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convergence difference sequences of fuzzy real numbers, c̄F (∆).
We study some properties of the statistically convergent and sta-
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1. Introduction

In order to extend the notion of convergence of sequences, statistical
convergence of sequences was introduced by Fast [2] and Schoenberg [11]
independently. It was also found in Zygmund [15]. Later on it was studied
from sequence space point of view and linked with summability by Fridy [3],
Šalát [9], Tripathy ([12], [13]), Rath and Tripathy [8] and many others.

The idea depends on certain density of the subsets of the set N of natural
numbers.

A subset E of N is said to have natural density δ(E) if

δ(E) = lim
n→∞

1
n

n∑
k=1

χE (k) exists,

where χE(k) is the characteristic function of E. Clearly all finite subsets of
N have zero natural density and δ(Ec) = δ(N − E) = 1− δ(E ).
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∗∗ This work was done while the second author was availing the Teacher Fellowship
from University Grants Commission of India, vide Grant No. F.5-56/TF/2003 (NERO)/
1920.
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A sequence (Xk) is said to be statistically convergent to L if for every
ε > 0, δ ({k ∈ N : |Xk − L| ≥ ε}) = 0. We write Xk

stat−→ L or stat-lim Xk = L.
Let (Xk) and (Yk) be two sequences, then we say that Xk = Yk for almost

all k (in short a.a.k. ) if δ(k ∈ N : Xk 6= Yk) = 0.
Kizmaz [5] initiated the works on classical difference sequence spaces

c(∆), c0(∆) and `∞(∆) defined as follows:

Z(∆) = {x = (xk) ∈ w : (∆xk) ∈ Z},

for Z = c, c0 and `∞, where ∆x = (∆xk) = (xk − xk+1), for all k ∈ N .
Let D denote the set of all closed and bounded intervals X = [a1, a2] on

R, the real line. For X, Y ∈ D we define

d(X, Y ) = max(|a1 − b1|, |a2 − b2|),

where X = [a1, a2] and Y = [b1, b2]. It is known that (D, d) is a complete
metric space.

A fuzzy real number X is a fuzzy set on R, i.e. a mapping X : R → I =
([0, 1]) associating each real number t with its grade of membership X(t).

A fuzzy real number X is called convex if X(t) ≥ X(s) ∧ X(r) =
min(X(s), X(r)), where s < t < r.

If there exists t0 ∈ R such that X(t0) = 1, then the fuzzy real number X
is called normal.

A fuzzy real number X is said to be upper-semi continuous if for each
ε > 0, X−1([0, a + ε)), for all a ∈ I is open in the usual topology of R.

The set of all upper-semi continuous, normal, convex fuzzy real numbers
is denoted by R(I) and throughout the article, by a fuzzy real number we
mean that the number belongs to R(I).

The α-level set [X]α of the fuzzy real number X, for 0 < α ≤ 1, defined
as [X]α = {t ∈ R : X(t) ≥ α}. If α = 0, then it is the closure of the strong
0-cut.

The arithmetic operations for α-level sets are defined as follows:
Let X, Y ∈ R(I) and α-level sets be [X]α = [aα

1 , bα
1 ], [Y ]α = [aα

2 , bα
2 ],

α ∈ [0, 1]. Then

[X ⊕ Y ]α = [aα
1 + aα

2 , bα
1 + bα

2 ] ,
[X − Y ]α = [aα

1 − bα
2 , bα

1 − aα
2 ] ,

[X ⊗ Y ]α =
[

min
i,j∈{1,2}

aα
i bα

j , max
i,j∈{1,2}

aα
i bα

j

]
and [Y −1]α =

[
1
bα
2

,
1
aα

2

]
, 0 /∈ Y.
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The set R of all real numbers can be embedded in R(I). For r ∈ R,
r ∈ R(I)is defined by

r̄(t) =

{
1 for t = r,

0 for t 6= r,

For r ∈ R and X ∈ R(I) we define

rX(t) =

{
X(r−1t) for r 6= 0,

0̄ for r = 0,

The absolute value, |X| of X ∈ R(I) is defined by (see for instance Kaleva
and Seikkala [4] )

|X|(t) =

{
max{X(t), X(−t)} for t ≥ 0,

0 for t < 0,

A fuzzy real number X is called non-negative if X(t) = 0, for all t < 0.
The set of all non-negative fuzzy real numbers is denoted by R∗(I).

Let d̄ : R(I)×R(I) → R be defined by

d̄(X, Y ) = sup
0≤α≤1

d ([X]α, [Y ]α) .

Then d̄ defines a metric on R(I).
The additive identity and multiplicative identity in R(I) are denoted by

0̄ and 1̄ respectively.
A sequence (Xk) of fuzzy real numbers is said to be convergent to the

fuzzy real number X0 if, for every ε > 0, there exists n0 ∈ N such that
d̄(Xk, X0) < ε, for all k ≥ n0.

A fuzzy real number sequence (Xk) is said to be bounded if |Xk| ≤ µ, for
some µ ∈ R∗(I).

2. Definitions and preliminaries

Nuray and Savas [7] defined the notion of statistical convergence for se-
quences of fuzzy real numbers and studied some properties.

A fuzzy real number sequence (Xk) is said to be statistically convergent
to the fuzzy real number X0 if, for every ε > 0, δ({k ∈ N : d̄(Xk, X0) ≥
ε}) = 0.

Savas [10] studied the difference sequence spaces cF (∆) and `F
∞(∆) of

fuzzy real numbers.
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A fuzzy real number sequence ∆X = (∆Xk) is said to be convergent to
a fuzzy real number X, written as lim

k→∞
∆Xk = X if, for every ε > 0, there

exists a positive integer n0 such that

d̄ (∆Xk, X) < ε for all k > n0.

A fuzzy real number sequence ∆X = (∆Xk) is said to be bounded if
|∆Xk| ≤ µ, for some µ ∈ R∗(I).

In this article we define the statistical convergence difference sequences
of fuzzy real numbers as follows:

A fuzzy real number sequence ∆X = (∆Xk) is said to be statistically
convergent to the fuzzy real number X0 if, for every ε > 0, δ({k ∈ N :
d̄(∆Xk, X0) ≥ ε}) = 0.

Throughout the article wF , `F
∞, cF , cF

0 , c̄F , mF , c̄0
F and mF

0 denote
the classes of all, bounded, convergent, null, statistically convergent, bounded
statistically convergent, statistically null and bounded statistically null fuzzy
real number sequences respectively. Similarly cF (∆), cF

0 (∆), `F
∞(∆), c̄F (∆),

mF (∆), c̄0
F (∆) and mF

0 (∆) denote the classes of convergent, null, bounded,
statistically convergent, bounded statistically convergent, statistically null
and bounded statistically null difference sequences of fuzzy real numbers.

A sequence space EF is said to be normal (or solid) if (Yk) ∈ EF , when-
ever |Yk| ≤ |Xk|, for all k ∈ N , for some (Xk) ∈ EF .

A sequence space EF is said to be monotone if EF contains the canonical
pre-images of all its step spaces.

Let K = {k1 < k2 < k3 . . .} ⊆ N and EF be a sequence space. A K-step
space of EF is a sequence space λEF

k = {(Xkn) ∈ wF : (Xn) ∈ EF }.
A canonical pre-image of a sequence (Xkn) ∈ λEF

k is a sequence (Yn) ∈ wF

defined as follows:

Yn =

{
Xn for n ∈ K,

0̄ otherwise.

A canonical pre-image of a step space λEF

k is a set of canonical pre-images
of all elements in λEF

k , i.e. Y is in canonical pre-image λEF

k if and only if Y

is canonical pre-image of some X ∈ λEF

k .
From the above definitions we have the following remark.

Remark 1. A sequence space EF is solid ⇒ EF is monotone.
A sequence space EF is is said to be symmetric if (Xπ(n)) ∈ EF , whenever

(Xk) ∈ EF , where π is a permutation of N .
A sequence space EF is is said to be sequence algebra if (Xk⊗Yk) ∈ EF ,

whenever (Xk), (Yk) ∈ EF .
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A sequence space EF is is said to be convergence free if (Yk) ∈ EF ,
whenever (Xk) ∈ EF and Xk = 0̄ implies Yk = 0̄.

Remark 2. For the crisp set, xk
stat−→ L implies ∆xk

stat−→ 0. This
conjecture fails in case of sequences of fuzzy real numbers and ∆Xk

stat−→ X,
where X is of particular type, defined by [X]α = [−a, a] for some a =
a(α) ∈ R+ ∪ {0}, the set of non-negative real numbers. This is clear from
the following example.

Example 1. Consider the sequence (Xk) as follows:
For k = n2, n ∈ N ,

Xk(t) =


1 + 2−1k(t− 1) for 1− 2k−1 ≤ t ≤ 1,

1 < t ≤ 1 + 2k−1 for 1 < t ≤ 1 + 2k−1,

0 otherwise.

Otherwise,

Xk(t) =


t− 3 for 3 ≤ t ≤ 4,

1 < t ≤ 1 + 2k−1 for 4 < t ≤ 5,

0 otherwise.

Then

[Xk]α =

{
1− 2k−1(1− α), 1 + 2k−1(1− α)] for k = n2, n ∈ N,

[3 + α, 5− α] otherwise.

and

[∆XK ]α =


[(α− 4− 2(1−α)

k ), (2(1−α)
k − 2− α)] for k = n2, n ∈ N,

[(2 + α− 2(1−α)
(k+1) ), (4− α + 2(1−α)

(k+1) )] for k = n2 − 1,

n > 1 with n ∈ N,

[2α− 2, 2− 2α] otherwise.

i.e. Xk
stat−→ L, where [L]α = [3 + α, 5 − α] and ∆Xk

stat−→ X, where [X]α =
[2α− 2, 2− 2α].

Thus (Xk) ∈ c̄F but (Xk) /∈ c̄0
F (∆).

Lemma (Savas [10], Theorem 1). `F
∞(∆) and cF (∆) are complete

metric spaces with the metric

ρ(X, Y ) = d̄(X1, Y1) + sup
k

d̄(∆Xk,∆Yk),

where X = (Xk) and Y = (Yk) are in `F
∞(∆) and cF (∆).
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3. Main results

In this section we prove the results of this article.

Theorem 1. The class of sequences cF (∆), c0
F (∆) and `F

∞(∆) are closed
under the operations of addition and scalar multiplication.

Proof. We prove the result for the class of sequences cF (∆). The proof
for the other two classes of sequences can be established following similar
method.

Let us consider sequences (Xk), (Yk) ∈ cF (∆).
Then

(∆[Xk ⊕ Yk]) = ([Xk ⊕ Yk]− [Xk+1 ⊕ Yk+1])
= ([Xk −Xk+1]⊕ [Yk − Yk+1]) = (∆Xk ⊕∆Yk) ∈ cF ,

[since (∆Xk), (∆Yk) ∈ cF and cF is closed under addition
and scalar multiplication]

Again, for r ∈ R, (Xk) ∈ cF (∆), we have

(∆rXk) = ([rXk]− [rXk+1]) = (r[Xk −Xk+1]) = (r∆Xk) ∈ cF ,

[since r ∈ R, (∆Xk) ∈ cF and cF is a closed under scalar
multiplication].

Hence cF (∆) is closed under addition and scalar multiplication. �

Theorem 2. mF (∆) = c̄F (∆) ∩ `F
∞(∆) and mF

0 (∆) = c̄0
F (∆) ∩ `F

∞(∆)
are closed subspaces of the complete metric space `F

∞(∆) with the metric ρ
defined by

ρ(X, Y ) = d̄(X1, Y1) + sup
k

d̄(∆Xk,∆Yk),

where X = (Xk) and Y = (Yk) are in mF (∆) or mF
0 (∆).

Proof. We prove the result for the case of mF (∆). Another can be
established by similar technique.

Let (X(n)) be a Cauchy sequence in mF (∆). Then (X(n)) is a Cauchy
sequence in `F

∞(∆). Since `F
∞(∆) is complete (see [10]), so X(n) → X in

`F
∞(∆). We shall show that

X ∈ mF (∆).

Since X(n) = (X(n)
k ) = (X(n)

1 , X
(n)
2 , X

(n)
3 , . . . ) ∈ mF (∆), so for each

n ∈ N there exists An ∈ R(I) such that

stat− lim ∆X
(n)
k = An.
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We prove the followings:

(i) lim
n→∞

An = A.

(ii) stat-lim ∆Xk = A.

(i). Since (X(n)) is a convergent sequence, so for a given ε > 0, there
exists such a n0 ∈ N that for each m,n > n0 we have

ρ(X(m), X(n)) = d̄(X(m)
1 , X

(n)
1 ) + sup

k
d̄(∆X

(m)
k ,∆X

(n)
k ) <

ε

3
(1)

⇒ d̄(∆X
(m)
k ,∆X

(n)
k ) <

ε

3
for each k ∈ N

Again, since X(n) = (X(n)
k ) ∈ mF (∆), so for a given ε > 0, we have

(2) d̄(∆X
(m)
k , Am) <

ε

3
for a.a.k.

and

(3) d̄(∆X
(n)
k , An) <

ε

3
for a.a.k.

Now for each m, n > n0 ∈ N and from the inequalities (1), (2) and (3),
we get

d̄(Am, An) ≤ d̄(Am,∆X
(m)
k ) + d̄(∆X

(m)
k ,∆X

(n)
k )

+ d̄(∆X
(n)
k , An), for a.a.k.

<
ε

3
+

ε

3
+

ε

3
= ε.

Thus (An) is a Cauchy sequence in R(I). Since R(I) complete, so there
exists such a number A ∈ R(I) such that

lim
n→∞

An = A.

(ii). We have X(n) → X. For a given λ > 0, there exists such a q ∈ N
that

d̄(X(q)
1 , X1) + sup

k
d̄(∆X

(q)
k ,∆Xk) <

λ

3
.(4)

⇒ d̄(∆X
(q)
k ,∆Xk) <

λ

3
, for each k ∈ N.

The number q can be chosen in such a way that together with (4), we get

(5) d̄(Aq, A) <
λ

3
.
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Since, stat-lim ∆X
(q)
k = Aq. For a given λ > 0,

(6) d̄(∆X
(q)
k , Aq) <

λ

3
, for a.a.k.

Now,

d̄(∆Xk, A) ≤ d̄(∆Xk,∆X
(q)
k ) + d̄(∆X

(q)
k , Aq) + d̄(Aq, A), for a.a.k.

<
ε

3
+

ε

3
+

ε

3
= λ, by (4), (5) and (6).

Hence stat-lim ∆Xk = A. This proves the result. �

Theorem 3. The sequence spaces c̄F (∆), mF (∆), c̄0
F (∆) and mF

0 (∆)
are neither monotone nor solid.

Proof. The result follows from the following example. �

Example 2. Consider the sequence (Xk) ∈ Z(∆), for Z = c̄F , mF , c̄0
F

and mF
0 defined as follows:

For k = n2, n ∈ N ,

Xk(t) =


1 + k(t− 4) for 4− k−1 ≤ t ≤ 4,

1− k(t− 4) for 4 < t ≤ 4 + k−1,

0 otherwise.

Otherwise,

Xk(t) =

{
1− 2−1k(t− 1) for 1 ≤ t ≤ 1 + 2k−1,

0 otherwise.

Then

[Xk]α =

{
[4− k−1(1− α), 4 + k−1(1− α)] for k = n2, n ∈ N,

[1, 1 + 2k−1(1− α)] otherwise.

and

[∆XK ]α =


[3 + (α− 1)( 1

k + 2
(k+1)),

(1−α)
k + 3] for k = n2, n ∈ N,

[ (α−1)
(k+1) − 3, (1− α)( 2

k + 1
(k+1))− 3] for k = n2 − 1,

n > 1 with n ∈ N,

[2(α−1)
(k+1) , 2(1−α)

k ] otherwise.

Thus (Xk) ∈ Z(∆), for Z = c̄F , mF , c̄0
F and mF

0 .
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Let J = {k ∈ N : k = 2i, i ∈ N} be a subset of N and let
︷ ︸︸ ︷
mF (∆)J be

the canonical pre-image of the J-step space mF (∆)J of mF (∆), defined as
follows:

(Yk) ∈
︷ ︸︸ ︷
mF (∆)J is the canonical pre-image of (Xk) ∈ mF (∆) implies

Yk =

{
Xk for k ∈ J,

0̄ for k /∈ J.

Now,

[Yk]α =


[4− k−1(1− α), 4 + k−1(1− α)] for k ∈ J and k = n2, n ∈ N,

[1, 1 + 2k−1(1− α)] for k ∈ J and k 6= n2 for any n ∈ N,

[0, 0] k /∈ J.

and

[∆YK ]α =



[4− k−1(1− α), 4 + k−1(1− α)] for k ∈ J and k = n2, n ∈ N,

[1, 1 + 2k−1(1− α)] for k ∈ J and k 6= n2, for any n ∈ N

for k = n2 − 1, n > 1 with n ∈ N,

[(k + 1)−1(α− 1)− 4, (k + 1)−1(1− α)− 4] for k /∈ J

and k = n2 − 1, n ∈ N,

[2(k + 1)−1(α− 1)− 1,−1] otherwise.

Thus (Yk) /∈ Z(∆) for Z = c̄F , mF , c̄0
F and mF

0 .
Therefore, the spaces c̄F (∆), mF (∆), c̄0

F (∆) and mF
0 (∆) are not monotone.

The spaces c̄F (∆), mF (∆), c̄0
F (∆) and mF

0 (∆) are not solid follows from
Remark 1.

Theorem 4. The spaces c̄F (∆), mF (∆), c̄0
F (∆) and mF

0 (∆) are not
symmetric.

Proof. The result follows from the following example. �

Example 3. Consider the sequence (Xk), defined in Example 2.
Here we have,

(Xk) ∈ Z(∆) for Z = c̄F , mF , c̄0
F and mF

0

Let (Yk) be a rearrangement of the sequence (Xk), defined as follows:

(Yk) = (X1, X2, X4, X3, X9, X5, X16, X6, X25, X7 . . . ) .



106 Binod C. Tripathy and Paritosh C. Das

Then

[YK ]α =

{
[4− k−1(1− α), 4 + k−1(1− α)] for k odd,

[1, 1 + 2k−1(1− α)] for k even

and

[∆YK ]α =

{
[3− (1− α)(k−1 + 2(k + 1)−1), 3 + k−1(1− α)] for k odd,

[(k + 1)−1(α− 1)− 3, (1− α)(2k−1 + (k + 1)−1)− 3] for k even.

Thus (Yk) /∈ Z(∆), for Z = c̄F , mF , c̄0
F and mF

0 .
Hence, the spaces c̄F (∆), mF (∆), c̄0

F (∆) and mF
0 (∆) are not symmetric.

Theorem 5. The spaces c̄F (∆), mF (∆), c̄0
F (∆) and mF

0 (∆) are not
convergence free.

Proof. The result follows from the following example. �

Example 4. Consider the sequence (Xk) ∈ Z(∆), for Z = c̄F , mF , c̄0
F

and mF
0 , defined as follows:

For k = n2, n ∈ N , Xk = 0̄.
Otherwise,

Xk(t) =


1 + k(t− 1) for 1− k−1 ≤ t ≤ 1,

1− 2−1k(t− 1) for 1 < t ≤ 1 + 2k−1,

0 otherwise.

Then

[Xk]α =

{
[0, 0] for k = n2, n ∈ N,[
1 + k−1(α− 1), 1 + 2k−1(1− α)

]
otherwise

and

[∆XK ]α =


[

2(α−1)
(k+1) − 1, (1−α)

(k+1) − 1
]

for k = n2, n ∈ N,[
1 + (α−1)

k , 1 + 2(1−α)
k

]
for k = n2 − 1, n > 1 with n ∈ N,[

(α− 1)( 1
k + 2

(k+1)), (1− α)( 2
k + 1

(k+1))
]

otherwise.

Thus (Xk) ∈ Z(∆), for Z = c̄F , mF , c̄0
F and mF

0 .
Let the sequence (Yk) be defined as follows:
For k = n2, n ∈ N , Yk = 0̄.
Otherwise,

Yk(t) =

{
1 for 1 ≤ t ≤ k,

0 otherwise.
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Then

[Yk]α =

{
[0, 0] for k = n2, n ∈ N,

[1, k] otherwise.

and

[∆YK ]α =


[−(k + 1),−1] for k = n2, n ∈ N,

[1, k] for k = n2 − 1, n > 1 with n ∈ N,

[−1, k − 1] otherwise.

Thus (Yk) /∈ Z(∆) for Z = c̄F , mF , c̄0
F and mF

0 .
Hence the spaces c̄F (∆), mF (∆), c̄0

F (∆) and mF
0 (∆) are not convergence

free.

Theorem 6. The spaces c̄0
F (∆) and mF

0 (∆) are sequence algebra.

Proof. Let 0 < ε < 1 be given. Suppose (Xk), (Yk) ∈ c̄0
F (∆). Then we

have {
k ∈ N : d̄ (∆XK ⊗∆YK , 0̄) < ε

}
(7)

⊇
{
k ∈ N : d̄ (∆XK , 0̄) <

√
ε
}
∩

{
k ∈ N : d̄ (∆YK , 0̄) <

√
ε
}

Again, ∆{Xk ⊗ Yk} = Xk ⊗∆Yk + Yk+1 ⊗∆Xk and

∆Xk ⊗∆Yk = Xk ⊗∆Yk −Xk+1 ⊗∆Yk

= Xk ⊗∆Yk + Yk+1 ⊗∆Xk + 2Xk+1 ⊗ Yk+1

− {Yk+1 ⊗Xk + Xk+1 ⊗ Yk}.

Since (Xk), (Yk) ∈ c̄0
F (∆), so

stat− lim 2Xk+1 ⊗ Yk+1 = stat− lim Yk+1 ⊗Xk + stat− lim Xk+1 ⊗ Yk.

Hence

(8) stat− lim ∆(Xk ⊗ Yk) = stat− lim ∆Xk ⊗∆Yk

Since δ({k ∈ N : d̄(∆XK , 0̄) <
√

ε}) = 1 and δ({k ∈ N : d̄(∆YK , 0̄) <√
ε}) = 1.
Hence by (7) and (8), we have

δ
({

k ∈ N : d̄(∆XK ⊗∆Yk, 0̄) < ε
})

= δ
({

k ∈ N : d̄ (∆(XK ⊗ Yk), 0̄) < ε
})

= 1.

Thus (Xk ⊗ Yk) ∈ c̄0
F (∆). Hence c̄0

F (∆) is sequence algebra. The rest
of the proof follows similarly. �
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Theorem 7. The sequence spaces c̄F (∆) and mF (∆) = c̄F (∆) ∩ `F
∞(∆)

are not sequence algebra.

Proof. The result follows from the following example. �

Example 5. Consider the two sequences (Xk), (Yk) ∈ mF (∆) ⊂ c̄F (∆),
defined as follows:

For k = n2, n ∈ N

Xk(t) =

{
t− k for k ≤ t ≤ k + 1,

0 otherwise.

Otherwise,

Xk(t) =


t− k + 1 for k − 1 ≤ t ≤ k,

k + 1− t for k < t ≤ k + 1,

0 otherwise.

And for k = n2, n ∈ N

Yk(t) =

{
k + 1− t for k ≤ t ≤ k + 1,

0 otherwise.

Otherwise,

Yk(t) =


t− k for k ≤ t ≤ k + 1,

k + 2− t for k + 1 < t ≤ k + 2,

0 otherwise.

Then

[Xk]α =

{
[k + α, k + 1] for k = n2, n ∈ N,

[k − 1 + α, k + 1− α] otherwise.

and

[Yk]α =

{
[k, k + 1− α] for k = n2, n ∈ N,

[k + α, k + 2− α] otherwise.

Now

[∆Xk]α =


[2α− 2, 1− α] for k = n2, n ∈ N,

[α− 3, 2− 2α] for k = n2 − 1, n > 1 with n ∈ N,

[2α− 3, 1− 2α] otherwise.



Statistically convergent difference sequence spaces . . . 109

and

[∆Yk]α =


[α− 3,−2α] for k = n2, n ∈ N,

[2α− 2, 1− α] for k = n2 − 1, n > 1 with n ∈ N,

[2α− 3, 1− 2α] otherwise.

Thus (Xk), (Yk) ∈ mF (∆) ⊂ c̄F (∆).
Again,

∆(Xk ⊗ Yk)]α = [(Xk ⊗ Yk)− (Xk+1 ⊗ Yk + 1)]α

=



[−(α2 − 3kα + 5(k − α) + 6),−(α2 + 3kα− k + 2α− 1)]
for k = n2, n ∈ N,

[(α2 + 3kα− 5k + α− 4), (α2 − 3kα + k − 4α + 1)]
for k = n2 − 1, n > 1 with n ∈ N,

[(4kα− 6k + 4α− 6),−(4kα− 2k + 4α− 2] otherwise.

Thus (Xk ⊗ Yk) /∈ c̄F (∆)
(
⊃ mF (∆)

)
.

Hence the spaces mF (∆) and c̄F (∆) are not sequence algebra.

Theorem 8. (a) mF
0 ⊂ mF

0 (∆) and the inclusion is strict.

(b) mF ⊂ mF (∆) and the inclusion is strict.

Proof. (a) Let us consider a sequence (Xk) ∈ mF
0 . Clearly (from Remark

2), we have

∆Xk
stat−→ 0̄ and hence mF

0 ⊂ mF
0 (∆).

(b) Consider a sequence (Xk) ∈ mF . Then, we have

∆Xk
stat−→ X,

where X is of particular type, defined by [X]α = [−a, a] for some a = a(α) ∈
R+ ∪ {0}, the set of non-negative real numbers (see Remark 2 ).

Hence mF ⊂ mF (∆). �

The strictness of the inclusions of (a) and (b) follow from the following
example.

Example 6. Consider the sequence (Xk), defined as follows:

For k = n2, n ∈ N

Xk(t) =

{
k + 1− t for k ≤ t ≤ k + 1,

0 otherwise.
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Otherwise

Xk(t) =


1 + 2−1k(t− 3) for 3− 2k−1 ≤ t ≤ 3,

1− 2−1k(t− 3) for 3 ≤ t ≤ 3 + 2k−1,

0 otherwise.

Then

[Xk]α =

{
[k, k + 1− α] for k = n2, n ∈ N,

[3 + 2k−1(α− 1), 3 + 2k−1(1− α)] otherwise.

and

[∆Xk]α =



[
k − 3 + 2(α−1)

(k+1) , k − 2− α + 2(1−α)
(k+1)

]
for k = n2, n ∈ N,[

1− k + α + 2(α−1)
k , 2− k + 2(1−α)

k

]
for k = n2 − 1,

n > 1 with n ∈ N,[
2(α− 1)( 1

k + 1
(k+1)), 2(1− α)( 1

k + 1
(k+1))

]
otherwise.

Thus (Xk) /∈ mF (⊃ mF
0 ) and (Xk) ∈ mF

0 (∆) ⊂ mF (∆).
Hence the strictness of inclusions for both (a) and (b) are satisfied.

Theorem 9. The spaces mF
0 (∆) and mF (∆) are nowhere dense subsets

of `F
∞(∆).

Proof. Clearly, we have mF
0 (∆) and mF (∆) are closed subsets of the

complete metric space `F
∞(∆). Also mF

0 (∆) and mF (∆) are proper subspaces
of `F

∞(∆) which follow from the following example. �

Example 7. Consider the sequence (Xk), defined as follows:

For k even

Xk(t) =

{
1− k(t− 1)(k + 2)−1 for 1 ≤ t ≤ 2 + 2k−1,

0 otherwise

and for k odd,

Xk(t) =

{
1 + kt(k + 1)−1 for − (1 + k)−1 ≤ t ≤ 0,

0 otherwise.

Then

[Xk]α =

{
[1, 1 + (1 + 2k−1)(1− α)] for k even,

[(1 + k−1)(α− 1), 0] for k odd.
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and

[∆Xk]α =

{
1, 1 + (1− α)(2 + 2k−1 + (k + 1)−1)] for k even,

[(α− 1)(2 + k−1 + 2(k + 1)−1)− 1,−1] for k odd.

Thus (Xk) /∈ mF (∆)
(
⊃ mF

0 (∆)
)
, but (Xk) ∈ `F

∞(∆).
Hence the result.
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