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THE SEQUENCE SPACE m(φ, ∆m, p)F

Abstract. The sequence space m(φ,∆m, p)F of fuzzy real num-
bers for 0 < p < 1 and 1 ≤ p < ∞, are introduced. Some
properties of the sequence space like solidness, symmetricity,
convergence-free etc. are studied.
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1. Introduction

The concept of fuzzy set theory was introduced by Zadeh [16]. Later on
sequences of fuzzy numbers have been discussed by Matloka [6], Tripathy
and Nanda [15], Nuray and Savas [7], Kwon [5] and many others.

Kizmaz [4] defined the difference sequence spaces `∞(∆), c(∆) and c0(∆)
for crisp sets as follows

Z(∆) = {x = (xk) : (∆xk) ∈ Z},

for Z = `∞, c and c0, where ∆x = (∆xk) = (xk − xk+1).

The above spaces are Banach spaces, normed by,

‖ x ‖∆ = |x1|+ sup
k
|∆xk|.

The idea of Kizmaz [4] was applied to introduce different type of difference
sequence spaces and study their different properties by Tripathy ([11],[12]),
Tripathy and Esi [13] and many others.

Tripathy and Esi [13] introduced the new type of difference sequence
spaces, for fixed m ∈ N by

Z(∆m) = {x = (xk) : (∆mXk) ∈ Z},
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for Z = `∞, c and c0 where ∆mx = (∆mxk) = (xk − xk+m).
This generalizes the notion of difference sequence spaces studied by Kiz-

maz [4].
The above spaces are Banach spaces, normed by

‖ x ‖∆m=
m∑
r=1

|xr|+ sup
k
|∆mxk|.

Sargent [9] introduced the crisp set sequence space m(φ) and studied
some properties of this space. Later on it was studied from the sequence
space point of view and some matrix classes were characterized with one
member as m(φ) by Rath and Tripathy [8], Tripathy [11], Tripathy and Sen
[14] and others. In this article we introduce the space m(φ,∆m, p)F of fuzzy
real numbers for 0 < p <∞ and m ≥ 0, an integer.

Throughout the article wF , `F , `F∞ represent the classes of all, absolutely
summable and bounded sequences of fuzzy real numbers respectively.

2. Definitions and background

A fuzzy real number X is a fuzzy set on R i.e. a mapping X : R → I
(= [0, 1]) associating each real number t with its grade of membership X(t).

A fuzzy real numberX is called convex ifX(t) ≥ X(s)∧X(r) = min{X(s),
X(r)}, where s < t < r.

If there exists t0 ∈ R such that X(t0) = 1, then the fuzzy real number X
is called normal.

A fuzzy real number X is said to be upper semi continuous if for each
ε > 0, X−1([0, a+ ε)), for all a ∈ I is open in the usual topology of R.

The class of all upper semi continuous, normal, convex fuzzy real numbers
is denoted byR(I). ForX ∈ R(I), the α-level setXα for 0 < α ≤ 1 is defined
by, Xα = {t ∈ R : X(t) ≥ α}. The 0-level i.e. X0 is the closure of strong
0-cut, i.e. X0 = cl{t ∈ R : X(t) > 0}.

The absolute value of X ∈ R(I) i.e. |X| is defined as(see Kaleva and
Seikkala [4])

|X|(t) =

{
max{X(t), X(−t)} for t ≥ 0,
0 otherwise.

For r ∈ R, r ∈ R(I) is defined as,

r(t) =

{
1 for t = r,

0 otherwise.
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The additive identity and multiplicative identity of R(I) are denoted by
0 and 1 respectively. The zero sequence of fuzzy real numbers is denoted by
θ.

Let D be the set of all closed bounded intervals X = [XL, XR].
Define d : D×D → R by d(X,Y ) = max{|XL− Y L|, |XR − Y R|}. Then

clearly (D, d) is a complete metric space.
Define d : R(I) × R(I) → R by d(X,Y ) = sup

0<α≤1d(X
α, Y α), for X,Y ∈

R(I). Then it is well known that (R(I), d) is a complete metric space.
A sequence X = (Xk) of fuzzy real numbers is said to converge to

the fuzzy number X0, if for every ε > 0, there exists k0 ∈ N such that
d(Xk, X0) < ε, for all k ≥ k0.

A sequence space E is said to be solid if (Yn) ∈ E, whenever (Xn) ∈ E
and |Yn| ≤ |Xn|, for all n ∈ N .

A sequence space E is said to be monotone if E contains the canonical
pre-images of all its step spaces.

Let X = (Xn) be a sequence, then S(X) denotes the set of all permuta-
tions of the elements of (Xn) i.e. S(X) = {(Xπ(n)) : π is a permutation of
N}. A sequence space E is said to be symmetric if S(X) ⊂ E for all X ∈ E.

A sequence space E is said to be convergence-free if (Yn) ∈ E whenever
(Xn) ∈ E and Xn = 0 implies Yn = 0.

Remark. A sequence space E is solid implies that E is monotone.

Let ℘s be the class of all subsets of N those do not contain more than S
number of elements.

Throughout (φn) is a non-decreasing sequence of positive real numbers
such that nφn+1 ≤ (n+ 1)φn for all n ∈ N .

The space m(φ) introduced by Sargent [9] is defined as,

m(φ) = {(xk) ∈ w :‖ x ‖m(φ)= sup
s≥1, σ∈℘s

1
φs

∑
k∈σ
|xk| <∞}.

Tripathy and Sen [14] generalized this sequence space and introduced the
sequence space m(φ, p) defined as follows

m(φ, p) = {(xk) ∈ w :‖ x ‖m(φ,p)

= sup
s≥1, σ∈℘s

1
φs

∑
k∈σ
|xk|p <∞} for 0 < p <∞.

We introduce the sequence space m(φ,∆m, p)F of fuzzy real numbers as
follows

m(φ,∆m, p)F = {X = (Xk) : sup
s≥1, σ∈℘s

1
φs

∑
k∈σ

(d(∆mXk, 0))p <∞}

for 0 < p <∞.
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3. Main results

In this section, we prove some results involving the sequence space m(φ,
∆m, p)F with two values of p such that 0 < p <∞.

Theorem 1. (a) The sequence space m(φ,∆m, p)F for 0 < p < 1 is a
complete metric space by the metric,

ρ(X,Y ) =
m∑
r=1

d(Xr, Yr) + sup
s≥1, σ∈℘s

1
φs

∑
k∈σ

[
d(∆mXk,∆mYk)

]p
for X, Y ∈ m(φ,∆m, p)F .

(b) The sequence space m(φ,∆m, p)F for 0 < p < 1 is a complete metric
space by the metric,

η(X,Y ) =
m∑
r=1

d(Xr, Yr) + sup
s≥1, σ∈℘s

1
φs

[ ∑
k∈σ

[
d(∆mXk,∆mYk)

]p] 1
p

for X, Y ∈ m(φ,∆m, p)F .

Proof. (a) Clearly, m(φ,∆m, p)F is a metric space with the above defined
metric ρ.

We have to prove that it is a complete metric space.
Let (X(i)) be a Cauchy sequence in m(φ,∆m, p)F such that X(i) =

(X(i))∞n=1. Then we have for any ε > 0, there exists a positive integer
n0 = n0(ε) such that,

ρ(X(i), X(j)) < ε for i, j ≥ n0

⇒
m∑
r=1

d(X(i)
r , X(j)

r ) + sup
s≥1, σ∈℘s

1
φs

∑
k∈σ

[
d(∆mX

(i)
k ,∆mX

(j)
k )

]p
< ε(1)

for all i, j ≥ n0.

Which implies that,

m∑
r=1

d(X(i)
r , X(j)

r ) < ε for all i, j ≥ n0

⇒ d(X(i)
r , X(j)

r ) < ε for all i, j ≥ n0, r = 1, 2, 3, ....m.

Hence, (X(i)
r ) is a Cauchy sequence in R(I), so it is convergent in R(I),

by the completeness property of R(I), for r = 1, 2, 3, ...m.
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Let
lim
i→∞

X(i)
r = Xr, for r = 1, 2, 3, ....m.

Also, sup
s≥1, σ∈℘s

1
φs

∑
k∈σ

[d(∆mX
(i)
k ,∆mX

(j)
k )]p < ε, for all i, j ≥ n0.

On taking s = 1, we have,

d(∆mX
(i)
k ,∆mX

(j)
k ) < (εφ1)

1
p , for all i, j ≥ n0 and k ∈ N.

Which implies that for each fixed k(1 ≤ k <∞), the sequence (∆mX
(i)
k )

is a Cauchy sequence in R(I), hence converges in R(I).
Let, lim

i→∞
∆mX

(i)
k = Yk (say), in R(I), for each k ∈ N .

For k = 1, we get, (X(i)
1 ) and (X(i)

1 − X
(i)
m+1) are convergent. Hence

(X(i)
m+1) is convergent.

On applying the principle of induction, we get, lim
i→∞

X
(i)
k = Xk exists for

each k ∈ N .
Taking limit as j →∞ in (1), we have,

m∑
r=1

d(X(i)
r , Xr) + sup

s≥1, σ∈℘s

1
φs

∑
k∈σ

[d(∆mX
(i)
k ,∆mXk)]p < ε,(2)

for all i ≥ n0, m ≥ 0.

⇒ ρ(X(n), X) < ε, for all n ≥ n0.

Since (X(i)) ∈ m(φ,∆m, p)F and by (2), for all i ≥ n0, we have, ρ(X, θ) ≤
ρ(X(i), X)+ρ(X(i), θ) <∞. Hence,X ∈ m(φ,∆m, p)F . Hence,m(φ,∆m, p)F

is a complete metric space.
This completes the proof of the theorem. �

(b) This part can be proved by following similar techniques.

Theorem 2. The sequence space m(φ,∆m, p)F is not solid for 0 < p < ∞.

Proof. The proof follows from the following example. �

Example 1. Let m = 3, p = 2 and φs = 1, for all s ∈ N .
Let Xk = 1 for all k ∈ N . Then, we have, d(∆3Xk, 0) = 0 for all k ∈

N . Hence, sup
s≥1, σ∈℘s

1
φs

∑
k∈σ

[d(∆mXk, 0)]p = 0. Which implies that, (Xk) ∈

m(φ,∆3, 2)F . Consider the sequence (αk) of scalars defined by

αk =

{
1 for k is even,
0 otherwise.
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So, d(∆3αkXk, 0) = 1 for all k ∈ N . Which implies that,

sup
s≥1, σ∈℘s

1
φs

∑
k∈σ

[d(∆mXk, 0)]p = sup
s≥1, σ∈℘s

1
1

∑
k∈σ

1 = sup
s≥1,σ∈℘s

s = ∞.

Which shows that,(αkXk) 6∈ m(φ,∆3, 2)F . Hence, m(φ,∆m, p)F is not
solid.

Theorem 3. The sequence space m(φ,∆m, p)F is not symmetric for
0 < p <∞.

Proof. The result follows from the following example. �

Example 2. Let m = 1, φs = s, for all s ∈ N . Let, Xk = k, for all
k ∈ N . Then, d(∆Xk, 0) = 1, for all k ∈ N . Let (Yk) be a rearrangement of
(Xk) such that,

(Yk) = (X1, X2, X4, X3, X9, X5, X16, X6, X25, ...).

Which shows that, sup
s≥1, σ∈℘s

1
φs

∑
k∈σ

[d(∆mYk, 0)]p = ∞. Hence, (Yk) 6∈ m(φ,∆m,

p)F . Thus, m(φ,∆m, p)F is not symmetric.

Proposition 1. The sequence space m(φ,∆m, p)F is not convergence-free,
for 0 < p < 1 and 1 ≤ p <∞.

Proof. The result follows from the following example. �

Example 3. Let p = 1
2 and φs = s for all s ∈ N . Consider the sequence

(Xk) defined as follows:

Xk(t) =


1 + kt for t ∈ [− 1

k , 0] ,
1− kt for t ∈ [0, 1

k ] ,
0 otherwise .

Then,

∆mXk(t) =


1 + k(k+m)

2k+m t for t ∈ [− 2k+m
k(k+m) , 0] ,

1− k(k+m)
2k+m t for t ∈ [0, 2k+m

k(k+m) ] ,

0 otherwise .

Such that, d(∆mXk, 0) = 2k+m
k(k+m) = 2

(k+m) + m
k(k+m) <∞, m ≥ 1.
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Then,

sup
s≥1, σ∈℘s

1
φs

∑
k∈σ

[
d(∆mXk, 0)

]p
= sup

s≥1, σ∈℘s

1
s

∑
k∈σ

[
2

(k +m)
+

m

k(k +m)

] 1
2

<∞.

Thus, (Xk) ∈ m(s,∆m,
1
2)F .

Now, let us take another sequence (Yk) such that,

Yk(t) =


1 + t

k2 for t ∈ [−k2, 0] ,
1− t

k2 for t ∈ [0, k2] ,
0 otherwise .

for all k ∈ N . So that,

∆mYk(t) =


1 + t

2k2+2km+m2 for t ∈ [−(2k2 + 2km+m2), 0] ,
1− t

2k2+2km+m2 for t ∈ [0, (2k2 + 2km+m2)] ,
0 otherwise .

for all k ∈ N . But, d(∆mYk, 0) = (2k2 + 2km + m2), for all m ≥ 1.
Which implies that, sup

s≥1, σ∈℘s

1
s

∑
k∈σ

(2k2 + 2km + m2)
1
2 = ∞. Thus, (Yk) 6∈

m(s,∆m,
1
2)F . Hence m(φ,∆m, p)F is not convergence-free, for 0 < p < 1.

Similarly, it can be proved that m(φ,∆m, p)F is not convergence-free for 1 ≤
p <∞. The following result is a consequence of Lemma and Proposition 1.

Proposition 2. m(φ,∆m)F ⊆ m(φ,∆m, p)F .

Proof. Let X ∈ m(φ,∆m)F , then we have

sup
s≥1, σ∈℘s

1
φs

∑
k∈σ

d(∆mXk, 0) = K(<∞).

Hence, for each fixed s, we have∑
k∈σ

d(∆mXk, 0) ≤ Kφs, for σ ∈ ℘s, m ≥ 1.

⇒

[ ∑
k∈σ

{
d

(
∆mXk, 0

)}p] 1
p

≤ Kφs
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⇒ sup
s≥1, σ∈℘s

1
φs

[ ∑
k∈σ

{
d

(
∆mXk, 0

)}p] 1
p

≤ K, m ≥ 1.

i.e. sup
s≥1, σ∈℘s

1
φs

[ ∑
k∈σ

{
d

(
∆mXk, 0

)}p] 1
p

<∞.

Which implies that, X ∈ m(φ,∆m, p)F , for 1 ≤ p <∞. This completes the
proof. �

Proposition 3. m(φ,∆m, p)F ⊆ m(ψ,∆m, p)F , if and only if sup
s≥1

(φs

ψs
)

< ∞.

Proof. Suppose, sup
s≥1

(φs

ψs
) = K(<∞), then we have, φs ≤ Kψs.

Now, if (Xk) ∈ m(φ,∆m, p)F , then

sup
s≥1, σ∈℘s

1
φs

[ ∑
k∈σ

{
d

(
∆mXk, 0

)}p] 1
p

<∞

⇒ sup
s≥1, σ∈℘s

1
Kψs

[ ∑
k∈σ

{
d

(
∆mXk, 0

)}p] 1
p

<∞,

i.e. (Xk) ∈ m(ψ,∆m, p)F . Hence, m(φ,∆m, p)F ⊆ m(ψ,∆m, p)F . Con-
versely, suppose thatm(φ,∆m, p)F ⊆ m(ψ,∆m, p)F . To show that, sup

s≥1
(φs

ψs
) =

sup
s≥1

(ηs) <∞. Suppose if possible, sup
s≥1

(ηs) = ∞. Then there exists a subse-

quence (ηsi) of (ηs) such that,

lim
i→∞

(ηsi) = ∞.

Then for (Xk) ∈ m(φ,∆m, p)F , we have sup
s≥1, σ∈℘s

1
ψs

[
∑
k∈σ
{d(∆mXk, 0)}p]

1
p ≥

sup
s≥1,σ∈℘s

ηsi
φsi

[
∑
k∈σ
{d(∆mXk, 0)}p]

1
p = ∞. i.e. sup

s≥1, σ∈℘s

1
ψs

[
∑
k∈σ
{d(∆mXk, 0)}p]

1
p

= ∞, which implies that (Xk) 6∈ m(ψ,∆m, p)F , a contradiction.
This completes the proof. �

Corollary 1. m(φ,∆m, p)F = m(ψ,∆m, p)F , if and only if sup
s≥1

(ηs) <∞

and sup
s≥1

(η−1
s ) <∞, where ηs = φs

ψs
for 0 < p <∞.

Theorem 4. `p(∆m)F ⊆ m(φ,∆m, p)F ⊆ `∞(∆m)F for 1 ≤ p <∞.



The sequence space m(φ,∆m, p)F 95

Proof. Since m(φ,∆m, p)F = `p(∆m)F for φn = 1 and 0 < p < 1 and
for all n ∈ N .

So, the first inclusion is clear. Next, suppose that, (Xk) ∈ m(φ,∆m, p)F ,
that implies that,

sup
s≥1, σ∈℘s

1
φs

[
∑
k∈σ
{d(∆mXk, 0)}p]

1
p = K(<∞).

For s = 1, d(∆mXk, 0) ≤ Kφ1, k ∈ σ, which implies that, sup
k≥1

{d(∆mXk, 0)} <

∞ which implies that, Xk ∈ `∞(∆m)F .
This completes the proof. �

Putting ψn = 1, for all n ∈ N , in Corollary 1, we get

Proposition 4. m(φ,∆m, p)F = `p(∆m)F if and only if sup
s≥1

(φs) < ∞

and sup
s≥1

(φ−1
s ) <∞.

Using the properties of `p spaces, we get the following results.

Proposition 5. If p < q, then m(φ,∆m, p)F ⊂ m(φ,∆m, q)F .

Proposition 6. m(φ,∆m, p)F ⊂ m(ψ,∆m, q)F if p < q and sup
s≥1

(φs

ψs
)

<∞.

Corollary 2. m(φ,∆m, p)F = `p(∆m)F if lim
s→∞

(φs

s ) > 0.
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