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ABSTRACT. In this article we introduce the multiplier vector val-
ued sequence space ¢{Ey, A, p}, where A = (\;) is an associated
multiplier sequence of non-zero complex numbers and the terms of
the sequence are chosen from the seminormed spaces Fy,k € N.
This generalizes the scalar sequence space ¢{p}. We study some
properties of this space like solidity, symmetricity, completeness,
separability. Prove some inclusion results and obtain their duals.
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1. Introduction

The notion of paranormed sequence space was introduced by Nakano [9]
and Simons [14]. It was further investigated from sequence space point of
view and linked with summability theory by Maddox [7], Lascarides [5],
Nanda [10], Ratha [12], Rath and Tripathy [11], Tripathy and Sen [15] and
many others.

The studies on vector valued sequence spaces was exploited by Kamthan
[3], Ratha and Srivastava [13], Leonard [6], Gupta[2] and many others.

The scope for the studies on sequence spaces was extended on introducing
the notion of associated multiplier sequences. Goes and Goes [1] defined the
differentiated sequence space dE and integrated sequence space [ E for a
given sequence space F, with the help of multiplier sequences (k~1) and (k)
respectively. Kamthan [3] used the multiplier sequence (k!). In this article
we shall consider a general multiplier sequence A = (\g) of non-zero scalars.

2. Definitions and preliminaries

A vector valued sequence space E is called solid (or normal) if ax =
(agzy) € E, whenever x = (x;) € E and for all sequences a@ = (ay) of
scalars such that |ag| <1 for all k € N.
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A sequence space F is said to be monotone if E contains the canonical
preimages of all its stepspaces.

A sequence space E is said to be symmetric if (x;) € E implies (z()) €
E, where 7 is a permutation of V.

A vector valued sequence space Z(FEy) is said to be convergence free if
(yx) € Z(Ex) whenever (z) € Z(Ey) and zy, = 0, implies y;, = g, .

Throughout the article E; will denote a seminormed space, seminormed
by fi for all k € N, defined over C, the field of complex numbers. Through-
out p = (pi) represents a sequence of strictly positive numbers and t;, = p,?l,
for all k € N.

We define the following vector valued multiplier sequence spaces:

UER, AN, p) ={(x) : z € By, for all k € N and > (fr(Agzk))P* < 0o}
k

U ER, A, p} ={(x) : x € Ej, for all k € N and there exists r > 0,
such that > (frx(Agxgr))Prts < oo}
k

Two sequence spaces E and F' are said to be equivalent if there exists
a sequence u = (uy) of strictly positive numbers such that the mapping
u : E — F defined by y = ux = (ugpzy) € F, whenever (z) € E, is a
one-to-one correspondence between E and F'. It is denoted by E = F'(u) or
simply E = F (see for instance Nakano [9]).

It is remarked by Lascarides [5] (Remark 3) that "If E is a sequence
space paranormed (or normed) by g and E = F(u), then F is a sequence
space paranormed (or normed) by g, defined by g.(y) = g(u™'y),y € F”.

Further it is noted by Lascarides [5] that ”If (pi) € lxo, then co(p) =

L\

cop(u), (as well as loo(p) = loo{p}(w)), where u = (p;*)”.
For F and F two sequence spaces we define M (F, E) as follows:

M(F, E) = {)\k : ()\k.l‘k) € E, for all ij) € F},

where A = ()\) is a multiplier sequence.

For any normed space F, the set of all continuous linear functionals on
FE is called its continuous dual and is denoted by E*.

If we take E}’s to be normed linear spaces, normed by ||.||g, for all k € N,
then the Kothe-Toeplitz dual of Z(Fy) is defined as

[Z(Ex)]* ={(yx) :yp € B forall ke N and (||z]|e,|lyelle; € 42}

Lemma 1. [Kamthan and Gupta [4]] 4 sequence space E is solid implies
E is monotone.

Lemma 2. [Maddox [8], Theorem 1.]If pi, > 1, for all k € N, then

[l(p)]* = M(p) = {(ak) : Z\ak\qkl\f*% < 00, for some integer N > 1}.
k
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3. Main results

The proof of the following result is easy, so omitted.
Theorem 1. /{Ey, A, p} is a linear space for any sequence p = (pg).

Theorem 2. If pr, > 1, for all k € N and each E} is complete semi-
normed space, seminormed by fi, for all k € N, then ¢{Ey,A,p} is a com-
plete paranormed space, paranormed by

h(z) = | (felripzepy )|
k=1

where M = max{1,sup py}.

Proof. It is clear that for any = € ¢{Ey, A,p}, h(z) > 0, and h(6) = 0.
Further for x,y € ¢{E, A, p}, we have h(x+vy) < h(z)+h(y). When z — 6,
we have h(nz) — 0. Also when n — 0, h(nz) — 0 follows from the following;:

Since n — 0, without loss of generality let || < 1. Then

1
o8] M

h(nz) = [Z(fk(rn)\kwkp;tk))pk

k=1

< |nlh(z) — 0, as n— 0.

Hence h is a paranorm on ¢{Ey, A, p}.
Let (z()) be a Cauchy sequence in ¢{E}, A,p}. Then for a given £ > 0,
there exists ng such that h(z’ — 27) < ¢, for all 4, j > ny.
1
e’} A ) M
(1) = [Z(fk(r)\k(xz — mjk)p,;tk))p’“ < g, for all 7,7 > ny.

k=1

= (fk(r)\,yg(a:;f — xi)p;t’“)) <eg, foralli,j> ng.
= (2% — xfc) <eg, forall i,j>ng, forall ke N.

Hence ()2, is a Cauchy sequence in Ej, for each k € N.

Since FEj are complete for each k£ € N, so (:B}g)fil converges in Ey, for
each k € N. Let 1™ z% = xy, for each k € N.

1—00
On taking limit as j — oo in (1), we have

1
00 M

Z(fk(r)\k(:nﬁg — ap,)py, )P <eg, forall i>ng.
k=1

= (x(i) —x) € t{Ex, A, p}.
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Since ¢{Ey, A,p} is a linear space, so we have z = z() — (z0) — z) €
e{Ekv A7 p}

Thus ¢{Ey, A, p} is a complete paranormed space.

This completes the proof of the Theorem. |

Proposition 1. The space ({Ey, A,p} is normal.

Proof. Let x = (z1) € ¢{Ek, A, p} and |ag| <1, for all k € N.
Since |ag|P* < max (1, |og|f) < 1, for all k € N, so

> FreOnlanzr)r)Pete <Y (fwwrr))Pit.

k k

Thus = € ¢{Ex, A, p} and |ag| < 1 for all k£ € N implies ax € ({Ey, A, p}.
Hence ¢{E}y, A, p} is a normal space.
The next result follows immediately from Lemma 1 and Proposition 1. B

Proposition 2. The space ({E), A,p} is monotone.

Note: The symmetric property of the space ¢(Ey,A,p) depends on
the sequence (pg). If pp = p, for all k € N, one can easily verify that
((Ey, A, p) = €,(E)) if and only if

0< ir];f|)\k| < sup |[Ag] < o0.
k

In this case the space ¢(FEy, A, p) is symmetric, since {(Ey, A, p) is sym-
metric.

But if (pg) is not a constant sequence, then ¢(Ej, A, p) is not symmetric
in general. This follows from the following example.

Example 1. Let E, = C, forallk e N, \p, =1, forall k € N, pp =1,
for k odd and pi = 2, for k even.
Consider the sequence (xy) defined by

0, if k is odd,
Th=19 1 ..o .
k=, if k is even,
Then (zx) € ¢(Ex, A, p).

Let (yi) be a rearrangement of () defined as

) (k+1)7Y i ks odd,
Yk = 0, if k is even,
Then (yi) ¢ ¢(Ex, A, p).

Hence ¢(Ey, A, p) is not symmetric.
Following the similar arguments we can easily get the next result.
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Theorem 3. (i) The space ¢{Ex, A,p} is symmetric if and only if (py)
is a constant sequence and 0 < ”]f]/\k\ < TP AR < o0,

(73) If (px) is not a constant sequence, then ¢{Ey, A,p} is not symmetric
in general.

Proposition 3. The spaces {(Ey, A,p) and ¢{Ey, A,p} are not conver-
gence free.

Proof. The result follows from the following example. |

Example 2. Let £, = C, forall k € N, A\, =1, forall k € N, p, = 2,
for k odd and py = 1, for k even. Consider the sequence (xy) defined by

E~1,  if k is odd,
T =
0, if k£ is even,

Then (xy) € ¢(Eg, A, p).
Consider the sequence (yx) defined by

) 1, if k is odd,
Yk = 0, if k is even,

Then (yx) & L(Ek, A, p).
Hence ¢(Ey, A, p) is not convergence free. Similarly we can show that

t{Ex, A, p} is not convergence free.
Theorem 4. If 0 < pp < g < supqg, then ({Ex, A,p} CU{Ey, A, q}.
Proof. Let z € ¢{E), A, p}. Then there exists r > 0 such that

[e.e]

Z(fk()\kmkr))pktk < 00
k=1
= (fe(M\gzrr))Prty — 0, as k — o0

= the exists kg € N such that

(FeOveanr))Pite < HL, for all k > ko, (H = S‘;ppk).

= (fe(Agzrr))Pr <1, forall k> ko

(2) = (fsMezpr)® < (fr(Agapr))Pr,  for all k > ko.
Also

1 1
(3) O<pp<qp=— < —.

gk ygs
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Thus (fr(Mexer)) gt < (fr(Aeagr))Prty, for all sufficiently large k, by

q
(2) and (3). So, 3 (fe(\kawr))%q, ' < 0o = (x1) € ¢{E, A, q}.
k=1
Hence the result. [ |

Proposition 4. Let (pg) be a given sequence of strictly positive real
numbers. Then (A\x) € M(E,E) if and only if (A\)P*) € Lo, where E =
((Ey,p) or {E, p}.

Corollary 1. M(E,E) = lw,, for E = {(Ex,p) or {{Ex,p} if and only
if h = infpr > 0 and H = supp, < 0.
Proposition 5. Let h = inf pi, and H = sup px. Then the following are

equivalent:
(i) H < oo and h > 0.

(ii) t{Ey, A, p} = €(Ex, A, p).
Proof. Suppose (i) holds. Then for any r > 0, we have

(4) min(1,77) < 7P* < max(1,r%), for all k€ N.

From (4) we have
(5) Z fk /\kxkr pktk{max 1 7” Z fk )\kxk
k=1 k=1

00
< Z fk )\kl‘kr pktk{mln(l r )}_IH.
k=1

From (5) we get ¢{Ey, A,p} = {(Ek, A, p).
Conversely let (ii) holds. Then H < oco. Consider the sequence (zy),
defined as
zp = | M|, forall ke N,

where I, is the identity element of Ey, for all k € N.

Then (z) € ¢{FEx,A,p}. So there exists r > 0 and M > 0 such that
rPk < Mpy, for all K € N. Then by inequality (4) we have h > 0.

Hence the result. |

Theorem 5. Let p, > 1, for all k = 1,2,3,.... Then {{E, A,p} is
separable if Ey is separable for all k =1,2,3,....

Proof. Let Ei, k= 1,2,3,... be separable. Then there exists countable
dense subsets Hy, C Ey, k = 1,2,3,.... We show that ¢{Hy, A,p} is a
countable dense subset of ¢{E}, A,p}. Since Hy, is countable, so ¢{Hy, A, p}
is also countable.
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Let  be a limit point of ¢{Hy, A, p}. Then there exists a sequence (z(™)

in ({Hy, A,p} such that
(™ — z in the seminorm of ¢{E}, A, p}.

= h(z™ —z) — 0, as n — oo.

= > (fk()\kr_l(xgl) — xk)p;t’“))pk — 0, as n — oo, for some r > 0.
k=1

= Given ¢ > 0, there exists ng € IV, such that
oo

> (fk()\kr_l(:ngc") - xk)p,;t’“))pk < g, for all n > ng, for some r > 0.
k=1
= (xgcn) — Tk)keN € {E, A, p}, for all n > ny.

Since ¢{E}, A, p} is linear, so x € ¢/{Ey, A, p}.
Hence K{Hka Avp} - E{EkvA’p}

Conversely let x € ({Ey, A,p} — ({Hy,A,p}. Since xy € Ej and Hy is
dense in E}, so for a given € > 0, we can choose zf, € H}, such that

1
M %

—1|€ Dk

Ji(@y, — xr) <Al 1[ ok }

Then h(z5) — (z) = ki:;l( FeOwr (@5 — @))Pety < e

Hence = € ¢{Hy, A, p}.
Thus ¢{Hy, A, p} = ¢{Ex, A, p}.

This completes the proof of the theorem. |

For the next result we will take E}’s to be normed linear spaces, normed
by ||.||g, for all k € N.
Theorem 6. If pi, > 1, for all k € N,then
(a) [{Ex, A, p}]* = {(ar) : ar, € E, for all k € N and
S _%
> H)\IzlakH%kN Pk < 0o for some integer N > 1}.
k=1

(0) [{Ek, A, pt* ={(ak) : ax, € E}, for all k € N and

o 9q

> H)\flr_lpzkakﬂ%“k]\f_i < oo, for some integer N > 1 and for r > 0},
k=1

wherepik—l-qikzl,forallkel\f.
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Proof. We have the following well known inequality
laryr| < lag|™ + [ye/P*,  for all k€ N.

The proof follows from the above inequality, Lemma 3 and the following
expression

[oe) o
> lakllge ekl = Y I arlls: ekl s,
k=1 k+1

o
= > N sty o s,
k=1
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