BINOD C. TRIPATHY AND MAUSUMI SEN

VECTOR VALUED PARANORMED $\ell(p)$ SPACES ASSOCIATED WITH MULTIPLIER SEQUENCES

ABSTRACT. In this article we introduce the multiplier vector valued sequence space $\ell\{E_k, \Lambda, p\}$, where $\Lambda = (\lambda_k)$ is an associated multiplier sequence of non-zero complex numbers and the terms of the sequence are chosen from the seminormed spaces $E_k, k \in N$. This generalizes the scalar sequence space $\ell\{p\}$. We study some properties of this space like solidity, symmetricity, completeness, separability. Prove some inclusion results and obtain their duals. KEY WORDS: paranormed sequence spaces, solid spaces, multiplier sequence.

AMS Mathematics Subject Classification: 40A05, 46A45.

1. Introduction

The notion of paranormed sequence space was introduced by Nakano [9] and Simons [14]. It was further investigated from sequence space point of view and linked with summability theory by Maddox [7], Lascarides [5], Nanda [10], Ratha [12], Rath and Tripathy [11], Tripathy and Sen [15] and many others.

The studies on vector valued sequence spaces was exploited by Kamthan [3], Ratha and Srivastava [13], Leonard [6], Gupta[2] and many others.

The scope for the studies on sequence spaces was extended on introducing the notion of associated multiplier sequences. Goes and Goes [1] defined the differentiated sequence space dE and integrated sequence space $\int E$ for a given sequence space E, with the help of multiplier sequences (k^{-1}) and (k)respectively. Kamthan [3] used the multiplier sequence (k!). In this article we shall consider a general multiplier sequence $\Lambda = (\lambda_k)$ of non-zero scalars.

2. Definitions and preliminaries

A vector valued sequence space E is called *solid* (or *normal*) if $\alpha x = (\alpha_k x_k) \in E$, whenever $x = (x_k) \in E$ and for all sequences $\alpha = (\alpha_k)$ of scalars such that $|\alpha_k| \leq 1$ for all $k \in N$.

A sequence space E is said to be *monotone* if E contains the canonical preimages of all its stepspaces.

A sequence space E is said to be symmetric if $(x_k) \in E$ implies $(x_{\pi(k)}) \in E$, where π is a permutation of N.

A vector valued sequence space $Z(E_k)$ is said to be *convergence free* if $(y_k) \in Z(E_k)$ whenever $(x_k) \in Z(E_k)$ and $x_k = \theta_{E_k}$ implies $y_k = \theta_{E_k}$.

Throughout the article E_k will denote a seminormed space, seminormed by f_k for all $k \in N$, defined over C, the field of complex numbers. Throughout $p = (p_k)$ represents a sequence of strictly positive numbers and $t_k = p_k^{-1}$, for all $k \in N$.

We define the following vector valued multiplier sequence spaces:

$$\ell(E_k, \Lambda, p) = \{(x_k) : x_k \in E_k \text{ for all } k \in N \text{ and } \sum_k (f_k(\lambda_k x_k))^{p_k} < \infty\}.$$

$$\ell\{E_k, \Lambda, p\} = \{(x_k) : x_k \in E_k \text{ for all } k \in N \text{ and there exists } r > 0, \\ \text{such that } \sum_k (f_k(\lambda_k x_k r))^{p_k} t_k < \infty\}.$$

Two sequence spaces E and F are said to be *equivalent* if there exists a sequence $u = (u_k)$ of strictly positive numbers such that the mapping $u : E \to F$ defined by $y = ux = (u_k x_k) \in F$, whenever $(x_k) \in E$, is a one-to-one correspondence between E and F. It is denoted by $E \cong F(u)$ or simply $E \cong F$ (see for instance Nakano [9]).

It is remarked by Lascarides [5] (Remark 3) that "If E is a sequence space paranormed (or normed) by g and $E \cong F(u)$, then F is a sequence space paranormed (or normed) by g_u defined by $g_u(y) = g(u^{-1}y), y \in F$ ".

Further it is noted by Lascarides [5] that "If $(p_k) \in \ell_{\infty}$, then $c_0(p) \cong c_0 p(u)$, (as well as $\ell_{\infty}(p) \cong \ell_{\infty}\{p\}(u)$), where $u = (p_k^{t_k})$ ".

For E and F two sequence spaces we define M(F, E) as follows:

$$M(F, E) = \{\lambda_k : (\lambda_k x_k) \in E, \text{ for all } (x_k) \in F\},\$$

where $\Lambda = (\lambda_k)$ is a multiplier sequence.

For any normed space E, the set of all continuous linear functionals on E is called its continuous dual and is denoted by E^* .

If we take E_k 's to be normed linear spaces, normed by $||.||_{E_k}$ for all $k \in N$, then the Köthe-Toeplitz dual of $Z(E_k)$ is defined as

 $[Z(E_k)]^{\alpha} = \{(y_k) : y_k \in E_k^* \text{ for all } k \in N \text{ and } (||x_k||_{E_k} ||y_k||_{E_k^*} \in \ell_1\}.$

Lemma 1. [Kamthan and Gupta [4]] A sequence space E is solid implies E is monotone.

Lemma 2. [Maddox [8], Theorem 1.] If $p_k > 1$, for all $k \in N$, then $[\ell(p)]^{\alpha} = M(p) = \{(a_k) : \sum_k |a_k|^{q_k} N^{-\frac{q_k}{p_k}} < \infty, \text{ for some integer } N > 1\}.$

3. Main results

The proof of the following result is easy, so omitted.

Theorem 1. $\ell \{E_k, \Lambda, p\}$ is a linear space for any sequence $p = (p_k)$.

Theorem 2. If $p_k \ge 1$, for all $k \in N$ and each E_k is complete seminormed space, seminormed by f_k , for all $k \in N$, then $\ell\{E_k, \Lambda, p\}$ is a complete paranormed space, paranormed by

$$h(x) = \left[\sum_{k=1}^{\infty} (f_k(r\lambda_k x_k p_k^{-t_k}))^{p_k}\right]^{\frac{1}{M}},$$

where $M = \max\{1, \sup p_k\}$.

Proof. It is clear that for any $x \in \ell\{E_k, \Lambda, p\}$, $h(x) \ge 0$, and $h(\theta) = 0$. Further for $x, y \in \ell\{E_k, \Lambda, p\}$, we have $h(x+y) \le h(x) + h(y)$. When $x \to \theta$, we have $h(\eta x) \to 0$. Also when $\eta \to 0$, $h(\eta x) \to 0$ follows from the following:

Since $\eta \to 0$, without loss of generality let $|\eta| < 1$. Then

$$h(\eta x) = \left[\sum_{k=1}^{\infty} (f_k(r\eta\lambda_k x_k p_k^{-t_k}))^{p_k}\right]^{\frac{1}{M}} \le |\eta|h(x) \to 0, \quad \text{as } \eta \to 0.$$

Hence h is a paranorm on $\ell \{E_k, \Lambda, p\}$.

Let $(x^{(i)})$ be a Cauchy sequence in $\ell \{E_k, \Lambda, p\}$. Then for a given $\varepsilon > 0$, there exists n_0 such that $h(x^i - x^j) < \varepsilon$, for all $i, j \ge n_0$.

(1)
$$\Rightarrow \left[\sum_{k=1}^{\infty} (f_k (r\lambda_k (x_k^i - x_k^j) p_k^{-t_k}))^{p_k}\right]^{\frac{1}{M}} < \varepsilon, \text{ for all } i, j \ge n_0.$$
$$\Rightarrow (f_k (r\lambda_k (x_k^i - x_k^j) p_k^{-t_k})) < \varepsilon, \text{ for all } i, j \ge n_0.$$
$$\Rightarrow (x_k^i - x_k^j) < \varepsilon, \text{ for all } i, j \ge n_0, \text{ for all } k \in N.$$

Hence $(x_k^i)_{i=1}^{\infty}$ is a Cauchy sequence in E_k , for each $k \in N$.

Since E_k are complete for each $k \in N$, so $(x_k^i)_{i=1}^{\infty}$ converges in E_k , for each $k \in N$. Let $\lim_{k \to \infty} x_k^i = x_k$, for each $k \in N$.

On taking limit as $j \to \infty$ in (1), we have

$$\left[\sum_{k=1}^{\infty} (f_k(r\lambda_k(x_k^i - x_k)p_k^{-t_k}))^{p_k}\right]^{\frac{1}{M}} < \varepsilon, \quad \text{for all } i \ge n_0.$$

$$\Rightarrow (x^{(i)} - x) \in \ell\{E_k, \Lambda, p\}.$$

Since $\ell \{E_k, \Lambda, p\}$ is a linear space, so we have $x = x^{(i)} - (x^{(i)} - x) \in \ell \{E_k, \Lambda, p\}.$

Thus $\ell \{E_k, \Lambda, p\}$ is a complete paranormed space. This completes the proof of the Theorem.

Proposition 1. The space $\ell \{E_k, \Lambda, p\}$ is normal.

Proof. Let $x = (x_k) \in \ell \{E_k, \Lambda, p\}$ and $|\alpha_k| \leq 1$, for all $k \in N$. Since $|\alpha_k|^{p_k} \leq \max(1, |\alpha_k|^H) \leq 1$, for all $k \in N$, so

$$\sum_{k} (f_k(\lambda_k(\alpha_k x_k)r))^{p_k} t_k \le \sum_{k} (f_k(\lambda_k x_k r))^{p_k} t_k.$$

Thus $x \in \ell \{E_k, \Lambda, p\}$ and $|\alpha_k| \leq 1$ for all $k \in N$ implies $\alpha x \in \ell \{E_k, \Lambda, p\}$. Hence $\ell \{E_k, \Lambda, p\}$ is a normal space.

The next result follows immediately from Lemma 1 and Proposition 1. \blacksquare

Proposition 2. The space $\ell \{E_k, \Lambda, p\}$ is monotone.

Note: The symmetric property of the space $\ell(E_k, \Lambda, p)$ depends on the sequence (p_k) . If $p_k = p$, for all $k \in N$, one can easily verify that $\ell(E_k, \Lambda, p) = \ell_p(E_k)$ if and only if

$$0 < \inf_{k} |\lambda_{k}| \le \sup_{k} |\lambda_{k}| < \infty.$$

In this case the space $\ell(E_k, \Lambda, p)$ is symmetric, since $\ell(E_k, \Lambda, p)$ is symmetric.

But if (p_k) is not a constant sequence, then $\ell(E_k, \Lambda, p)$ is not symmetric in general. This follows from the following example.

Example 1. Let $E_k = C$, for all $k \in N$, $\lambda_k = 1$, for all $k \in N$, $p_k = 1$, for k odd and $p_k = 2$, for k even.

Consider the sequence (x_k) defined by

$$x_k = \begin{cases} 0, & \text{if } k \text{ is odd,} \\ k^{-1}, & \text{if } k \text{ is even,} \end{cases}$$

Then $(x_k) \in \ell(E_k, \Lambda, p)$.

Let (y_k) be a rearrangement of (x_k) defined as

$$y_k = \begin{cases} (k+1)^{-1}, & \text{if } k \text{ is odd,} \\ 0, & \text{if } k \text{ is even,} \end{cases}$$

Then $(y_k) \notin \ell(E_k, \Lambda, p)$.

Hence $\ell(E_k, \Lambda, p)$ is not symmetric.

Following the similar arguments we can easily get the next result.

Theorem 3. (i) The space $\ell\{E_k, \Lambda, p\}$ is symmetric if and only if (p_k) is a constant sequence and $0 < \inf_k |\lambda_k| \le \sup_k |\lambda_k| < \infty$.

(ii) If (p_k) is not a constant sequence, then $\ell\{E_k, \Lambda, p\}$ is not symmetric in general.

Proposition 3. The spaces $\ell(E_k, \Lambda, p)$ and $\ell\{E_k, \Lambda, p\}$ are not convergence free.

Proof. The result follows from the following example.

Example 2. Let $E_k = C$, for all $k \in N$, $\lambda_k = 1$, for all $k \in N$, $p_k = 2$, for k odd and $p_k = 1$, for k even. Consider the sequence (x_k) defined by

$$x_k = \begin{cases} k^{-1}, & \text{if } k \text{ is odd,} \\ 0, & \text{if } k \text{ is even,} \end{cases}$$

Then $(x_k) \in \ell(E_k, \Lambda, p)$.

Consider the sequence (y_k) defined by

$$y_k = \begin{cases} 1, & \text{if } k \text{ is odd,} \\ 0, & \text{if } k \text{ is even,} \end{cases}$$

Then $(y_k) \notin \ell(E_k, \Lambda, p)$.

Hence $\ell(E_k, \Lambda, p)$ is not convergence free. Similarly we can show that $\ell\{E_k, \Lambda, p\}$ is not convergence free.

Theorem 4. If $0 < p_k \le q_k \le supq_k$, then $\ell\{E_k, \Lambda, p\} \subseteq \ell\{E_k, \Lambda, q\}$.

Proof. Let $x \in \ell \{E_k, \Lambda, p\}$. Then there exists r > 0 such that

$$\sum_{k=1}^{\infty} (f_k(\lambda_k x_k r))^{p_k} t_k < \infty$$

$$\Rightarrow (f_k(\lambda_k x_k r))^{p_k} t_k \to 0, \text{ as } k \to \infty$$

$$\Rightarrow \text{ the exists } k_0 \in N \text{ such that}$$

$$(f_k(\lambda_k x_k r))^{p_k} t_k < H^{-1}, \text{ for all } k \ge k_0, (H = \frac{\sup}{k} p_k).$$

 $\Rightarrow (f_k(\lambda_k x_k r))^{p_k} < 1, \text{ for all } k \ge k_0$

(2)
$$\Rightarrow (f_k(\lambda_k x_k r))^{q_k} \le (f_k(\lambda_k x_k r))^{p_k}, \text{ for all } k \ge k_0.$$

Also

(3)
$$0 < p_k \le q_k \Rightarrow \frac{1}{q_k} \le \frac{1}{p_k}.$$

Thus $(f_k(\lambda_k x_k r))^{q_k} q_k^{-1} \leq (f_k(\lambda_k x_k r))^{p_k} t_k$, for all sufficiently large k, by (2) and (3). So, $\sum_{k=1}^{\infty} (f_k(\lambda_k x_k r))^{q_k} q_k^{-1} < \infty \Rightarrow (x_k) \in \ell\{E_k, \Lambda, q\}.$ Hence the result.

Proposition 4. Let (p_k) be a given sequence of strictly positive real numbers. Then $(\lambda_k) \in M(E, E)$ if and only if $((\lambda_k)^{p_k}) \in \ell_{\infty}$, where $E = \ell(E_k, p)$ or $\ell\{E_k, p\}$.

Corollary 1. $M(E, E) = \ell_{\infty}$, for $E = \ell(E_k, p)$ or $\ell\{E_k, p\}$ if and only if $h = infp_k > 0$ and $H = supp_k < \infty$.

Proposition 5. Let $h = \inf p_k$ and $H = \sup p_k$. Then the following are equivalent:

(i) $H < \infty$ and h > 0. (ii) $\ell \{E_k, \Lambda, p\} = \ell(E_k, \Lambda, p)$.

Proof. Suppose (i) holds. Then for any r > 0, we have

(4)
$$\min(1, r^H) \le r^{p_k} \le \max(1, r^H), \text{ for all } k \in N.$$

From (4) we have

(5)
$$\sum_{k=1}^{\infty} (f_k(\lambda_k x_k r))^{p_k} t_k \{\max(1, r^H)\}^{-1} h \le \sum_{k=1}^{\infty} (f_k(\lambda_k x_k))^{p_k} \\ \le \sum_{k=1}^{\infty} (f_k(\lambda_k x_k r))^{p_k} t_k \{\min(1, r^H)\}^{-1} H.$$

From (5) we get $\ell \{E_k, \Lambda, p\} = \ell(E_k, \Lambda, p)$.

Conversely let (ii) holds. Then $H < \infty$. Consider the sequence (x_k) , defined as

$$x_k = |\lambda_k|^{-1} I_k$$
, for all $k \in N$,

where I_k is the identity element of E_k , for all $k \in N$.

Then $(x_k) \in \ell \{E_k, \Lambda, p\}$. So there exists r > 0 and M > 0 such that $r^{p_k} \leq M p_k$, for all $k \in N$. Then by inequality (4) we have h > 0.

Hence the result.

Theorem 5. Let $p_k \ge 1$, for all k = 1, 2, 3, ... Then $\ell \{E_k, \Lambda, p\}$ is separable if E_k is separable for all k = 1, 2, 3, ...

Proof. Let $E_k, k = 1, 2, 3, ...$ be separable. Then there exists countable dense subsets $H_k \subset E_k, k = 1, 2, 3, ...$ We show that $\ell\{H_k, \Lambda, p\}$ is a countable dense subset of $\ell\{E_k, \Lambda, p\}$. Since H_k is countable, so $\ell\{H_k, \Lambda, p\}$ is also countable.

Let x be a limit point of $\ell\{H_k, \Lambda, p\}$. Then there exists a sequence $(x^{(n)})$ in $\ell\{H_k, \Lambda, p\}$ such that

 $x^{(n)} \to x$ in the seminorm of $\ell \{E_k, \Lambda, p\}$.

$$\Rightarrow h(x^{(n)} - x) \to 0$$
, as $n \to \infty$.

$$\Rightarrow \sum_{k=1}^{\infty} (f_k (\lambda_k r^{-1} (x_k^{(n)} - x_k) p_k^{-t_k}))^{p_k} \to 0, \text{ as } n \to \infty, \text{ for some } r > 0.$$

 \Rightarrow Given $\varepsilon > 0$, there exists $n_0 \in N$, such that

$$\sum_{k=1}^{\infty} (f_k (\lambda_k r^{-1} (x_k^{(n)} - x_k) p_k^{-t_k}))^{p_k} < \varepsilon, \text{ for all } n \ge n_0, \text{ for some } r > 0.$$

$$\Rightarrow (x_k^{(n)} - x_k)_{k \in \mathbb{N}} \in \ell\{E_k, \Lambda, p\}, \text{ for all } n \ge n_0.$$

Since $\ell \{ E_k, \Lambda, p \}$ is linear, so $x \in \ell \{ E_k, \Lambda, p \}$.

Hence $\overline{\ell\{H_k, \Lambda, p\}} \subseteq \ell\{E_k, \Lambda, p\}.$

Conversely let $x \in \ell\{E_k, \Lambda, p\} - \ell\{H_k, \Lambda, p\}$. Since $x_k \in E_k$ and H_k is dense in E_k , so for a given $\varepsilon > 0$, we can choose $x_k^{\varepsilon} \in H_k$ such that

$$f_k(x_k^{\varepsilon} - x_k) < r|\lambda_k|^{-1} \left[\frac{\varepsilon^M p_k}{2^k}\right]^{\frac{1}{k}}.$$

Then $h(x_k^{\varepsilon}) - (x_k) = \sum_{k=1}^{\infty} (f_k(\lambda_k r^{-1}(x_k^{\varepsilon} - x_k)))^{p_k} t_k < \varepsilon.$ Hence $x \in \overline{\ell\{H_k, \Lambda, p\}}$. Thus $\overline{\ell\{H_k, \Lambda, p\}} = \ell\{E_k, \Lambda, p\}.$ This completes the proof of the theorem.

For the next result we will take E_k 's to be normed linear spaces, normed by $||.||_{E_k}$ for all $k \in N$.

Theorem 6. If
$$p_k > 1$$
, for all $k \in N$, then
(a) $[\ell\{E_k, \Lambda, p\}]^{\alpha} = \{(a_k) : a_k \in E_k^*, \text{ for all } k \in N \text{ and}$
 $\sum_{k=1}^{\infty} ||\lambda_k^{-1}a_k||_{E_k}^{q_k} N^{-\frac{q_k}{p_k}} < \infty \text{ for some integer } N > 1\}.$
(b) $[\ell\{E_k, \Lambda, p\}]^{\alpha} = \{(a_k) : a_k \in E_k^*, \text{ for all } k \in N \text{ and}$
 $\sum_{k=1}^{\infty} ||\lambda_k^{-1}r^{-1}p_k^{t_k}a_k||_{E_k}^{q_k} N^{-\frac{q_k}{p_k}} < \infty, \text{ for some integer } N > 1 \text{ and for } r > 0\},$
where $\frac{1}{p_k} + \frac{1}{q_k} = 1$, for all $k \in N$.

131

Proof. We have the following well known inequality

$$|a_k y_k| \le |a_k|^{q_k} + |y_k|^{p_k}, \quad \text{for all } k \in N.$$

The proof follows from the above inequality, Lemma 3 and the following expression

$$\sum_{k=1}^{\infty} ||a_k||_{E_k^*} ||x_k||_{E_k} = \sum_{k+1}^{\infty} ||\lambda_k^{-1} a_k||_{E_k^*} ||\lambda_k x_k||_{E_k}$$
$$= \sum_{k=1}^{\infty} ||r^{-1} \lambda_k^{-1} p_k^{t_k} a_k||_{E_k^*} ||r\lambda_k t_k^{t_k} x_k||_{E_k}$$

Acknowledgement. The authors thank the referee for the comments and suggestions those improved the presentation of the paper.

References

- GOES G., GOES S., Sequences of bounded variation and sequences of Fourier coefficients, *Math. Zeit*, 118(1970) 93-102.
- [2] GUPTA M., The generalized spaces $\ell^1(X)$ and $m_0(X)$, J. Math. Anal. Appl., 76(1980), 357-366.
- [3] KAMTHAN P.K., Bases in a certain class of Frechet spaces, Tamkang J. Math., 7(1976), 41-49.
- [4] KAMTHAN P.K., GUPTA M., Sequence Spaces and Series, Marcel Dekker, (1981).
- [5] LASCARIDES C.G., On the equivalence of certain sets of sequences, Indian J. Math., 25(1)(1983), 41-52.
- [6] LEONARD I.E., Banach sequence spaces, J. Math. Anal. Appl., 54(1976), 245-265.
- [7] MADDOX I.J., Spaces of strongly summable sequences, Quart. J. Math. Oxford, 18(1967), 345-355.
- [8] MADDOX I.J., Continuous and Köthe-Toeplitz duals of certain srquence spaces, Proc. Camb. Phil. Soc., 65(1969), 431-435.
- [9] NAKANO H., Modular sequence spaces, Proc. Japan Acad., 27(1951) 508-512.
- [10] NANDA S., Strongly almost summable and strongly almost convergent sequences, Acta Math. Hung., 49(1-2)(1987), 71-76.
- [11] RATH D., TRIPATHY B.C., Characterization of certain matrix operators, J. Orissa Math. Soc., 8(1989), 121-134.
- [12] RATHA A., Continuous linear functionals and operators on some vector sequence spaces, *Indian J. Math.*, 38(1)(1996), 81-90.
- [13] RATHA A., SRIVASTAVA P.D., On some vector valued sequence spaces $\mathcal{L}_{\infty}^{(p)}(E_k, \Lambda)$, Ganita, 47(1)(1996), 1-12.

- [14] SIMONS S., The spaces $\ell(p_{\nu})$ and $m(p_{\nu})$, Proc. London Math. Soc., 15(1965), 422-436.
- [15] TRIPATHY B.C., SEN M., Generalized statistically convergent sequences, Indian J. Pure Appl. Math., 32(11), 1689-1694.

BINOD CHANDRA TRIPATHY MATHEMATICAL SCIENCES DIVISION INSTITUTE OF ADVANCED STUDY IN SCIENCE AND TECHNOLOGY PASCHIM BORAGAON, GARCHUK, GUWAHATI-781035, ASSAM, INDIA *e-mail:* tripathybc@yahoo.com *or* tripathybc@rediffmail.com

Mausumi Sen

MATHEMATICAL SCIENCES DIVISION INSTITUTE OF ADVANCED STUDY IN SCIENCE AND TECHNOLOGY PASCHIM BORAGAON, GARCHUK, GUWAHATI-781035, ASSAM, INDIA *e-mail:* sen_mausumi@rediffmail.com

Received on 01.12.2006 and, in revised form, on 21.03.2007.