)^{F}$. Hence, $m\left(\phi, \Delta_{m}, p\right)^{F}$ is a complete metric space.

This completes the proof of the theorem.
(b) This part can be proved by following similar techniques.

Theorem 2. The sequence space $m\left(\phi, \Delta_{m}, p\right)^{F}$ is not solid for $0<p<\infty$.
Proof. The proof follows from the following example.
Example 1. Let $m=3, p=2$ and $\phi_{s}=1$, for all $s \in N$.
Let $X_{k}=\overline{1}$ for all $k \in N$. Then, we have, $\bar{d}\left(\Delta_{3} X_{k}, \overline{0}\right)=0$ for all $k \in$ N. Hence, $\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma}\left[\bar{d}\left(\Delta_{m} X_{k}, \overline{0}\right)\right]^{p}=0$. Which implies that, $\left(X_{k}\right) \in$ $m\left(\phi, \Delta_{3}, 2\right)^{F}$. Consider the sequence $\left(\alpha_{k}\right)$ of scalars defined by

$$
\alpha_{k}= \begin{cases}1 & \text { for } k \text { is even } \\ 0 & \text { otherwise }\end{cases}
$$

So, $\bar{d}\left(\Delta_{3} \alpha_{k} X_{k}, \overline{0}\right)=1$ for all $k \in N$. Which implies that,

$$
\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma}\left[\bar{d}\left(\Delta_{m} X_{k}, \overline{0}\right)\right]^{p}=\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{1} \sum_{k \in \sigma} 1=\sup _{s \geq 1, \sigma \not \wp_{\wp_{s}}} s=\infty .
$$

Which shows that, $\left(\alpha_{k} X_{k}\right) \notin m\left(\phi, \Delta_{3}, 2\right)^{F}$. Hence, $m\left(\phi, \Delta_{m}, p\right)^{F}$ is not solid.

Theorem 3. The sequence space $m\left(\phi, \Delta_{m}, p\right)^{F}$ is not symmetric for $0<p<\infty$.

Proof. The result follows from the following example.

Example 2. Let $m=1, \phi_{s}=s$, for all $s \in N$. Let, $X_{k}=\bar{k}$, for all $k \in N$. Then, $\bar{d}\left(\Delta X_{k}, \overline{0}\right)=1$, for all $k \in N$. Let $\left(Y_{k}\right)$ be a rearrangement of $\left(X_{k}\right)$ such that,

$$
\left(Y_{k}\right)=\left(X_{1}, X_{2}, X_{4}, X_{3}, X_{9}, X_{5}, X_{16}, X_{6}, X_{25}, \ldots\right)
$$

Which shows that, $\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma}\left[\bar{d}\left(\Delta_{m} Y_{k}, \overline{0}\right)\right]^{p}=\infty$. Hence, $\left(Y_{k}\right) \notin m\left(\phi, \Delta_{m}\right.$, $p)^{F}$. Thus, $m\left(\phi, \Delta_{m}, p\right)^{F}$ is not symmetric.

Proposition 1. The sequence space $m\left(\phi, \Delta_{m}, p\right)^{F}$ is not convergence-free, for $0<p<1$ and $1 \leq p<\infty$.

Proof. The result follows from the following example.

Example 3. Let $p=\frac{1}{2}$ and $\phi_{s}=s$ for all $s \in N$. Consider the sequence $\left(X_{k}\right)$ defined as follows:

$$
X_{k}(t)= \begin{cases}1+k t & \text { for } t \in\left[-\frac{1}{k}, 0\right] \\ 1-k t & \text { for } t \in\left[0, \frac{1}{k}\right] \\ 0 & \text { otherwise }\end{cases}
$$

Then,

$$
\Delta_{m} X_{k}(t)= \begin{cases}1+\frac{k(k+m)}{2 k+m} t & \text { for } t \in\left[-\frac{2 k+m}{k(k+m)}, 0\right] \\ 1-\frac{k(k+m)}{2 k+m} t & \text { for } t \in\left[0, \frac{2 k+m}{k(k+m)}\right] \\ 0 & \text { otherwise }\end{cases}
$$

Such that, $\bar{d}\left(\Delta_{m} X_{k}, \overline{0}\right)=\frac{2 k+m}{k(k+m)}=\frac{2}{(k+m)}+\frac{m}{k(k+m)}<\infty, m \geq 1$.

Then,

$$
\begin{aligned}
\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma} & {\left[\bar{d}\left(\Delta_{m} X_{k}, \overline{0}\right)\right]^{p} } \\
& =\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{s} \sum_{k \in \sigma}\left[\frac{2}{(k+m)}+\frac{m}{k(k+m)}\right]^{\frac{1}{2}}<\infty
\end{aligned}
$$

Thus, $\left(X_{k}\right) \in m\left(s, \Delta_{m}, \frac{1}{2}\right)^{F}$.
Now, let us take another sequence (Y_{k}) such that,

$$
Y_{k}(t)= \begin{cases}1+\frac{t}{k^{2}} & \text { for } t \in\left[-k^{2}, 0\right] \\ 1-\frac{t}{k^{2}} & \text { for } t \in\left[0, k^{2}\right] \\ 0 & \text { otherwise }\end{cases}
$$

for all $k \in N$. So that,

$$
\Delta_{m} Y_{k}(t)= \begin{cases}1+\frac{t}{2 k^{2}+2 k m+m^{2}} & \text { for } t \in\left[-\left(2 k^{2}+2 k m+m^{2}\right), 0\right] \\ 1-\frac{t}{2 k^{2}+2 k m+m^{2}} & \text { for } t \in\left[0,\left(2 k^{2}+2 k m+m^{2}\right)\right] \\ 0 & \text { otherwise }\end{cases}
$$

for all $k \in N$. But, $\bar{d}\left(\Delta_{m} Y_{k}, \overline{0}\right)=\left(2 k^{2}+2 k m+m^{2}\right)$, for all $m \geq 1$. Which implies that, $\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{s} \sum_{k \in \sigma}\left(2 k^{2}+2 k m+m^{2}\right)^{\frac{1}{2}}=\infty$. Thus, $\left(Y_{k}\right) \notin$ $m\left(s, \Delta_{m}, \frac{1}{2}\right)^{F}$. Hence $m\left(\phi, \Delta_{m}, p\right)^{F}$ is not convergence-free, for $0<p<1$. Similarly, it can be proved that $m\left(\phi, \Delta_{m}, p\right)^{F}$ is not convergence-free for $1 \leq$ $p<\infty$. The following result is a consequence of Lemma and Proposition 1.

Proposition 2. $m\left(\phi, \Delta_{m}\right)^{F} \subseteq m\left(\phi, \Delta_{m}, p\right)^{F}$.
Proof. Let $X \in m\left(\phi, \Delta_{m}\right)^{F}$, then we have

$$
\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma} \bar{d}\left(\Delta_{m} X_{k}, \overline{0}\right)=K(<\infty)
$$

Hence, for each fixed s, we have

$$
\begin{aligned}
& \sum_{k \in \sigma} \bar{d}\left(\Delta_{m} X_{k}, \overline{0}\right) \leq K \phi_{s}, \quad \text { for } \quad \sigma \in \wp_{s}, \quad m \geq 1 \\
& \quad \Rightarrow\left[\sum_{k \in \sigma}\left\{\bar{d}\left(\Delta_{m} X_{k}, \overline{0}\right)\right\}^{p}\right]^{\frac{1}{p}} \leq K \phi_{s}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}}\left[\sum_{k \in \sigma}\left\{\bar{d}\left(\Delta_{m} X_{k}, \overline{0}\right)\right\}^{p}\right]^{\frac{1}{p}} \leq K, \quad m \geq 1 . \\
& \text { i.e. } \sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}}\left[\sum_{k \in \sigma}\left\{\bar{d}\left(\Delta_{m} X_{k}, \overline{0}\right)\right\}^{p}\right]^{\frac{1}{p}}<\infty .
\end{aligned}
$$

Which implies that, $X \in m\left(\phi, \Delta_{m}, p\right)^{F}$, for $1 \leq p<\infty$. This completes the proof.

Proposition 3. $m\left(\phi, \Delta_{m}, p\right)^{F} \subseteq m\left(\psi, \Delta_{m}, p\right)^{F}$, if and only if $\sup _{s \geq 1}\left(\frac{\phi_{s}}{\psi_{s}}\right)$ $<\infty$.

Proof. Suppose, $\sup _{s \geq 1}\left(\frac{\phi_{s}}{\psi_{s}}\right)=K(<\infty)$, then we have, $\phi_{s} \leq K \psi_{s}$.
Now, if $\left(X_{k}\right) \in m\left(\phi, \Delta_{m}, p\right)^{F}$, then

$$
\begin{aligned}
& \sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}}\left[\sum_{k \in \sigma}\left\{\bar{d}\left(\Delta_{m} X_{k}, \overline{0}\right)\right\}^{p}\right]^{\frac{1}{p}}<\infty \\
& \quad \Rightarrow \sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{K \psi_{s}}\left[\sum_{k \in \sigma}\left\{\bar{d}\left(\Delta_{m} X_{k}, \overline{0}\right)\right\}^{p}\right]^{\frac{1}{p}}<\infty
\end{aligned}
$$

i.e. $\left(X_{k}\right) \in m\left(\psi, \Delta_{m}, p\right)^{F}$. Hence, $m\left(\phi, \Delta_{m}, p\right)^{F} \subseteq m\left(\psi, \Delta_{m}, p\right)^{F}$. Conversely, suppose that $m\left(\phi, \Delta_{m}, p\right)^{F} \subseteq m\left(\psi, \Delta_{m}, p\right)^{F}$. To show that, $\sup _{s \geq 1}\left(\frac{\phi_{s}}{\psi_{s}}\right)=$ $\sup \left(\eta_{s}\right)<\infty$. Suppose if possible, $\sup \left(\eta_{s}\right)=\infty$. Then there exists a subsequence $\left(\eta_{s_{i}}\right)$ of $\left(\eta_{s}\right)$ such that,

$$
\lim _{i \rightarrow \infty}\left(\eta_{s_{i}}\right)=\infty
$$

Then for $\left(X_{k}\right) \in m\left(\phi, \Delta_{m}, p\right)^{F}$, we have $\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\psi_{s}}\left[\sum_{k \in \sigma}\left\{\bar{d}\left(\Delta_{m} X_{k}, \overline{0}\right)\right\}^{p}\right]^{\frac{1}{p}} \geq$ $\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{\eta_{s_{i}}}{\phi_{s_{i}}}\left[\sum_{k \in \sigma}\left\{\bar{d}\left(\Delta_{m} X_{k}, \overline{0}\right)\right\}^{p}\right]^{\frac{1}{p}}=\infty$. i.e. $\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\psi_{s}}\left[\sum_{k \in \sigma}\left\{\bar{d}\left(\Delta_{m} X_{k}, \overline{0}\right)\right\}^{p}\right]^{\frac{1}{p}}$ $=\infty$, which implies that $\left(X_{k}\right) \notin m\left(\psi, \Delta_{m}, p\right)^{F}$, a contradiction.

This completes the proof.
Corollary 1. $m\left(\phi, \Delta_{m}, p\right)^{F}=m\left(\psi, \Delta_{m}, p\right)^{F}$, if and only if $\sup _{s \geq 1}\left(\eta_{s}\right)<\infty$ and $\sup _{s \geq 1}\left(\eta_{s}^{-1}\right)<\infty$, where $\eta_{s}=\frac{\phi_{s}}{\psi_{s}}$ for $0<p<\infty$.

Theorem 4. $\ell_{p}\left(\Delta_{m}\right)^{F} \subseteq m\left(\phi, \Delta_{m}, p\right)^{F} \subseteq \ell_{\infty}\left(\Delta_{m}\right)^{F}$ for $1 \leq p<\infty$.

Proof. Since $m\left(\phi, \Delta_{m}, p\right)^{F}=\ell_{p}\left(\Delta_{m}\right)^{F}$ for $\phi_{n}=1$ and $0<p<1$ and for all $n \in N$.

So, the first inclusion is clear. Next, suppose that, $\left(X_{k}\right) \in m\left(\phi, \Delta_{m}, p\right)^{F}$, that implies that,

$$
\sup _{s \geq 1, \sigma \in \wp_{\wp}} \frac{1}{\phi_{s}}\left[\sum_{k \in \sigma}\left\{\bar{d}\left(\Delta_{m} X_{k}, \overline{0}\right)\right\}^{p}\right]^{\frac{1}{p}}=K(<\infty) .
$$

For $s=1, \bar{d}\left(\Delta_{m} X_{k}, \overline{0}\right) \leq K \phi_{1}, k \in \sigma$, which implies that, $\sup _{k>1}\left\{\bar{d}\left(\Delta_{m} X_{k}, \overline{0}\right)\right\}<$ ∞ which implies that, $X_{k} \in \ell_{\infty}\left(\Delta_{m}\right)^{F}$.

This completes the proof.
Putting $\psi_{n}=1$, for all $n \in N$, in Corollary 1, we get
Proposition 4. $m\left(\phi, \Delta_{m}, p\right)^{F}=\ell_{p}\left(\Delta_{m}\right)^{F}$ if and only if $\sup _{s \geq 1}\left(\phi_{s}\right)<\infty$ and $\sup _{s \geq 1}\left(\phi_{s}^{-1}\right)<\infty$.

Using the properties of ℓ_{p} spaces, we get the following results.
Proposition 5. If $p<q$, then $m\left(\phi, \Delta_{m}, p\right)^{F} \subset m\left(\phi, \Delta_{m}, q\right)^{F}$.
Proposition 6. $m\left(\phi, \Delta_{m}, p\right)^{F} \subset m\left(\psi, \Delta_{m}, q\right)^{F}$ if $p<q$ and $\sup _{s \geq 1}\left(\frac{\phi_{s}}{\psi_{s}}\right)$ $<\infty$.

Corollary 2. $m\left(\phi, \Delta_{m}, p\right)^{F}=\ell_{p}\left(\Delta_{m}\right)^{F}$ if $\lim _{s \rightarrow \infty}\left(\frac{\phi_{s}}{s}\right)>0$.
Acknowledgements. The author is extremely thankful to the referee for giving valuable suggestions to improve the paper.

References

[1] Altin Y., Et M., Colak R., Lacunary statistical and lacunary strongly convergence of generalized difference sequences of fuzzy numbers, Comput. Math. Appl., 52(6-7)(2006), 1011-1020.
[2] Et M., Altin Y., Altinok H., On almost statistical convergence of generalized difference sequences of fuzzy numbers, Math. Model. Anal., 10(4)(2005), 345-352.
[3] Kaleva O., Seikkala S., On fuzzy metric spaces, Fuzzy Sets and Systems, 12(1984), 215-229.
[4] Kizmaz H., On certain sequence spaces, Canad. Math. Bull., 24(2)(1981), 169-176.
[5] Kwon J.S., On statistical and p-Cesaro convergence of fuzzy numbers, Korean J. Compute. \& Appl. Math., 7(1)(2000), 195-203.
[6] Matloka M., Sequences of fuzzy numbers, BUSEFAL, 28(1986), 28-37.
[7] Nuray F., Savas E., Statistical convergence of sequences of fuzzy real numbers, Math. Slovaca, 45(3)(1995), 269-273.
[8] Rath D.,Tripathy B.C., Characterization of certain matrix operators, J. Orissa Math. Soc., 8(1989), 121-134.
[9] Sargent W.L.C., Some sequence spaces related to ℓ^{p} spaces, J. London Math. Soc., 35(1960), 161-171.
[10] Tripathy B.C., Matrix maps on the power series convergent on the unit disc, J. Analysis, 6(1998), 27-31.
[11] Tripathy B.C., A class of difference sequences related to the p-normed space ℓ^{p}, Demonstratio Math, 3694(2003), 867-872.
[12] Tripathy B.C., On some class of difference paranormed sequence spaces associated with multiplier sequences, Internet. J. Math. Sci., 2(1)(2003), 159-166.
[13] Tripathy B.C., Esi A., A new type of difference sequence spaces, International Journal of Science and Technology, 1(1)(2006), 11-14.
[14] Tripathy B.C., Sen M., On a class of sequences related to the p-normed space, Journal of Beijing University of Technology, 31(2005), 112-115.
[15] Tripathy B.K., Nanda S., Absolute value of fuzzy real numbers and fuzzy sequence spaces, Jour. Fuzzy Math., 8(4)(2000), 883-892.
[16] Zadeh L.A., Fuzzy sets, Information and control, 8(1965), 338-353.

Bind Chandra Tripathy
Mathematical Sciences Division
Institute of Advanced Study in Science and Technology Paschim Boragaon, Garchuk, Guwahati-781035, India e-mail: tripathybc@yahoo.com or tripathybc@rediffmail.com
Stuti Borgohain
Mathematical Sciences Division
Institute of Advanced Study in Science and Technology Paschim Boragaon, Garchuk, Guwahati-781035, India e-mail: stutiborgohain@yahoo.com

Received on 08.03.2007 and, in revised form, on 13.08.2007.

[^0]: * The work of the authors was carried under University Grants Commision of India project No.-F. No. $30-240 / 2004$ (RS).

