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VECTOR VALUED PARANORMED `(p) SPACES

ASSOCIATED WITH MULTIPLIER SEQUENCES

Abstract. In this article we introduce the multiplier vector val-
ued sequence space `{Ek,Λ, p}, where Λ = (λk) is an associated
multiplier sequence of non-zero complex numbers and the terms of
the sequence are chosen from the seminormed spaces Ek, k ∈ N .
This generalizes the scalar sequence space `{p}. We study some
properties of this space like solidity, symmetricity, completeness,
separability. Prove some inclusion results and obtain their duals.
Key words: paranormed sequence spaces, solid spaces, multiplier
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1. Introduction

The notion of paranormed sequence space was introduced by Nakano [9]
and Simons [14]. It was further investigated from sequence space point of
view and linked with summability theory by Maddox [7], Lascarides [5],
Nanda [10], Ratha [12], Rath and Tripathy [11], Tripathy and Sen [15] and
many others.

The studies on vector valued sequence spaces was exploited by Kamthan
[3], Ratha and Srivastava [13], Leonard [6], Gupta[2] and many others.

The scope for the studies on sequence spaces was extended on introducing
the notion of associated multiplier sequences. Goes and Goes [1] defined the
differentiated sequence space dE and integrated sequence space

∫
E for a

given sequence space E, with the help of multiplier sequences (k−1) and (k)
respectively. Kamthan [3] used the multiplier sequence (k!). In this article
we shall consider a general multiplier sequence Λ = (λk) of non-zero scalars.

2. Definitions and preliminaries

A vector valued sequence space E is called solid (or normal) if αx =
(αkxk) ∈ E, whenever x = (xk) ∈ E and for all sequences α = (αk) of
scalars such that |αk| ≤ 1 for all k ∈ N .
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A sequence space E is said to be monotone if E contains the canonical
preimages of all its stepspaces.

A sequence space E is said to be symmetric if (xk) ∈ E implies (xπ(k)) ∈
E, where π is a permutation of N .

A vector valued sequence space Z(Ek) is said to be convergence free if
(yk) ∈ Z(Ek) whenever (xk) ∈ Z(Ek) and xk = θEk

implies yk = θEk
.

Throughout the article Ek will denote a seminormed space, seminormed
by fk for all k ∈ N , defined over C, the field of complex numbers. Through-
out p = (pk) represents a sequence of strictly positive numbers and tk = p−1

k ,
for all k ∈ N .

We define the following vector valued multiplier sequence spaces:

`(Ek,Λ, p) = {(xk) : xk ∈ Ek for all k ∈ N and
∑
k

(fk(λkxk))pk < ∞}.

`{Ek,Λ, p} = {(xk) : xk ∈ Ek for all k ∈ N and there exists r > 0,
such that

∑
k

(fk(λkxkr))pktk < ∞}.

Two sequence spaces E and F are said to be equivalent if there exists
a sequence u = (uk) of strictly positive numbers such that the mapping
u : E → F defined by y = ux = (ukxk) ∈ F , whenever (xk) ∈ E, is a
one-to-one correspondence between E and F . It is denoted by E ∼= F (u) or
simply E ∼= F (see for instance Nakano [9]).

It is remarked by Lascarides [5] (Remark 3) that ”If E is a sequence
space paranormed (or normed) by g and E ∼= F (u), then F is a sequence
space paranormed (or normed) by gu defined by gu(y) = g(u−1y), y ∈ F”.

Further it is noted by Lascarides [5] that ”If (pk) ∈ `∞, then c0(p) ∼=
c0p(u), (as well as `∞(p) ∼= `∞{p}(u)), where u = (ptk

k )”.
For E and F two sequence spaces we define M(F,E) as follows:

M(F,E) = {λk : (λkxk) ∈ E, for all (xk) ∈ F},

where Λ = (λk) is a multiplier sequence.
For any normed space E, the set of all continuous linear functionals on

E is called its continuous dual and is denoted by E∗.
If we take Ek’s to be normed linear spaces, normed by ||.||Ek

for all k ∈ N ,
then the Köthe-Toeplitz dual of Z(Ek) is defined as

[Z(Ek)]α = {(yk) : yk ∈ E∗k for all k ∈ N and (||xk||Ek
||yk||E∗

k
∈ `1}.

Lemma 1. [Kamthan and Gupta [4]] A sequence space E is solid implies
E is monotone.

Lemma 2. [Maddox [8], Theorem 1.]If pk > 1, for all k ∈ N , then

[`(p)]α = M(p) = {(ak) :
∑

k

|ak|qkN
− qk

pk < ∞, for some integer N > 1}.
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3. Main results

The proof of the following result is easy, so omitted.

Theorem 1. `{Ek,Λ, p} is a linear space for any sequence p = (pk).

Theorem 2. If pk ≥ 1, for all k ∈ N and each Ek is complete semi-
normed space, seminormed by fk, for all k ∈ N , then `{Ek,Λ, p} is a com-
plete paranormed space, paranormed by

h(x) =

[ ∞∑
k=1

(fk(rλkxkp
−tk
k ))pk

] 1
M

,

where M = max{1, sup pk}.

Proof. It is clear that for any x ∈ `{Ek,Λ, p}, h(x) ≥ 0, and h(θ) = 0.
Further for x, y ∈ `{Ek,Λ, p}, we have h(x+y) ≤ h(x)+h(y). When x → θ,
we have h(ηx) → 0. Also when η → 0, h(ηx) → 0 follows from the following:

Since η → 0, without loss of generality let |η| < 1. Then

h(ηx) =

[ ∞∑
k=1

(fk(rηλkxkp
−tk
k ))pk

] 1
M

≤ |η|h(x) → 0, as η → 0.

Hence h is a paranorm on `{Ek,Λ, p}.
Let (x(i)) be a Cauchy sequence in `{Ek,Λ, p}. Then for a given ε > 0,

there exists n0 such that h(xi − xj) < ε, for all i, j ≥ n0.

⇒

[ ∞∑
k=1

(fk(rλk(xi
k − xj

k)p
−tk
k ))pk

] 1
M

< ε, for all i, j ≥ n0.(1)

⇒ (fk(rλk(xi
k − xj

k)p
−tk
k )) < ε, for alli, j ≥ n0.

⇒ (xi
k − xj

k) < ε, for all i, j ≥ n0, for all k ∈ N.

Hence (xi
k)
∞
i=1 is a Cauchy sequence in Ek, for each k ∈ N .

Since Ek are complete for each k ∈ N , so (xi
k)
∞
i=1 converges in Ek, for

each k ∈ N . Let lim
i→∞xi

k = xk, for each k ∈ N .
On taking limit as j →∞ in (1), we have[ ∞∑

k=1

(fk(rλk(xi
k − xk)p

−tk
k ))pk

] 1
M

< ε, for all i ≥ n0.

⇒ (x(i) − x) ∈ `{Ek,Λ, p}.
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Since `{Ek,Λ, p} is a linear space, so we have x = x(i) − (x(i) − x) ∈
`{Ek,Λ, p}.

Thus `{Ek,Λ, p} is a complete paranormed space.
This completes the proof of the Theorem. �

Proposition 1. The space `{Ek,Λ, p} is normal.

Proof. Let x = (xk) ∈ `{Ek,Λ, p} and |αk| ≤ 1, for all k ∈ N .
Since |αk|pk ≤ max (1, |αk|H) ≤ 1, for all k ∈ N , so∑

k

(fk(λk(αkxk)r))pktk ≤
∑

k

(fk(λkxkr))pktk.

Thus x ∈ `{Ek,Λ, p} and |αk| ≤ 1 for all k ∈ N implies αx ∈ `{Ek,Λ, p}.
Hence `{Ek,Λ, p} is a normal space.
The next result follows immediately from Lemma 1 and Proposition 1. �

Proposition 2. The space `{Ek,Λ, p} is monotone.

Note: The symmetric property of the space `(Ek,Λ, p) depends on
the sequence (pk). If pk = p, for all k ∈ N , one can easily verify that
`(Ek,Λ, p) = `p(Ek) if and only if

0 < inf
k
|λk| ≤ sup

k
|λk| < ∞.

In this case the space `(Ek,Λ, p) is symmetric, since `(Ek,Λ, p) is sym-
metric.

But if (pk) is not a constant sequence, then `(Ek,Λ, p) is not symmetric
in general. This follows from the following example.

Example 1. Let Ek = C, for all k ∈ N , λk = 1, for all k ∈ N , pk = 1,
for k odd and pk = 2, for k even.

Consider the sequence (xk) defined by

xk =

{
0, if k is odd,

k−1, if k is even,

Then (xk) ∈ `(Ek,Λ, p).
Let (yk) be a rearrangement of (xk) defined as

yk =

{
(k + 1)−1, if k is odd,

0, if k is even,

Then (yk) /∈ `(Ek,Λ, p).
Hence `(Ek,Λ, p) is not symmetric.
Following the similar arguments we can easily get the next result.
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Theorem 3. (i) The space `{Ek,Λ, p} is symmetric if and only if (pk)
is a constant sequence and 0 < inf

k |λk| ≤ sup
k |λk| < ∞.

(ii) If (pk) is not a constant sequence, then `{Ek,Λ, p} is not symmetric
in general.

Proposition 3. The spaces `(Ek,Λ, p) and `{Ek,Λ, p} are not conver-
gence free.

Proof. The result follows from the following example. �

Example 2. Let Ek = C, for all k ∈ N,λk = 1, for all k ∈ N , pk = 2,
for k odd and pk = 1, for k even. Consider the sequence (xk) defined by

xk =

{
k−1, if k is odd,

0, if k is even,

Then (xk) ∈ `(Ek,Λ, p).
Consider the sequence (yk) defined by

yk =

{
1, if k is odd,

0, if k is even,

Then (yk) /∈ `(Ek,Λ, p).
Hence `(Ek,Λ, p) is not convergence free. Similarly we can show that

`{Ek,Λ, p} is not convergence free.

Theorem 4. If 0 < pk ≤ qk ≤ supqk, then `{Ek,Λ, p} ⊆ `{Ek,Λ, q}.

Proof. Let x ∈ `{Ek,Λ, p}. Then there exists r > 0 such that

∞∑
k=1

(fk(λkxkr))pktk < ∞

⇒ (fk(λkxkr))pktk → 0, as k →∞
⇒ the exists k0 ∈ N such that

(fk(λkxkr))pktk < H−1, for all k ≥ k0, (H =
sup
k

pk).

⇒ (fk(λkxkr))pk < 1, for all k ≥ k0

(2) ⇒ (fk(λkxkr))qk ≤ (fk(λkxkr))pk , for all k ≥ k0.

Also

(3) 0 < pk ≤ qk ⇒
1
qk
≤ 1

pk
.
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Thus (fk(λkxkr))qkq−1
k ≤ (fk(λkxkr))pktk, for all sufficiently large k, by

(2) and (3). So,
∞∑

k=1

(fk(λkxkr))qkq−1
k < ∞ ⇒ (xk) ∈ `{Ek,Λ, q}.

Hence the result. �

Proposition 4. Let (pk) be a given sequence of strictly positive real
numbers. Then (λk) ∈ M(E,E) if and only if ((λk)pk) ∈ `∞, where E =
`(Ek, p) or `{Ek, p}.

Corollary 1. M(E,E) = `∞, for E = `(Ek, p) or `{Ek, p} if and only
if h = infpk > 0 and H = suppk < ∞.

Proposition 5. Let h = inf pk and H = sup pk. Then the following are
equivalent:

(i) H < ∞ and h > 0.
(ii) `{Ek,Λ, p} = `(Ek,Λ, p).

Proof. Suppose (i) holds. Then for any r > 0, we have

(4) min(1, rH) ≤ rpk ≤ max(1, rH), for all k ∈ N.

From (4) we have

∞∑
k=1

(fk(λkxkr))pktk{max(1, rH)}−1h ≤
∞∑

k=1

(fk(λkxk))pk(5)

≤
∞∑

k=1

(fk(λkxkr))pktk{min(1, rH)}−1H.

From (5) we get `{Ek,Λ, p} = `(Ek,Λ, p).
Conversely let (ii) holds. Then H < ∞. Consider the sequence (xk),

defined as
xk = |λk|−1Ik, for all k ∈ N,

where Ik is the identity element of Ek, for all k ∈ N .
Then (xk) ∈ `{Ek,Λ, p}. So there exists r > 0 and M > 0 such that

rpk ≤ Mpk, for all k ∈ N . Then by inequality (4) we have h > 0.
Hence the result. �

Theorem 5. Let pk ≥ 1, for all k = 1, 2, 3, .... Then `{Ek,Λ, p} is
separable if Ek is separable for all k = 1, 2, 3, . . ..

Proof. Let Ek, k = 1, 2, 3, . . . be separable. Then there exists countable
dense subsets Hk ⊂ Ek, k = 1, 2, 3, . . .. We show that `{Hk,Λ, p} is a
countable dense subset of `{Ek,Λ, p}. Since Hk is countable, so `{Hk,Λ, p}
is also countable.
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Let x be a limit point of `{Hk,Λ, p}. Then there exists a sequence (x(n))
in `{Hk,Λ, p} such that

x(n) → x in the seminorm of `{Ek,Λ, p}.

⇒ h(x(n) − x) → 0, as n →∞.

⇒
∞∑

k=1

(fk(λkr
−1(x(n)

k − xk)p
−tk
k ))pk → 0, as n →∞, for some r > 0.

⇒ Given ε > 0, there exists n0 ∈ N , such that

∞∑
k=1

(fk(λkr
−1(x(n)

k − xk)p
−tk
k ))pk < ε, for all n ≥ n0, for some r > 0.

⇒ (x(n)
k − xk)k∈N ∈ `{Ek,Λ, p}, for all n ≥ n0.

Since `{Ek,Λ, p} is linear, so x ∈ `{Ek,Λ, p}.

Hence `{Hk,Λ, p} ⊆ `{Ek,Λ, p}.

Conversely let x ∈ `{Ek,Λ, p} − `{Hk,Λ, p}. Since xk ∈ Ek and Hk is
dense in Ek, so for a given ε > 0, we can choose xε

k ∈ Hk such that

fk(xε
k − xk) < r|λk|−1

[
εMpk

2k

] 1
k

.

Then h(xε
k)− (xk) =

∞∑
k=1

(fk(λkr
−1(xε

k − xk)))pktk < ε.

Hence x ∈ `{Hk,Λ, p}.
Thus `{Hk,Λ, p} = `{Ek,Λ, p}.
This completes the proof of the theorem. �

For the next result we will take Ek’s to be normed linear spaces, normed
by ||.||Ek

for all k ∈ N .

Theorem 6. If pk > 1, for all k ∈ N ,then

(a) [`{Ek,Λ, p}]α = {(ak) : ak ∈ E∗k, for all k ∈ N and
∞∑

k=1

||λ−1
k ak||qk

Ek
N
− qk

pk < ∞ for some integer N > 1}.

(b) [`{Ek,Λ, p}]α = {(ak) : ak ∈ E∗k, for all k ∈ N and
∞∑

k=1

||λ−1
k r−1ptk

k ak||qk
Ek

N
− qk

pk < ∞, for some integer N > 1 and for r > 0},

where 1
pk

+ 1
qk

= 1, for all k ∈ N .
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Proof. We have the following well known inequality

|akyk| ≤ |ak|qk + |yk|pk , for all k ∈ N.

The proof follows from the above inequality, Lemma 3 and the following
expression

∞∑
k=1

||ak||E∗
k
||xk||Ek

=
∞∑

k+1

||λ−1
k ak||E∗

k
||λkxk||Ek

=
∞∑

k=1

||r−1λ−1
k ptk

k ak||E∗
k
||rλkt

tk
k xk||Ek

.

�
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