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1. Introduction

Throughout the article w, `∞, c and c0 denote the classes of all, bounded,
convergent and null single sequence spaces of complex numbers respectively.

Throughout the article 2w(q), 2`∞(q), 2c(q), 2c0(q), 2c
R(q), 2c

R
0 (q), 2c

B(q),
2c

B
0 (q) denote the spaces of all, bounded, convergent in Pringsheim’s sense,

null in Pringsheim’s sense, regularly convergent, regularly null, convergent in
Pringsheim’s sense and bounded and null in Pringsheim’s sense and bounded
double sequences, defined over a seminormed space (X, q), seminormed by q.
For X = C, the field of complex numbers, these represent the corresponding
scalar sequence spaces. The zero element of X is denoted by θ.

An Orlicz function M is mapping M : [0,∞) → [0,∞) such that it is
continuous, non-decreasing and convex with M(0) = 0, M(x) > 0, for x > 0
and M(x) →∞, as x →∞.

Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to construct
the sequence space,

`M =

{
(xk) :

∞∑
k=1

M

(
|xk|
ρ

)
< ∞, for some ρ > 0

}
,

which is a Banach space normed by

||(xk)|| = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}
.
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The space `M is closely related to the space `p, which is an Orlicz sequence
space with M(x) = |x|p, for 1 ≤ p < ∞.

An Orlicz function M is said to satisfy the ∆2-condition for all values of
u, if there exists a constant K > 0, such that M(2u) ≤ K(Mu), u ≥ 0.

Remark 1. Let 0 < λ < 1, then M(λx) ≤ λM(x), for all x ≥ 0.

2. Definitions and preliminaries

Throughout, a double sequence is denoted by A = < ank >, a double
infinite array of elements ank ∈ X, for all n, k ∈ N and p = < pnk > is a
sequence of positive real numbers.

The initial works on double sequences are found in Bromwich [2]. Later
on it is studied by Hardy [3], Moricz [8], Moricz and Rhoades [9], Tripathy
([12], [13]), Basarir and Sonalcan [1] and many others. Hardy [3] introduced
the notion of regular convergence for double sequences.

The concept of paranormed sequences was studied by Nakano [10] and
Simmons [11] at the initial stage. Later on it was studied by many others.

The notion of difference sequence spaces (for single sequences) was intro-
duced by Kizmaz [5] as follows:

Z(∆) = {(xk) ∈ w : (∆xk) ∈ Z} ,

for Z = c, c0 and `∞, where ∆xk = xk − xk+1, for all k ∈ N .
The above spaces are Banach spaces normed by

||(xk)|| = |x1|+ sup
k≥1

|∆xk|

Later on the notion was further investigated by Tripathy [13] and many
others.

The notion of difference double sequence spaces was introduced by Tripa-
thy and Sarma [16]. These notions are further studied by Tripathy, Choud-
hary and Sarma [17].

Let < ank > be a double sequence. Then the operator ∆ is defined as:

∆ank = ank − an+1,k − an,k+1 + an+1,k+1, for all n, k ∈ N.

Definition 1. A double sequence space E is said to be solid if < αnkank >
∈ E whenever < ank > ∈ E for all double sequences < αnk > of scalars with
|αnk| ≤ 1, for all n, k ∈ N .

Definition 2. Let K = {(ni, kj) : i, j ∈ N ;n1 < n2 < . . . and k1 < k2 <
. . .} ⊆ N ×N and E be a double sequence space. A K-step space of E is a
sequence space

λE
K = {< anikj

> ∈ 2w : < ank > ∈ E}.
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A canonical pre-image of a sequence < ank > ∈ E is a sequence < bnk >
∈ E defined as follows:

bnk =

{
ank if (n, k) ∈ K,

0 otherwise.

A canonical pre-image of a step space λE
K is a set of canonical pre-images

of all elements in λE
K .

Definition 3. A double sequence space E is said to be monotone if it
contains the canonical pre-images of all its step spaces.

Remark 2. From the above notions, it follows that ”If a sequence space
E is solid, then E is monotone”.

Definition 4. A double sequence space E is said to be symmetric if
< ank > ∈ E implies < aπ(n)π(k) > ∈ E, where π is a permutation of N .

Definition 5. A normed (paranormed) space with norm (paranorm) g
is said to be a K-space if the co-ordinatewise maps are continuous, i.e.∣∣∣x(n)

k − xk

∣∣∣→ 0, whenever g
(
x(n) − x

)
→ θ, as n →∞,

where x(n) =
(
x

(n)
k

)
and x = x (xk) .

Remark 3. Let p = (pk) be a sequence of positive real numbers. If
0 < pk ≤ sup pk = H and D = max(1, 2H−1), then for ak, bk ∈ C, for all
k ∈ N , we have

|ak + bk|pk ≤ D {|ak|pk + |bk|pk} .

Let M be an Orlicz function. We have the following double sequence
spaces:

2`∞(M, q) =

{
< ank > ∈ 2w(q) : sup

n,k
M

(
q

(
ank

ρ

))
< ∞ for some ρ > 0

}
,

2c(M, q) =
{

< ank > ∈ 2w(q) : M

(
q

(
ank − L

ρ

))
→ 0, as n, k →∞,

for some ρ > 0 and some L ∈ X} .

Also < ank >∈ 2c
R(M, q) i.e. regularly convergent if < ank >∈ 2c(M, q)

and the following limits hold.
There exists Lk ∈ X, such that M

(
q
(

ank−Lk
ρ

))
→ 0, as n → ∞, for

some ρ > 0 and all k ∈ N .
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There exists Jn ∈ X, such that M
(
q
(

ank−Jn

ρ

))
→ 0, as k → ∞, for

some ρ > 0 and all n ∈ N .
The definition of 2c0(M, q) and 2c

R
0 (M, q) follows from the above defini-

tion on taking L = Lk = Jn = θ, for all n, k ∈ N .
We introduce the following difference double sequence spaces. Let < pnk >

be a double sequence of positive real numbers.

2`∞(M,∆, p, q)

=

{
< ank > ∈ 2w(q) : sup

n,k

[
M

(
q

(
∆ank

ρ

))]pnk

< ∞, for some ρ > 0

}
.

2c(M,∆, p, q)

=
{

< ank > ∈ 2w(q) :
[
M

(
q

(
∆ank − L

ρ

))]pnk

→ 0, as n, k →∞

for some ρ > 0, for some L ∈ X

}
.

Also < ank > ∈ 2c
R(M,∆, p, q) i.e. ∆-regularly convergent if < ank >

∈ 2c(M,∆, p, q) and the following limits hold.
There exists Lk ∈ X, such that

[
M
(
q
(

∆ank−Lk
ρ

))]pnk

→ 0, as n →∞,
for some ρ > 0 and for all k ∈ N .

There exists Jn ∈ X, such that
[
M
(
q
(

∆ank−Jn

ρ

))]pnk

→ 0, as k → ∞,
for some ρ > 0 and for all n ∈ N .

The definitions of 2c0(M,∆, p, q) and 2c
R
0 (M,∆, p, q) follow from the

above definition on taking L = Lk = Jn = θ, for all n, k ∈ N .

3. Main results

The proof of following two results is easy, so omitted.

Theorem 1. The classes of sequences Z(M,∆, p, q), where Z = 2c, 2c0,
2c

B, 2c
B
0 , 2c

R, 2c
R
0 and 2`∞ are linear spaces.

Theorem 2. The sequence spaces Z(M,∆, p, q), where Z = 2c
B, 2c

B
0 ,

2c
R, 2c

R
0 and 2`∞ are paranormed spaces paranormed by

f(< ank >) = inf
{

ρ
pnk

J > 0 : sup
n

M

(
q

(
an1

ρ

))
(1)

+ sup
k

M

(
q

(
a1k

ρ

))
+ sup

n,k
M

(
q

(
∆ank

ρ

))
≤ 1,

}
where J = max(1, 2H−1)
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Remark 4. Theorem 2 holds good if the function f is replaced by the
function g, where

g(< ank >) = inf

{
ρ

pnk
J > 0 : sup

n,k
M

(
q

(
∆ank

ρ

))
≤ 1

}
.

Theorem 3. Let (X, q) be a complete seminormed space. Then the
spaces Z(M,∆, p, q), where Z = 2c

B, 2c
B
0 , 2c

R, 2c
R
0 and 2`∞ are complete

paranormed spaces paranormed by f .

Proof. Let us consider the space 2`∞(M,∆, p, q). Let < ai
nk > be a

Cauchy sequence in 2`∞(M,∆, p, q). For fixed x0 > 0, r > 0, choose

(2) M
(rx0

2

)
≥ 1.

Then for a given ε > 0, there exists m0 ∈ N such that

(3) f(< ai
nk − aj

nk >) <
ε

rx0
for all i, j ≥ m0.

By (1), the definition of the paranorm f , we have

sup
n

M

(
q

(
ai

n1 − aj
n1

ρ

))
+ sup

k
M

(
q

(
ai

1k − aj
1k

ρ

))
(4)

+ sup
n,k

M

(
q

(
∆ai

nk −∆aj
nk

ρ

))
≤ 1 ≤ M

(rx0

2

)
⇒ M

(
q

(
ai

n1 − aj
n1

f(< ai
nk − aj

nk >)

))
≤ M

(rx0

2

)
,

M

((
ai

1k − aj
1k

f(< ai
nk − aj

nk >)

))
≤ M

(rx0

2

)
and

M

(
q

(
∆ai

nk −∆aj
nk

f(< ai
nk − aj

nk >)

))
≤ M

(rx0

2

)
⇒ q

(
ai

n1 − aj
n1

)
<

rx0

2
ε

rx0
=

ε

2
for all i, j ≥ m0,

q
(
ai

1k − aj
1k

)
<

rx0

2
ε

rx0
=

ε

2
for all i, j ≥ m0,

q
(
∆ai

nk −∆aj
nk

)
<

rx0

2
ε

rx0
=

ε

2
for all i, j ≥ m0.
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Thus < ai
n1 >, < ai

1k > and < ∆ai
nk > are Cauchy sequences in X. Since

X is complete, so there exist an1, a1k, ynk ∈ X such that

lim
i→∞

ai
n1 = an1, lim

i→∞
ai

1k = a1k and lim
i→∞

∆ai
nk = ynk.

From this it is clear that lim
i→∞

∆ai
nk ∈ X, for each n, k ∈ N .

Since M is continuous, so taking j →∞ in (4) we get

sup
n

M

(
q

(
ai

n1 − an1

ρ

))
+ sup

k
M

(
q

(
ai

1k − a1k

ρ

))
+ sup

n,k
M

(
q

(
∆ai

nk −∆ank

ρ

))
≤ 1.

Taking infimum of such ρ’s, we get

inf
{

ρ
pnk

J : sup
n

M

(
q

(
ai

n1 − an1

ρ

))
+ sup

k
M

(
q

(
ai

1k − a1k

ρ

))
+ sup

n,k
M

(
q

(
∆ai

nk −∆ank

ρ

))
≤ 1

}
< ε, for all i ≥ m0.

Hence < ai
nk − ank >∈ 2`∞(M,∆, p, q). Since 2`∞(M,∆, p, q) is linear,

so < ank >=< ai
nk > − < ai

nk − ank >∈ 2`∞(M,∆, p, q).
Thus 2`∞(M,∆, p, q) is complete. The other cases can be proved simi-

larly. �

Proposition 1. The spaces Z(M,∆, p, q), for Z = 2c
R, 2c

R
0 and 2`∞

are K-spaces.

Proof. Let us consider the sequence space 2`∞(M,∆, p, q). Let < ai
nk >

be a sequence in 2`∞(M,∆, p, q) such that f(< ai
nk − ank >) → ∞, as

i →∞.
For fixed x0, r > 0, choose M(rx0) ≥ 1. Then for a given ε > 0 there

exists m0 ∈ N such that

f(< ai
nk − ank >) <

ε

rx0
for all i ≥ m0.

By the definition of the paranorm f , we have

sup
n

M

(
q

(
ai

n1 − an1

ρ

))
+ sup

k
M

(
q

(
ai

1k − a1k

ρ

))
+ sup

n,k
M

(
q

(
∆ai

nk −∆ank

ρ

))
≤ 1 ≤ M

(rx0

2

)
⇒ M

(
q

(
ai

n1 − an1

f(< ai
nk − ank >)

))
≤ M (rx0) ,
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M

((
ai

1k − a1k

f(< ai
nk − ank >)

))
≤ M (rx0)

and M

(
q

(
∆ai

nk −∆ank

f(< ai
nk − ank >)

))
≤ M (rx0)

⇒ q
(
ai

n1 − an1

)
< rx02

ε

rx0
= ε for all i ≥ m0, and for all n ∈ N.

q
(
ai

1k − a1k

)
< rx0

ε

rx0
= ε for all i ≥ m0 and for all k ∈ N

and q
(
∆ai

nk −∆ank

)
< rx0

ε

rx0
= ε for all i ≥ m0 and for all n, k ∈ N.

Thus

q
(
ai

n1 − an1

)
→ 0, q

(
ai

1k − a1k

)
→ 0(5)

and q
(
∆ai

nk −∆ank

)
→ 0, as i →∞.

Using the expressions ∆ank = ank−an+1,k−an,k+1+an+1,k+1 and ∆ai
nk =

ai
nk − ai

n+1,k − ai
n,k+1 + ai

n+1,k+1 for all n, k ∈ N , from (5) we get from the
q
(
ai

nk − ank

)
→ 0. �

Hence 2`∞(M,∆, p, q) is K-space. Similarly the other spaces are also
K-spaces.

Result 1. The spaces Z(M,∆, p, q), for Z = 2c, 2c0, 2c
R, 2c

R
0 , 2c

B, 2c
B
0

and 2`∞ are not symmetric.

The result follows from the following example.

Example 1. Consider the sequence space 2c0(M,∆, p, q). Let X = `2,

M(x) = x and q(x) =
( ∞∑

i=1
|xi|2

) 1
2

.

Let the sequence < ank >=< (ai
nk) > be defined by

a1k =
(

1,
1
2
,
1
3
,
1
4
, . . .

)
for all k ∈ N,

ank = (0, 0, 0, 0, . . .) for all k ∈ N and all n ≥ 2.

∆a1k =
(

1,
1
2
,
1
3
, . . .

)
−
(

1,
1
2
,
1
3
, . . .

)
− (0, 0, 0, . . .) + (0, 0, 0, . . .)

= (0, 0, 0, . . .) for all k ∈ N.

∆ank = (0, 0, 0, . . .)− (0, 0, 0, . . .)− (0, 0, 0, . . .) + (0, 0, 0, . . .)
= (0, 0, 0, . . .) for all n ≥ 1 and for all k ∈ N.

Thus ∆ank = (0, 0, 0, 0, . . .), for all n, k ∈ N .
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Let < bnk > be a rearrangement of < ank > defined by

bnk =

{ (
1, 1

2 , 1
3 , 1

4 , . . .
)

for n = k,

(0, 0, 0, 0, . . .) otherwise,

Then

∆bnn =
(

1,
1
2
,
1
3
,
1
4
, . . .

)
− (0, 0, 0, . . .)− (0, 0, 0, . . .) +

(
1,

1
2
,
1
3
,
1
4
, . . .

)
= 2

(
1,

1
2
,
1
3
,
1
4
, . . .

)
for all n ∈ N

and

∆bnk =

{
−
(
1, 1

2 , 1
3 , 1

4 , . . .
)

for n = k ± 1,

(0, 0, 0, 0, . . .) otherwise.

The sequence < ank > ∈ 2c0(M,∆, p, q) ⊂ 2c(M,∆, p, q) but < bnk >
/∈ 2c(M,∆, p, q). Similarly it can be shown that the other spaces are not
symmetric.

Result 2. The spaces Z(M,∆, p, q), for Z = 2c, 2c0, 2c
R, 2c

R
0 , 2c

B, 2c
B
0

and 2`∞ are neither solid nor monotone.

The result follows from the following example.

Example 2. Consider the sequence space 2c(M,∆, p, q). Let X = c,
q(x) = sup

i
|xi| and

(M(x))pnk =

{
x3 if n = k,

x2 otherwise,
for x ∈ [0,∞) and all n, k ∈ N.

Let the sequence < ank > be defined by

ank = (n + k, n + k, n + k, . . .), for all n, k ∈ N.

Then ∆ank = (0, 0, 0, . . .), for all n, k ∈ N .
Let J = {(n, k) : n = k} ⊂ N ×N . Let 2c(M,∆, p, q)∗J be the canonical

pre-image of the J step space 2c(M,∆, p, q)J of 2c(M,∆, p, q). Let < ank >
∈ 2c(M,∆, p, q)∗J . Then

bnk =

{
ank for all (n, k) ∈ J,

0 otherwise.

For n = k, ∆bnk = (4n + 2, 4n + 2, 4n + 2, . . .) which tends to infinity as n
tends to infinity.

The sequence < ank > ∈ 2c(M,∆, p, q) but < bnk > /∈ 2c(M,∆, p, q).
Hence the sequence space 2c(M,∆, p, q) is not monotone. Similarly it can
be shown for the other spaces too.



Some paranormed difference double sequence spaces . . . 121

Proposition 2. (i) Z(M,∆, p, q) ⊂ 2`∞(M,∆, p, q), for Z = 2c
R, 2c

R
0 ,

2c
B, 2c

B
0 . The inclusions are strict.

(ii) If sup
n,k

pnk
pn+1,k

< ∞, sup
n,k

pnk
pn,k+1

< ∞, for all n, k ∈ N , then Z(M,p, q) ⊂

Y (M,∆, p, q), for Z = 2c, 2c
R, 2c

B and Y = 2c0, 2c
R
0 , 2c

B
0 respectively. The

inclusions are strict.

Proof. (i) The first part is obvious. To show the inclusions are strict,
consider the following example.

Example 3. Let X = c, M(x) = x, q(x) = sup
i
|xi| and

pnk =

{
3 for n odd and all k ∈ N,

2 otherwise.

Let the sequence < ank > be defined by

ank =

{
(n + k, n + k, n + k, . . .) for n odd and all k ∈ N,

(n, n, n, . . .) otherwise.

Then

∆ank =

{
(−1,−1,−1,−1, . . .) for n odd and all k ∈ N,

(1, 1, 1, 1, . . .) otherwise.

Then < ank > ∈ 2`∞(M,∆, p, q) but < ank > /∈ Z(M,∆, p, q), for Z =
2c

R, 2c
R
0 .

(ii) We prove 2c(M,p, q) ⊆ 2c0(M,∆, p, q). Since sup
n,k

pnk
pn+1,k

< ∞,

sup
n,k

pnk
pn,k+1

< ∞, we have

pnk

pn+1,k
≤ K1,

pnk

pn,k+1
≤ K2, for some K1 > 0, K2 > 0.

⇒ pnk ≤ K1pn+1,k, pnk ≤ K2pn,k+1(6)

Also

pnk ≤ K2.pn,k+1(7)
≤ K2K1pn+1,k+1 for all n, k ∈ N Eq.(6)
= K3pn+1,k+1 (say), for all n, k ∈ N.

Let < ank > ∈ 2c(M,p, q). Then for some ρ > 0,[
M

(
q

(
ank − L

ρ

))]pnk

→ 0, as n →∞, k →∞.
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Let r = 4ρ. Now,[
M

(
q

(
∆ank

r

))]pnk

=
[
M

(
q

(
ank − an+1,k − an,k+1 + an+1,k+1

r

))]pnk

≤ D2

[{
1
4
M

(
q

(
ank − L

ρ

))}pnk

+
{

1
4
M

(
q

(
an,k+1 − L

ρ

))}pnk

+
{

1
4
M

(
q

(
an,k+1 − L

ρ

))}pnk

+
{

1
4
M

(
q

(
an+1,k+1 − L

ρ

))}pnk
]

→ 0, as n →∞, k →∞ and for some r > 0. [using (6) and (7)]

Hence < ank > ∈ 2c0(M,∆, p, q). Thus 2c(M,p, q) ⊆ 2c0(M,∆, p, q).
Similarly it can be proved that 2c

R(M,p, q) ⊆ 2c
R
0 (M,∆, p, q). �

To show the strict inclusions, consider the following example.

Example 4. Let X = c, M(x) = x2 and q(x) = sup
i
|xi|. Let the

sequence < ank > = < (ai
nk) > be defined by

ank = (n + k, n + k, n + k, n + k, . . .) for all n, k ∈ N.

Clearly < ank >∈ 2c(M,∆, p, q), but < ank > /∈ 2c(M,p, q).

Proposition 3. The spaces Z(M,∆, p, q), for Z = 2c
R, 2c

R
0 are nowhere

dense subset of 2`∞(M,∆, p, q).

Proof. The proof is clear from the Proposition 2 (i) and Theorem 3. �

Proposition 4. Let M1 and M2 be Orlicz functions.

(i) Then Z(M2,∆, p, q) ⊆ Z(M1,∆, p, q), for Z = 2c, 2c0, 2c
R, 2c

R
0 , 2c

B,
2c

B
0 if M1(x) ≤ M2(x), for all x ∈ [0,∞).

(ii) Then Z(M1,∆, p, q)∩Z(M2,∆, p, q) ⊆ Z(M1 + M2,∆, p, q), for Z =
2c, 2c0, 2c

R, 2c
R
0 , 2c

B, 2c
B
0 and 2`∞.

Proof. (i) The proof is obvious.

(ii) Consider the case Z = 2c. Let < ank > ∈ 2c(M1,∆, p, q) ∩ 2c(M2,
∆, p, q). Then for some ρ1, ρ2 > 0,[

M1

(
q

(
∆ank − L

ρ1

))]pnk

<
ε

2D
for all n ≥ n0, k ≥ k0, (n0, k0 ∈ N).[

M2

(
q

(
∆ank − L

ρ2

))]pnk

<
ε

2D
for all n ≥ n′0, k ≥ k′0, (n′0, k′0 ∈ N).

Let ρ = max{ρ1, ρ2}, n′′0 = max{n0, n
′
0}, k′′0 = max{k0, k

′
0}.
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Now for n ≥ n′′0, k ≥ k′′0 and for some ρ > 0,[
(M1 + M2)

(
q

(
∆ank − L

ρ

))]pnk

≤ D

[
M1

(
q

(
∆ank − L

ρ

))]pnk

+ D

[
M2

(
q

(
∆ank − L

ρ

))]pnk

< D
( ε

2D
+

ε

2D

)
= ε

Thus < ank >∈ 2c(M1 + M2,∆, p, q). Hence the proof. Similarly it can
be proved for the other spaces. �

Proposition 5. (i) If 0 < inf pnk ≤ pnk < 1, then Z(M,∆, p, q) ⊆
Z(M,∆, q), for Z = 2c, 2c0, 2c

R, 2c
R
0 , 2c

B, 2c
B
0 and 2`∞.

(ii) If 1 < pnk ≤ sup pnk < ∞, then Z(M,∆, q) ⊆ Z(M,∆, p, q), for
Z = 2c, 2c0, 2c

R, 2c
R
0 , 2c

B, 2c
B
0 and 2`∞.

Proof. (i) The result follows from the following inequality.

M

(
q

(
∆ank − L

ρ

))
≤
[
M

(
q

(
∆ank − L

ρ

))]pnk

.

(ii) The result follows from the following inequality.[
M

(
q

(
∆ank − L

ρ

))]pnk

≤ M

(
q

(
∆ank − L

ρ

))
.

�

Proposition 6. If 0 < pnk ≤ tnk < ∞, then Z(M,∆, p, q), for Z = 2c,
2c0, 2c

R, 2c
R
0 , 2c

B, 2c
B
0 and 2`∞.

Proof. The result follows from the following inequality.[
M

(
q

(
∆ank − L

ρ

))]tnk

≤
[
M

(
q

(
∆ank − L

ρ

))]pnk

.

�
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