F A S C I C U L I M A T H E M A T I C I

Nr 39

Binod C. Tripathy* and Paritosh C. Das**

STATISTICALLY CONVERGENT DIFFERENCE SEQUENCE SPACES OF FUZZY REAL NUMBERS

Abstract

In this article we introduce the notion of statistical convergence difference sequences of fuzzy real numbers, $\bar{c}^{F}(\Delta)$. We study some properties of the statistically convergent and statistically null difference sequence spaces of fuzzy real numbers, like completeness, solidness, sequence algebra, symmetricity, convergence free, nowhere denseness and some inclusion results. KEY words: fuzzy real number, statistical convergence, difference sequence, solid space, symmetric space, sequence algebra, convergence free.

AMS Mathematics Subject Classification: 40A05, 40D25.

1. Introduction

In order to extend the notion of convergence of sequences, statistical convergence of sequences was introduced by Fast [2] and Schoenberg [11] independently. It was also found in Zygmund [15]. Later on it was studied from sequence space point of view and linked with summability by Fridy [3], Šalát [9], Tripathy ([12], [13]), Rath and Tripathy [8] and many others.

The idea depends on certain density of the subsets of the set N of natural numbers.

A subset E of N is said to have natural density $\delta(E)$ if

$$
\delta(E)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \chi_{E}(k) \text { exists }
$$

where $\chi_{E}(k)$ is the characteristic function of E. Clearly all finite subsets of N have zero natural density and $\delta\left(E^{c}\right)=\delta(N-E)=1-\delta(E)$.

[^0]A sequence $\left(X_{k}\right)$ is said to be statistically convergent to L if for every $\varepsilon>0, \delta\left(\left\{k \in N:\left|X_{k}-L\right| \geq \varepsilon\right\}\right)=0$. We write $X_{k} \xrightarrow{\text { stat }} L$ or stat-lim $X_{k}=L$.

Let $\left(X_{k}\right)$ and $\left(Y_{k}\right)$ be two sequences, then we say that $X_{k}=Y_{k}$ for almost all k (in short a.a.k.) if $\delta\left(k \in N: X_{k} \neq Y_{k}\right)=0$.

Kizmaz [5] initiated the works on classical difference sequence spaces $c(\Delta), c_{0}(\Delta)$ and $\ell_{\infty}(\Delta)$ defined as follows:

$$
Z(\Delta)=\left\{x=\left(x_{k}\right) \in w:\left(\Delta x_{k}\right) \in Z\right\}
$$

for $Z=c, c_{0}$ and ℓ_{∞}, where $\Delta x=\left(\Delta x_{k}\right)=\left(x_{k}-x_{k+1}\right)$, for all $k \in N$.
Let D denote the set of all closed and bounded intervals $X=\left[a_{1}, a_{2}\right]$ on R, the real line. For $X, Y \in D$ we define

$$
d(X, Y)=\max \left(\left|a_{1}-b_{1}\right|,\left|a_{2}-b_{2}\right|\right)
$$

where $X=\left[a_{1}, a_{2}\right]$ and $Y=\left[b_{1}, b_{2}\right]$. It is known that (D, d) is a complete metric space.

A fuzzy real number X is a fuzzy set on R, i.e. a mapping $X: R \rightarrow I=$ $([0,1])$ associating each real number t with its grade of membership $X(t)$.

A fuzzy real number X is called convex if $X(t) \geq X(s) \wedge X(r)=$ $\min (X(s), X(r))$, where $s<t<r$.

If there exists $t_{0} \in R$ such that $X\left(t_{0}\right)=1$, then the fuzzy real number X is called normal.

A fuzzy real number X is said to be upper-semi continuous if for each $\varepsilon>0, X^{-1}([0, a+\varepsilon))$, for all $a \in I$ is open in the usual topology of R.

The set of all upper-semi continuous, normal, convex fuzzy real numbers is denoted by $R(I)$ and throughout the article, by a fuzzy real number we mean that the number belongs to $R(I)$.

The α-level set $[X]^{\alpha}$ of the fuzzy real number X, for $0<\alpha \leq 1$, defined as $[X]^{\alpha}=\{t \in R: X(t) \geq \alpha\}$. If $\alpha=0$, then it is the closure of the strong 0 -cut.

The arithmetic operations for α-level sets are defined as follows:
Let $X, Y \in R(I)$ and α-level sets be $[X]^{\alpha}=\left[a_{1}^{\alpha}, b_{1}^{\alpha}\right],[Y]^{\alpha}=\left[a_{2}^{\alpha}, b_{2}^{\alpha}\right]$, $\alpha \in[0,1]$. Then

$$
\begin{aligned}
& {[X \oplus Y]^{\alpha} } \\
& =\left[a_{1}^{\alpha}+a_{2}^{\alpha}, b_{1}^{\alpha}+b_{2}^{\alpha}\right], \\
& {[X-Y]^{\alpha}=\left[a_{1}^{\alpha}-b_{2}^{\alpha}, b_{1}^{\alpha}-a_{2}^{\alpha}\right], } \\
\text { and } \quad & {\left[Y^{-1}\right]^{\alpha}=\left[\min _{i, j \in\{1,2\}} a_{i}^{\alpha} b_{j}^{\alpha}, \max _{i, j \in\{1,2\}} a_{2}^{\alpha}, \frac{1}{a_{2}^{\alpha}}\right], \quad 0 \notin Y . }
\end{aligned}
$$

The set R of all real numbers can be embedded in $R(I)$. For $r \in R$, $\bar{r} \in R(I)$ is defined by

$$
\bar{r}(t)=\left\{\begin{array}{lll}
1 & \text { for } & t=r \\
0 & \text { for } & t \neq r
\end{array}\right.
$$

For $r \in R$ and $X \in R(I)$ we define

$$
r X(t)=\left\{\begin{array}{cc}
X\left(r^{-1} t\right) & \text { for } \quad r \neq 0 \\
\overline{0} & \text { for } \quad r=0
\end{array}\right.
$$

The absolute value, $|X|$ of $X \in R(I)$ is defined by (see for instance Kaleva and Seikkala [4])

$$
|X|(t)=\left\{\begin{array}{cc}
\max \{X(t), X(-t)\} & \text { for } \quad t \geq 0 \\
0 & \text { for } \quad t<0
\end{array}\right.
$$

A fuzzy real number X is called non-negative if $X(t)=0$, for all $t<0$. The set of all non-negative fuzzy real numbers is denoted by $R^{*}(I)$.

Let $\bar{d}: R(I) \times R(I) \rightarrow R$ be defined by

$$
\bar{d}(X, Y)=\sup _{0 \leq \alpha \leq 1} d\left([X]^{\alpha},[Y]^{\alpha}\right)
$$

Then \bar{d} defines a metric on $R(I)$.
The additive identity and multiplicative identity in $R(I)$ are denoted by $\overline{0}$ and $\overline{1}$ respectively.

A sequence $\left(X_{k}\right)$ of fuzzy real numbers is said to be convergent to the fuzzy real number X_{0} if, for every $\varepsilon>0$, there exists $n_{0} \in N$ such that $\bar{d}\left(X_{k}, X_{0}\right)<\varepsilon$, for all $k \geq n_{0}$.

A fuzzy real number sequence $\left(X_{k}\right)$ is said to be bounded if $\left|X_{k}\right| \leq \mu$, for some $\mu \in R^{*}(I)$.

2. Definitions and preliminaries

Nuray and Savas [7] defined the notion of statistical convergence for sequences of fuzzy real numbers and studied some properties.

A fuzzy real number sequence $\left(X_{k}\right)$ is said to be statistically convergent to the fuzzy real number X_{0} if, for every $\varepsilon>0, \delta\left(\left\{k \in N: \bar{d}\left(X_{k}, X_{0}\right) \geq\right.\right.$ $\varepsilon\})=0$.

Savas [10] studied the difference sequence spaces $c^{F}(\Delta)$ and $\ell_{\infty}^{F}(\Delta)$ of fuzzy real numbers.

A fuzzy real number sequence $\Delta X=\left(\Delta X_{k}\right)$ is said to be convergent to a fuzzy real number X, written as $\lim _{k \rightarrow \infty} \Delta X_{k}=X$ if, for every $\varepsilon>0$, there exists a positive integer n_{0} such that

$$
\bar{d}\left(\Delta X_{k}, X\right)<\varepsilon \quad \text { for all } \quad k>n_{0} .
$$

A fuzzy real number sequence $\Delta X=\left(\Delta X_{k}\right)$ is said to be bounded if $\left|\Delta X_{k}\right| \leq \mu$, for some $\mu \in R^{*}(I)$.

In this article we define the statistical convergence difference sequences of fuzzy real numbers as follows:

A fuzzy real number sequence $\Delta X=\left(\Delta X_{k}\right)$ is said to be statistically convergent to the fuzzy real number X_{0} if, for every $\varepsilon>0, \delta(\{k \in N$: $\left.\left.\bar{d}\left(\Delta X_{k}, X_{0}\right) \geq \varepsilon\right\}\right)=0$.

Throughout the article $w^{F}, \ell_{\infty}^{F}, c^{F}, c_{0}^{F}, \bar{c}^{F}, m^{F}, \overline{c_{0}}{ }^{F}$ and m_{0}^{F} denote the classes of all, bounded, convergent, null, statistically convergent, bounded statistically convergent, statistically null and bounded statistically null fuzzy real number sequences respectively. Similarly $c^{F}(\Delta), c_{0}^{F}(\Delta), \ell_{\infty}^{F}(\Delta), \bar{c}^{F}(\Delta)$, $m^{F}(\Delta), \bar{c}_{0}^{F}(\Delta)$ and $m_{0}^{F}(\Delta)$ denote the classes of convergent, null, bounded, statistically convergent, bounded statistically convergent, statistically null and bounded statistically null difference sequences of fuzzy real numbers.

A sequence space E^{F} is said to be normal (or solid) if $\left(Y_{k}\right) \in E^{F}$, whenever $\left|Y_{k}\right| \leq\left|X_{k}\right|$, for all $k \in N$, for some $\left(X_{k}\right) \in E^{F}$.

A sequence space E^{F} is said to be monotone if E^{F} contains the canonical pre-images of all its step spaces.

Let $K=\left\{k_{1}<k_{2}<k_{3} \ldots\right\} \subseteq N$ and E^{F} be a sequence space. A K-step space of E^{F} is a sequence space $\lambda_{k}^{E^{F}}=\left\{\left(X_{k_{n}}\right) \in w^{F}:\left(X_{n}\right) \in E^{F}\right\}$.

A canonical pre-image of a sequence $\left(X_{k_{n}}\right) \in \lambda_{k}^{E^{F}}$ is a sequence $\left(Y_{n}\right) \in w^{F}$ defined as follows:

$$
Y_{n}=\left\{\begin{array}{cl}
X_{n} & \text { for } \quad n \in K \\
\overline{0} & \text { otherwise }
\end{array}\right.
$$

A canonical pre-image of a step space $\lambda_{k}^{E^{F}}$ is a set of canonical pre-images of all elements in $\lambda_{k}^{E^{F}}$, i.e. Y is in canonical pre-image $\lambda_{k}^{E^{F}}$ if and only if Y is canonical pre-image of some $X \in \lambda_{k}^{E^{F}}$.

From the above definitions we have the following remark.
Remark 1. A sequence space E^{F} is solid $\Rightarrow E^{F}$ is monotone.
A sequence space E^{F} is is said to be symmetric if $\left(X_{\pi(n)}\right) \in E^{F}$, whenever $\left(X_{k}\right) \in E^{F}$, where π is a permutation of N.

A sequence space E^{F} is is said to be sequence algebra if $\left(X_{k} \otimes Y_{k}\right) \in E^{F}$, whenever $\left(X_{k}\right),\left(Y_{k}\right) \in E^{F}$.

A sequence space E^{F} is is said to be convergence free if $\left(Y_{k}\right) \in E^{F}$, whenever $\left(X_{k}\right) \in E^{F}$ and $X_{k}=\overline{0}$ implies $Y_{k}=\overline{0}$.

Remark 2. For the crisp set, $x_{k} \xrightarrow{\text { stat }} L$ implies $\Delta x_{k} \xrightarrow{\text { stat }} 0$. This conjecture fails in case of sequences of fuzzy real numbers and $\Delta X_{k} \xrightarrow{\text { stat }} X$, where X is of particular type, defined by $[X]^{\alpha}=[-a, a]$ for some $a=$ $a(\alpha) \in R_{+} \cup\{0\}$, the set of non-negative real numbers. This is clear from the following example.

Example 1. Consider the sequence $\left(X_{k}\right)$ as follows:
For $k=n^{2}, n \in N$,

$$
X_{k}(t)= \begin{cases}1+2^{-1} k(t-1) & \text { for } 1-2 k^{-1} \leq t \leq 1 \\ 1<t \leq 1+2 k^{-1} & \text { for } 1<t \leq 1+2 k^{-1} \\ 0 & \text { otherwise }\end{cases}
$$

Otherwise,

$$
X_{k}(t)= \begin{cases}t-3 & \text { for } \quad 3 \leq t \leq 4 \\ 1<t \leq 1+2 k^{-1} & \text { for } 4<t \leq 5 \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\left[X_{k}\right]^{\alpha}= \begin{cases}\left.1-2 k^{-1}(1-\alpha), 1+2 k^{-1}(1-\alpha)\right] & \text { for } k=n^{2}, n \in N \\ {[3+\alpha, 5-\alpha]} & \text { otherwise }\end{cases}
$$

and
$\left[\Delta X_{K}\right]^{\alpha}= \begin{cases}{\left[\left(\alpha-4-\frac{2(1-\alpha)}{k}\right),\left(\frac{2(1-\alpha)}{k}-2-\alpha\right)\right]} & \text { for } \quad k=n^{2}, n \in N, \\ {\left[\left(2+\alpha-\frac{2(1-\alpha)}{(k+1)}\right),\left(4-\alpha+\frac{2(1-\alpha)}{(k+1)}\right)\right]} & \text { for } \quad k=n^{2}-1, \\ & n>1 \text { with } n \in N, \\ {[2 \alpha-2,2-2 \alpha]} & \text { otherwise. }\end{cases}$
i.e. $X_{k} \xrightarrow{\text { stat }} L$, where $[L]^{\alpha}=[3+\alpha, 5-\alpha]$ and $\Delta X_{k} \xrightarrow{\text { stat }} X$, where $[X]^{\alpha}=$ $[2 \alpha-2,2-2 \alpha]$.

Thus $\left(X_{k}\right) \in \bar{c}^{F}$ but $\left(X_{k}\right) \notin{\overline{c_{0}}}^{F}(\Delta)$.
Lemma (Savas [10], Theorem 1). $\ell_{\infty}^{F}(\Delta)$ and $c^{F}(\Delta)$ are complete metric spaces with the metric

$$
\rho(X, Y)=\bar{d}\left(X_{1}, Y_{1}\right)+\sup _{k} \bar{d}\left(\Delta X_{k}, \Delta Y_{k}\right)
$$

where $X=\left(X_{k}\right)$ and $Y=\left(Y_{k}\right)$ are in $\ell_{\infty}^{F}(\Delta)$ and $c^{F}(\Delta)$.

3. Main results

In this section we prove the results of this article.
Theorem 1. The class of sequences $c^{F}(\Delta), c_{0}{ }^{F}(\Delta)$ and $\ell_{\infty}^{F}(\Delta)$ are closed under the operations of addition and scalar multiplication.

Proof. We prove the result for the class of sequences $c^{F}(\Delta)$. The proof for the other two classes of sequences can be established following similar method.

Let us consider sequences $\left(X_{k}\right),\left(Y_{k}\right) \in c^{F}(\Delta)$.
Then

$$
\begin{aligned}
\left(\Delta\left[X_{k} \oplus Y_{k}\right]\right)= & \left(\left[X_{k} \oplus Y_{k}\right]-\left[X_{k+1} \oplus Y_{k+1}\right]\right) \\
= & \left(\left[X_{k}-X_{k+1}\right] \oplus\left[Y_{k}-Y_{k+1}\right]\right)=\left(\Delta X_{k} \oplus \Delta Y_{k}\right) \in c^{F} \\
& {\left[\text { since }\left(\Delta X_{k}\right),\left(\Delta Y_{k}\right) \in c^{F} \text { and } c^{F}\right. \text { is closed under addition }} \\
& \quad \text { and scalar multiplication }]
\end{aligned}
$$

Again, for $r \in R,\left(X_{k}\right) \in c^{F}(\Delta)$, we have

$$
\begin{aligned}
\left(\Delta r X_{k}\right)= & \left(\left[r X_{k}\right]-\left[r X_{k+1}\right]\right)=\left(r\left[X_{k}-X_{k+1}\right]\right)=\left(r \Delta X_{k}\right) \in c^{F} \\
& {\left[\text { since } r \in R,\left(\Delta X_{k}\right) \in c^{F} \text { and } c^{F}\right. \text { is a closed under scalar }} \\
& \text { multiplication }] .
\end{aligned}
$$

Hence $c^{F}(\Delta)$ is closed under addition and scalar multiplication.
Theorem 2. $m^{F}(\Delta)=\bar{c}^{F}(\Delta) \cap \ell_{\infty}^{F}(\Delta)$ and $m_{0}^{F}(\Delta)={\overline{c_{0}}}^{F}(\Delta) \cap \ell_{\infty}^{F}(\Delta)$ are closed subspaces of the complete metric space $\ell_{\infty}^{F}(\Delta)$ with the metric ρ defined by

$$
\rho(X, Y)=\bar{d}\left(X_{1}, Y_{1}\right)+\sup _{k} \bar{d}\left(\Delta X_{k}, \Delta Y_{k}\right),
$$

where $X=\left(X_{k}\right)$ and $Y=\left(Y_{k}\right)$ are in $m^{F}(\Delta)$ or $m_{0}^{F}(\Delta)$.
Proof. We prove the result for the case of $m^{F}(\Delta)$. Another can be established by similar technique.

Let $\left(X^{(n)}\right)$ be a Cauchy sequence in $m^{F}(\Delta)$. Then $\left(X^{(n)}\right)$ is a Cauchy sequence in $\ell_{\infty}^{F}(\Delta)$. Since $\ell_{\infty}^{F}(\Delta)$ is complete (see [10]), so $X^{(n)} \rightarrow X$ in $\ell_{\infty}^{F}(\Delta)$. We shall show that

$$
X \in m^{F}(\Delta)
$$

Since $X^{(n)}=\left(X_{k}^{(n)}\right)=\left(X_{1}^{(n)}, X_{2}^{(n)}, X_{3}^{(n)}, \ldots\right) \in m^{F}(\Delta)$, so for each $n \in N$ there exists $A_{n} \in R(I)$ such that

$$
\text { stat }-\lim \Delta X_{k}^{(n)}=A_{n}
$$

We prove the followings:
(i) $\lim _{n \rightarrow \infty} A_{n}=A$.
(ii) stat-lim $\Delta X_{k}=A$.
(i). Since $\left(X^{(n)}\right)$ is a convergent sequence, so for a given $\varepsilon>0$, there exists such a $n_{0} \in N$ that for each $m, n>n_{0}$ we have

$$
\begin{align*}
\rho\left(X^{(m)}, X^{(n)}\right) & =\bar{d}\left(X_{1}^{(m)}, X_{1}^{(n)}\right)+\sup _{k} \bar{d}\left(\Delta X_{k}^{(m)}, \Delta X_{k}^{(n)}\right)<\frac{\varepsilon}{3} \tag{1}\\
& \Rightarrow \bar{d}\left(\Delta X_{k}^{(m)}, \Delta X_{k}^{(n)}\right)<\frac{\varepsilon}{3} \quad \text { for each } \quad k \in N
\end{align*}
$$

Again, since $X^{(n)}=\left(X_{k}^{(n)}\right) \in m^{F}(\Delta)$, so for a given $\varepsilon>0$, we have

$$
\begin{equation*}
\bar{d}\left(\Delta X_{k}^{(m)}, A_{m}\right)<\frac{\varepsilon}{3} \quad \text { for } \quad \text { a.a.k. } \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{d}\left(\Delta X_{k}^{(n)}, A_{n}\right)<\frac{\varepsilon}{3} \quad \text { for } \quad \text { a.a.k. } \tag{3}
\end{equation*}
$$

Now for each $m, n>n_{0} \in N$ and from the inequalities (1), (2) and (3), we get

$$
\begin{aligned}
\bar{d}\left(A_{m}, A_{n}\right) \leq & \bar{d}\left(A_{m}, \Delta X_{k}^{(m)}\right)+\bar{d}\left(\Delta X_{k}^{(m)}, \Delta X_{k}^{(n)}\right) \\
& +\bar{d}\left(\Delta X_{k}^{(n)}, A_{n}\right), \text { for a.a.k. } \\
< & \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon .
\end{aligned}
$$

Thus $\left(A_{n}\right)$ is a Cauchy sequence in $R(I)$. Since $R(I)$ complete, so there exists such a number $A \in R(I)$ such that

$$
\lim _{n \rightarrow \infty} A_{n}=A
$$

(ii). We have $X^{(n)} \rightarrow X$. For a given $\lambda>0$, there exists such a $q \in N$ that

$$
\begin{align*}
\bar{d}\left(X_{1}^{(q)}, X_{1}\right) & +\sup _{k} \bar{d}\left(\Delta X_{k}^{(q)}, \Delta X_{k}\right)<\frac{\lambda}{3} \tag{4}\\
& \Rightarrow \bar{d}\left(\Delta X_{k}^{(q)}, \Delta X_{k}\right)<\frac{\lambda}{3}, \quad \text { for each } k \in N
\end{align*}
$$

The number q can be chosen in such a way that together with (4), we get

$$
\begin{equation*}
\bar{d}\left(A_{q}, A\right)<\frac{\lambda}{3} . \tag{5}
\end{equation*}
$$

Since, stat-lim $\Delta X_{k}^{(q)}=A_{q}$. For a given $\lambda>0$,

$$
\begin{equation*}
\bar{d}\left(\Delta X_{k}^{(q)}, A_{q}\right)<\frac{\lambda}{3}, \quad \text { for } \quad \text { a.a.k. } \tag{6}
\end{equation*}
$$

Now,

$$
\begin{aligned}
\bar{d}\left(\Delta X_{k}, A\right) & \leq \bar{d}\left(\Delta X_{k}, \Delta X_{k}^{(q)}\right)+\bar{d}\left(\Delta X_{k}^{(q)}, A_{q}\right)+\bar{d}\left(A_{q}, A\right), \text { for } a . a . k . \\
& <\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\lambda, \quad \text { by }(4),(5) \text { and }(6)
\end{aligned}
$$

Hence stat-lim $\Delta X_{k}=A$. This proves the result.
Theorem 3. The sequence spaces $\bar{c}^{F}(\Delta), m^{F}(\Delta),{\overline{c_{0}}}^{F}(\Delta)$ and $m_{0}^{F}(\Delta)$ are neither monotone nor solid.

Proof. The result follows from the following example.
Example 2. Consider the sequence $\left(X_{k}\right) \in Z(\Delta)$, for $Z=\bar{c}^{F}, m^{F}, \overline{c_{0}}{ }^{F}$ and m_{0}^{F} defined as follows:

For $k=n^{2}, n \in N$,

$$
X_{k}(t)=\left\{\begin{array}{lc}
1+k(t-4) & \text { for } \quad 4-k^{-1} \leq t \leq 4 \\
1-k(t-4) & \text { for } \quad 4<t \leq 4+k^{-1} \\
0 & \text { otherwise }
\end{array}\right.
$$

Otherwise,

$$
X_{k}(t)= \begin{cases}1-2^{-1} k(t-1) & \text { for } 1 \leq t \leq 1+2 k^{-1} \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\left[X_{k}\right]^{\alpha}= \begin{cases}{\left[4-k^{-1}(1-\alpha), 4+k^{-1}(1-\alpha)\right]} & \text { for } k=n^{2}, n \in N \\ {\left[1,1+2 k^{-1}(1-\alpha)\right]} & \text { otherwise }\end{cases}
$$

and

$$
\left[\Delta X_{K}\right]^{\alpha}= \begin{cases}{\left[3+(\alpha-1)\left(\frac{1}{k}+\frac{2}{(k+1)}\right), \frac{(1-\alpha)}{k}+3\right]} & \text { for } k=n^{2}, n \in N \\ {\left[\frac{(\alpha-1)}{(k+1)}-3,(1-\alpha)\left(\frac{2}{k}+\frac{1}{(k+1)}\right)-3\right]} & \text { for } k=n^{2}-1 \\ {\left[\frac{2(\alpha-1)}{(k+1)}, \frac{2(1-\alpha)}{k}\right]} & n>1 \text { with } n \in N\end{cases}
$$

Thus $\left(X_{k}\right) \in Z(\Delta)$, for $Z=\bar{c}^{F}, m^{F}, \overline{c_{0}} F$ and m_{0}^{F}.

Let $J=\{k \in N: k=2 i, i \in N\}$ be a subset of N and let $\overbrace{m^{F}(\Delta)_{J}}$ be the canonical pre-image of the J-step space $m^{F}(\Delta)_{J}$ of $m^{F}(\Delta)$, defined as follows:
$\left(Y_{k}\right) \in \overbrace{m^{F}(\Delta)_{J}}$ is the canonical pre-image of $\left(X_{k}\right) \in m^{F}(\Delta)$ implies

$$
Y_{k}=\left\{\begin{array}{lll}
X_{k} & \text { for } & k \in J \\
\overline{0} & \text { for } & k \notin J
\end{array}\right.
$$

Now,

$$
\left[Y_{k}\right]^{\alpha}= \begin{cases}{\left[4-k^{-1}(1-\alpha), 4+k^{-1}(1-\alpha)\right]} & \text { for } k \in J \text { and } k=n^{2}, n \in N \\ {\left[1,1+2 k^{-1}(1-\alpha)\right]} & \text { for } k \in J \text { and } k \neq n^{2} \text { for any } n \in N, \\ {[0,0]} & k \notin J .\end{cases}
$$

and
$\left[\Delta Y_{K}\right]^{\alpha}=\left\{\begin{array}{l}{\left[4-k^{-1}(1-\alpha), 4+k^{-1}(1-\alpha)\right] \text { for } k \in J \text { and } k=n^{2}, n \in N,} \\ {\left[1,1+2 k^{-1}(1-\alpha)\right] \quad \text { for } k \in J \text { and } k \neq n^{2}, \text { for any } n \in N} \\ \\ {\left[(k+1)^{-1}(\alpha-1)-4,(k+1)^{-1}(1-\alpha)-4\right] \quad \text { for } k \neq J} \\ \text { and } k=n^{2}-1, n \in N, \\ {\left[2(k+1)^{-1}(\alpha-1)-1,-1\right] \quad \text { otherwise. }}\end{array}\right.$
Thus $\left(Y_{k}\right) \notin Z(\Delta)$ for $Z=\bar{c}^{F}, m^{F}, \overline{c_{0}}{ }^{F}$ and m_{0}^{F}.
Therefore, the spaces $\bar{c}^{F}(\Delta), m^{F}(\Delta), \bar{c}_{0}{ }^{F}(\Delta)$ and $m_{0}^{F}(\Delta)$ are not monotone.
The spaces $\bar{c}^{F}(\Delta), m^{F}(\Delta),{\overline{c_{0}}}^{F}(\Delta)$ and $m_{0}^{F}(\Delta)$ are not solid follows from Remark 1.

Theorem 4. The spaces $\bar{c}^{F}(\Delta), m^{F}(\Delta),{\overline{c_{0}}}^{F}(\Delta)$ and $m_{0}^{F}(\Delta)$ are not symmetric.

Proof. The result follows from the following example.
Example 3. Consider the sequence $\left(X_{k}\right)$, defined in Example 2.
Here we have,

$$
\left(X_{k}\right) \in Z(\Delta) \quad \text { for } \quad Z=\overline{c^{F}}, m^{F},{\overline{c_{0}}}^{F} \text { and } m_{0}^{F}
$$

Let $\left(Y_{k}\right)$ be a rearrangement of the sequence $\left(X_{k}\right)$, defined as follows:

$$
\left(Y_{k}\right)=\left(X_{1}, X_{2}, X_{4}, X_{3}, X_{9}, X_{5}, X_{16}, X_{6}, X_{25}, X_{7} \ldots\right)
$$

Then

$$
\left[Y_{K}\right]^{\alpha}=\left\{\begin{array}{lr}
{\left[4-k^{-1}(1-\alpha), 4+k^{-1}(1-\alpha)\right]} & \text { for } k \text { odd } \\
{\left[1,1+2 k^{-1}(1-\alpha)\right]} & \text { for } k \text { even }
\end{array}\right.
$$

and
$\left[\Delta Y_{K}\right]^{\alpha}=\left\{\begin{array}{c}{\left[3-(1-\alpha)\left(k^{-1}+2(k+1)^{-1}\right), 3+k^{-1}(1-\alpha)\right] \quad \text { for } k \text { odd, }} \\ {\left[(k+1)^{-1}(\alpha-1)-3,(1-\alpha)\left(2 k^{-1}+(k+1)^{-1}\right)-3\right] \text { for } k \text { even. }}\end{array}\right.$
Thus $\left(Y_{k}\right) \notin Z(\Delta)$, for $Z=\bar{c}^{F}, m^{F}, \overline{c_{0}} F$ and m_{0}^{F}.
Hence, the spaces $\bar{c}^{F}(\Delta), m^{F}(\Delta),{\overline{c_{0}}}^{F}(\Delta)$ and $m_{0}^{F}(\Delta)$ are not symmetric.
Theorem 5. The spaces $\bar{c}^{F}(\Delta), m^{F}(\Delta),{\overline{c_{0}}}^{F}(\Delta)$ and $m_{0}^{F}(\Delta)$ are not convergence free.

Proof. The result follows from the following example.
Example 4. Consider the sequence $\left(X_{k}\right) \in Z(\Delta)$, for $Z=\bar{c}^{F}, m^{F}, \overline{c_{0}}{ }^{F}$ and m_{0}^{F}, defined as follows:

For $k=n^{2}, n \in N, X_{k}=\overline{0}$.
Otherwise,

$$
X_{k}(t)= \begin{cases}1+k(t-1) & \text { for } 1-k^{-1} \leq t \leq 1 \\ 1-2^{-1} k(t-1) & \text { for } 1<t \leq 1+2 k^{-1} \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\left[X_{k}\right]^{\alpha}= \begin{cases}{[0,0]} & \text { for } k=n^{2}, n \in N \\ {\left[1+k^{-1}(\alpha-1), 1+2 k^{-1}(1-\alpha)\right]} & \text { otherwise }\end{cases}
$$

and
$\left[\Delta X_{K}\right]^{\alpha}= \begin{cases}{\left[\frac{2(\alpha-1)}{(k+1)}-1, \frac{(1-\alpha)}{(k+1)}-1\right.} \\ \left.1+\frac{(\alpha-1)}{k}, 1+\frac{2(1-\alpha)}{k}\right] & \text { for } k=n^{2}, n \in N, \\ {\left[(\alpha-1)\left(\frac{1}{k}+\frac{2}{(k+1)}\right),(1-\alpha)\left(\frac{2}{k}+\frac{1}{(k+1)}\right)\right] \quad \text { otherwise. }}\end{cases}$
Thus $\left(X_{k}\right) \in Z(\Delta)$, for $Z=\bar{c}^{F}, m^{F}, \overline{c_{0}} F$ and m_{0}^{F}.
Let the sequence $\left(Y_{k}\right)$ be defined as follows:
For $k=n^{2}, n \in N, Y_{k}=\overline{0}$.
Otherwise,

$$
Y_{k}(t)= \begin{cases}1 & \text { for } 1 \leq t \leq k \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\left[Y_{k}\right]^{\alpha}= \begin{cases}{[0,0]} & \text { for } k=n^{2}, \quad n \in N \\ {[1, k]} & \text { otherwise }\end{cases}
$$

and

$$
\left[\Delta Y_{K}\right]^{\alpha}= \begin{cases}{[-(k+1),-1]} & \text { for } k=n^{2}, n \in N \\ {[1, k]} & \text { for } k=n^{2}-1, n>1 \text { with } n \in N \\ {[-1, k-1]} & \text { otherwise }\end{cases}
$$

Thus $\left(Y_{k}\right) \notin Z(\Delta)$ for $Z=\bar{c}^{F}, m^{F},{\overline{c_{0}}}^{F}$ and m_{0}^{F}.
Hence the spaces $\bar{c}^{F}(\Delta), m^{F}(\Delta), \overline{c_{0}}{ }^{F}(\Delta)$ and $m_{0}^{F}(\Delta)$ are not convergence free.

Theorem 6. The spaces $\bar{c}_{0}{ }^{F}(\Delta)$ and $m_{0}^{F}(\Delta)$ are sequence algebra.
Proof. Let $0<\varepsilon<1$ be given. Suppose $\left(X_{k}\right),\left(Y_{k}\right) \in \overline{c_{0}}{ }^{F}(\Delta)$. Then we have

$$
\begin{align*}
& \quad\left\{k \in N: \bar{d}\left(\Delta X_{K} \otimes \Delta Y_{K}, \overline{0}\right)<\varepsilon\right\} \tag{7}\\
& \supseteq\left\{k \in N: \bar{d}\left(\Delta X_{K}, \overline{0}\right)<\sqrt{\varepsilon}\right\} \cap\left\{k \in N: \bar{d}\left(\Delta Y_{K}, \overline{0}\right)<\sqrt{\varepsilon}\right\} \\
& \text { Again, } \Delta\left\{X_{k} \otimes Y_{k}\right\}=X_{k} \otimes \Delta Y_{k}+Y_{k+1} \otimes \Delta X_{k} \text { and }
\end{align*}
$$

$$
\begin{aligned}
\Delta X_{k} \otimes \Delta Y_{k}= & X_{k} \otimes \Delta Y_{k}-X_{k+1} \otimes \Delta Y_{k} \\
= & X_{k} \otimes \Delta Y_{k}+Y_{k+1} \otimes \Delta X_{k}+2 X_{k+1} \otimes Y_{k+1} \\
& -\left\{Y_{k+1} \otimes X_{k}+X_{k+1} \otimes Y_{k}\right\}
\end{aligned}
$$

Since $\left(X_{k}\right),\left(Y_{k}\right) \in \overline{c_{0}}{ }^{F}(\Delta)$, so

$$
\text { stat }-\lim 2 X_{k+1} \otimes Y_{k+1}=\text { stat }-\lim Y_{k+1} \otimes X_{k}+\text { stat }-\lim X_{k+1} \otimes Y_{k}
$$

Hence

$$
\begin{equation*}
\text { stat }-\lim \Delta\left(X_{k} \otimes Y_{k}\right)=\text { stat }-\lim \Delta X_{k} \otimes \Delta Y_{k} \tag{8}
\end{equation*}
$$

Since $\delta\left(\left\{k \in N: \bar{d}\left(\Delta X_{K}, \overline{0}\right)<\sqrt{\varepsilon}\right\}\right)=1$ and $\delta\left(\left\{k \in N: \bar{d}\left(\Delta Y_{K}, \overline{0}\right)<\right.\right.$ $\sqrt{\varepsilon}\})=1$.

Hence by (7) and (8), we have

$$
\begin{aligned}
& \delta\left(\left\{k \in N: \bar{d}\left(\Delta X_{K} \otimes \Delta Y_{k}, \overline{0}\right)<\varepsilon\right\}\right) \\
& \quad=\delta\left(\left\{k \in N: \bar{d}\left(\Delta\left(X_{K} \otimes Y_{k}\right), \overline{0}\right)<\varepsilon\right\}\right)=1
\end{aligned}
$$

Thus $\left(X_{k} \otimes Y_{k}\right) \in \overline{c_{0}} F(\Delta)$. Hence $\overline{c_{0}} F(\Delta)$ is sequence algebra. The rest of the proof follows similarly.

Theorem 7. The sequence spaces $\bar{c}^{F}(\Delta)$ and $m^{F}(\Delta)=\bar{c}^{F}(\Delta) \cap \ell_{\infty}^{F}(\Delta)$ are not sequence algebra.

Proof. The result follows from the following example.
Example 5. Consider the two sequences $\left(X_{k}\right),\left(Y_{k}\right) \in m^{F}(\Delta) \subset \bar{c}^{F}(\Delta)$, defined as follows:

For $k=n^{2}, n \in N$

$$
X_{k}(t)= \begin{cases}t-k & \text { for } k \leq t \leq k+1, \\ 0 & \text { otherwise } .\end{cases}
$$

Otherwise,

$$
X_{k}(t)= \begin{cases}t-k+1 & \text { for } k-1 \leq t \leq k, \\ k+1-t & \text { for } k<t \leq k+1, \\ 0 & \text { otherwise }\end{cases}
$$

And for $k=n^{2}, n \in N$

$$
Y_{k}(t)= \begin{cases}k+1-t & \text { for } k \leq t \leq k+1, \\ 0 & \text { otherwise. }\end{cases}
$$

Otherwise,

$$
Y_{k}(t)= \begin{cases}t-k & \text { for } k \leq t \leq k+1, \\ k+2-t & \text { for } k+1<t \leq k+2, \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\left[X_{k}\right]^{\alpha}= \begin{cases}{[k+\alpha, k+1]} & \text { for } k=n^{2}, n \in N, \\ {[k-1+\alpha, k+1-\alpha]} & \text { otherwise. }\end{cases}
$$

and

$$
\left[Y_{k}\right]^{\alpha}= \begin{cases}{[k, k+1-\alpha]} & \text { for } k=n^{2}, n \in N, \\ {[k+\alpha, k+2-\alpha]} & \text { otherwise. }\end{cases}
$$

Now
$\left[\Delta X_{k}\right]^{\alpha}= \begin{cases}{[2 \alpha-2,1-\alpha]} & \text { for } k=n^{2}, n \in N, \\ {[\alpha-3,2-2 \alpha]} & \text { for } k=n^{2}-1, n>1 \text { with } n \in N, \\ {[2 \alpha-3,1-2 \alpha]} & \text { otherwise. }\end{cases}$
and

$$
\left[\Delta Y_{k}\right]^{\alpha}= \begin{cases}{[\alpha-3,-2 \alpha]} & \text { for } k=n^{2}, n \in N \\ {[2 \alpha-2,1-\alpha]} & \text { for } k=n^{2}-1, n>1 \text { with } n \in N \\ {[2 \alpha-3,1-2 \alpha]} & \text { otherwise }\end{cases}
$$

Thus $\left(X_{k}\right),\left(Y_{k}\right) \in m^{F}(\Delta) \subset \bar{c}^{F}(\Delta)$.
Again,

$$
\begin{aligned}
& \left.\Delta\left(X_{k} \otimes Y_{k}\right)\right]^{\alpha}=\left[\left(X_{k} \otimes Y_{k}\right)-\left(X_{k+1} \otimes Y_{k}+1\right)\right]^{\alpha} \\
& =\left\{\begin{array}{c}
{\left[-\left(\alpha^{2}-3 k \alpha+5(k-\alpha)+6\right),-\left(\alpha^{2}+3 k \alpha-k+2 \alpha-1\right)\right]} \\
\text { for } k=n^{2}, n \in N \\
{\left[\left(\alpha^{2}+3 k \alpha-5 k+\alpha-4\right),\left(\alpha^{2}-3 k \alpha+k-4 \alpha+1\right)\right]} \\
\text { for } k=n^{2}-1, n>1 \text { with } n \in N, \\
{[(4 k \alpha-6 k+4 \alpha-6),-(4 k \alpha-2 k+4 \alpha-2] \quad \text { otherwise. }}
\end{array}\right.
\end{aligned}
$$

Thus $\left(X_{k} \otimes Y_{k}\right) \notin \bar{c}^{F}(\Delta)\left(\supset m^{F}(\Delta)\right)$.
Hence the spaces $m^{F}(\Delta)$ and $\bar{c}^{F}(\Delta)$ are not sequence algebra.
Theorem 8. (a) $m_{0}^{F} \subset m_{0}^{F}(\Delta)$ and the inclusion is strict.
(b) $m^{F} \subset m^{F}(\Delta)$ and the inclusion is strict.

Proof. (a) Let us consider a sequence $\left(X_{k}\right) \in m_{0}^{F}$. Clearly (from Remark 2), we have

$$
\Delta X_{k} \xrightarrow{\text { stat }} \overline{0} \text { and hence } m_{0}^{F} \subset m_{0}^{F}(\Delta)
$$

(b) Consider a sequence $\left(X_{k}\right) \in m^{F}$. Then, we have

$$
\Delta X_{k} \xrightarrow{s t a t} X,
$$

where X is of particular type, defined by $[X]^{\alpha}=[-a, a]$ for some $a=a(\alpha) \in$ $R_{+} \cup\{0\}$, the set of non-negative real numbers (see Remark 2).

Hence $m^{F} \subset m^{F}(\Delta)$.
The strictness of the inclusions of (a) and (b) follow from the following example.

Example 6. Consider the sequence $\left(X_{k}\right)$, defined as follows:
For $k=n^{2}, n \in N$

$$
X_{k}(t)=\left\{\begin{array}{lc}
k+1-t & \text { for } k \leq t \leq k+1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Otherwise

$$
X_{k}(t)=\left\{\begin{array}{lc}
1+2^{-1} k(t-3) & \text { for } 3-2 k^{-1} \leq t \leq 3 \\
1-2^{-1} k(t-3) & \text { for } 3 \leq t \leq 3+2 k^{-1} \\
0 & \text { otherwise }
\end{array}\right.
$$

Then

$$
\left[X_{k}\right]^{\alpha}=\left\{\begin{array}{lc}
{[k, k+1-\alpha]} & \text { for } k=n^{2}, n \in N, \\
{\left[3+2 k^{-1}(\alpha-1), 3+2 k^{-1}(1-\alpha)\right]} & \text { otherwise } .
\end{array}\right.
$$

and

$$
\left[\Delta X_{k}\right]^{\alpha}= \begin{cases}{\left[k-3+\frac{2(\alpha-1)}{(k+1)}, k-2-\alpha+\frac{2(1-\alpha)}{(k+1)}\right]} & \text { for } k=n^{2}, n \in N, \\ {\left[1-k+\alpha+\frac{2(\alpha-1)}{k}, 2-k+\frac{2(1-\alpha)}{k}\right]} & \text { for } k=n^{2}-1, \\ & n>1 \text { with } n \in N, \\ {\left[2(\alpha-1)\left(\frac{1}{k}+\frac{1}{(k+1)}\right), 2(1-\alpha)\left(\frac{1}{k}+\frac{1}{(k+1)}\right)\right] \quad \text { otherwise. }}\end{cases}
$$

Thus $\left(X_{k}\right) \notin m^{F}\left(\supset m_{0}^{F}\right)$ and $\left(X_{k}\right) \in m_{0}^{F}(\Delta) \subset m^{F}(\Delta)$.
Hence the strictness of inclusions for both (a) and (b) are satisfied.
Theorem 9. The spaces $m_{0}^{F}(\Delta)$ and $m^{F}(\Delta)$ are nowhere dense subsets of $\ell_{\infty}^{F}(\Delta)$.

Proof. Clearly, we have $m_{0}^{F}(\Delta)$ and $m^{F}(\Delta)$ are closed subsets of the complete metric space $\ell_{\infty}^{F}(\Delta)$. Also $m_{0}^{F}(\Delta)$ and $m^{F}(\Delta)$ are proper subspaces of $\ell_{\infty}^{F}(\Delta)$ which follow from the following example.

Example 7. Consider the sequence $\left(X_{k}\right)$, defined as follows:
For k even

$$
X_{k}(t)= \begin{cases}1-k(t-1)(k+2)^{-1} & \text { for } 1 \leq t \leq 2+2 k^{-1} \\ 0 & \text { otherwise }\end{cases}
$$

and for k odd,

$$
X_{k}(t)= \begin{cases}1+k t(k+1)^{-1} & \text { for }-(1+k)^{-1} \leq t \leq 0, \\ 0 & \text { otherwise } .\end{cases}
$$

Then

$$
\left[X_{k}\right]^{\alpha}= \begin{cases}{\left[1,1+\left(1+2 k^{-1}\right)(1-\alpha)\right]} & \text { for } k \text { even, } \\ {\left[\left(1+k^{-1}\right)(\alpha-1), 0\right]} & \text { for } k \text { odd. }\end{cases}
$$

and
$\left[\Delta X_{k}\right]^{\alpha}= \begin{cases}\left.1,1+(1-\alpha)\left(2+2 k^{-1}+(k+1)^{-1}\right)\right] & \text { for } k \text { even }, \\ {\left[(\alpha-1)\left(2+k^{-1}+2(k+1)^{-1}\right)-1,-1\right]} & \text { for } k \text { odd. }\end{cases}$
Thus $\left(X_{k}\right) \notin m^{F}(\Delta)\left(\supset m_{0}^{F}(\Delta)\right)$, but $\left(X_{k}\right) \in \ell_{\infty}^{F}(\Delta)$.
Hence the result.
Acknowledgement. The authors thank the referee for the careful reading of the manuscript and the comments.

References

[1] Das N.R., Das P., Choudhury A., Absolute value like fuzzy real number and fuzzy real-valued sequence spaces, Jour. Fuzzy Math., 4(2)(1996), 421-433.
[2] Fast H., Sur la convergence statistique, Colloq. Math., 2(1951), 241-244.
[3] Fridy J.A., On statistical convergence, Analysis, 5(1985), 301-303.
[4] Kelava O., Seikkala S., On fuzzy metric spaces, Fuzzy Sets and Systems, 12(1984), 215-229.
[5] Kizmaz H., On certain sequence spaces, Canad. Math. Bull., 24(2)(1981), 168-176.
[6] Nanda S., On sequences of fuzzy numbers, Fuzzy Sets and Systems, 33(1989), 123-126.
[7] Nuray F., Savas E., Statistical convergence of sequences of fuzzy real numbers, Math. Slovaca, 45(3)(1995), 269-273.
[8] Rath D., Tripathy B.C., Matrix maps on sequence spaces associated with sets of intigers, Indian J. Pure \mathcal{E}^{\prime} Appl. Math., 27(2)(1996), 197-206.
[9] Šalát T., On Statistically convergent sequences of real numbers, Math. Slovaca, 30(2)(1980), 139-150.
[10] Savas E., A note on sequence of fuzzy numbers, Information Sciences, 124(2000), 297-300.
[11] Schoenberg I.J., The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66(1959), 361-375.
[12] Tripathy B.Ch., Matrix transformations between some classes of sequences, J. Math. Anal. Appl., 206(2)(1997), 448-450.
[13] Tripathy B.Ch., On statistical convergence, Proc. Estonian Acad. Sci. Phy. Math., 47(4)(1998), 299-303.
[14] Tripathy B.K., Nanda S., Absolute value of fuzzy real numbers and fuzzy sequence spaces, Jour. Fuzzy Math., 8(4) (2000), 883-892.
[15] Zygmund A., Trigonometric Series, Cambridge University Press, vol. II, 1993.

Binod Chandra Tripathy
 Mathematical Sciences Division

Institute of Advanced Study in Science and Technology Paschim Boragaon, Garchuk, GUWAHATI-781035; Assam, India e-mail: tripathybc@yahoo.com or tripathybc@rediffmail.com

Paritosh Chandra Das
Department of Mathematics, Rangia College
RANGIA-781354; Kamrup, Assam, India
e-mail: daspc_rangia@yahoo.com
Received on 15.11.2006 and, in revised form, on 11.07.2007.

[^0]: * The work of the first author was carried under University Grants Commission of India project No.- F. No. $30-240 / 2004$ (RS).
 ** This work was done while the second author was availing the Teacher Fellowship from University Grants Commission of India, vide Grant No. F.5-56/TF/2003 (NERO)/ 1920.

