F A S C I C U L I M A T H E M A T I C I

Nr 39

Binod C. Tripathy and Mausumi Sen

VECTOR VALUED PARANORMED $\ell(p)$ SPACES ASSOCIATED WITH MULTIPLIER SEQUENCES

Abstract

In this article we introduce the multiplier vector valued sequence space $\ell\left\{E_{k}, \Lambda, p\right\}$, where $\Lambda=\left(\lambda_{k}\right)$ is an associated multiplier sequence of non-zero complex numbers and the terms of the sequence are chosen from the seminormed spaces $E_{k}, k \in N$. This generalizes the scalar sequence space $\ell\{p\}$. We study some properties of this space like solidity, symmetricity, completeness, separability. Prove some inclusion results and obtain their duals. KEY WORDS: paranormed sequence spaces, solid spaces, multiplier sequence.

AMS Mathematics Subject Classification: 40A05, 46A45.

1. Introduction

The notion of paranormed sequence space was introduced by Nakano [9] and Simons [14]. It was further investigated from sequence space point of view and linked with summability theory by Maddox [7], Lascarides [5], Nanda [10], Ratha [12], Rath and Tripathy [11], Tripathy and Sen [15] and many others.

The studies on vector valued sequence spaces was exploited by Kamthan [3], Ratha and Srivastava [13], Leonard [6], Gupta[2] and many others.

The scope for the studies on sequence spaces was extended on introducing the notion of associated multiplier sequences. Goes and Goes [1] defined the differentiated sequence space $d E$ and integrated sequence space $\int E$ for a given sequence space E, with the help of multiplier sequences $\left(k^{-1}\right)$ and (k) respectively. Kamthan [3] used the multiplier sequence (k !). In this article we shall consider a general multiplier sequence $\Lambda=\left(\lambda_{k}\right)$ of non-zero scalars.

2. Definitions and preliminaries

A vector valued sequence space E is called solid (or normal) if $\alpha x=$ $\left(\alpha_{k} x_{k}\right) \in E$, whenever $x=\left(x_{k}\right) \in E$ and for all sequences $\alpha=\left(\alpha_{k}\right)$ of scalars such that $\left|\alpha_{k}\right| \leq 1$ for all $k \in N$.

A sequence space E is said to be monotone if E contains the canonical preimages of all its stepspaces.

A sequence space E is said to be symmetric if $\left(x_{k}\right) \in E$ implies $\left(x_{\pi(k)}\right) \in$ E, where π is a permutation of N.

A vector valued sequence space $Z\left(E_{k}\right)$ is said to be convergence free if $\left(y_{k}\right) \in Z\left(E_{k}\right)$ whenever $\left(x_{k}\right) \in Z\left(E_{k}\right)$ and $x_{k}=\theta_{E_{k}}$ implies $y_{k}=\theta_{E_{k}}$.

Throughout the article E_{k} will denote a seminormed space, seminormed by f_{k} for all $k \in N$, defined over C, the field of complex numbers. Throughout $p=\left(p_{k}\right)$ represents a sequence of strictly positive numbers and $t_{k}=p_{k}^{-1}$, for all $k \in N$.

We define the following vector valued multiplier sequence spaces:

$$
\begin{array}{r}
\ell\left(E_{k}, \Lambda, p\right)=\left\{\left(x_{k}\right): x_{k} \in E_{k} \text { for all } k \in N \text { and } \sum_{k}\left(f_{k}\left(\lambda_{k} x_{k}\right)\right)^{p_{k}}<\infty\right\} . \\
\ell\left\{E_{k}, \Lambda, p\right\}=\left\{\left(x_{k}\right): x_{k} \in E_{k} \text { for all } k \in N \text { and there exists } r>0,\right. \\
\left.\quad \text { such that } \sum_{k}\left(f_{k}\left(\lambda_{k} x_{k} r\right)\right)^{p_{k}} t_{k}<\infty\right\} .
\end{array}
$$

Two sequence spaces E and F are said to be equivalent if there exists a sequence $u=\left(u_{k}\right)$ of strictly positive numbers such that the mapping $u: E \rightarrow F$ defined by $y=u x=\left(u_{k} x_{k}\right) \in F$, whenever $\left(x_{k}\right) \in E$, is a one-to-one correspondence between E and F. It is denoted by $E \cong F(u)$ or simply $E \cong F$ (see for instance Nakano [9]).

It is remarked by Lascarides [5] (Remark 3) that "If E is a sequence space paranormed (or normed) by g and $E \cong F(u)$, then F is a sequence space paranormed (or normed) by g_{u} defined by $g_{u}(y)=g\left(u^{-1} y\right), y \in F "$.

Further it is noted by Lascarides [5] that "If $\left(p_{k}\right) \in \ell_{\infty}$, then $c_{0}(p) \cong$ $c_{0} p(u)$, (as well as $\left.\ell_{\infty}(p) \cong \ell_{\infty}\{p\}(u)\right)$, where $u=\left(p_{k}^{t_{k}}\right)$ ".

For E and F two sequence spaces we define $M(F, E)$ as follows:

$$
M(F, E)=\left\{\lambda_{k}:\left(\lambda_{k} x_{k}\right) \in E, \quad \text { for all } \quad\left(x_{k}\right) \in F\right\}
$$

where $\Lambda=\left(\lambda_{k}\right)$ is a multiplier sequence.
For any normed space E, the set of all continuous linear functionals on E is called its continuous dual and is denoted by E^{*}.

If we take E_{k} 's to be normed linear spaces, normed by $\|.\|_{E_{k}}$ for all $k \in N$, then the Köthe-Toeplitz dual of $Z\left(E_{k}\right)$ is defined as

$$
\left[Z\left(E_{k}\right)\right]^{\alpha}=\left\{\left(y_{k}\right): y_{k} \in E_{k}^{*} \quad \text { for all } \quad k \in N \quad \text { and } \quad\left(\left\|x_{k}\right\|_{E_{k}}\left\|y_{k}\right\|_{E_{k}^{*}} \in \ell_{1}\right\}\right.
$$

Lemma 1. [Kamthan and Gupta [4]] A sequence space E is solid implies E is monotone.

Lemma 2. [Maddox [8], Theorem 1.] If $p_{k}>1$, for all $k \in N$, then

$$
[\ell(p)]^{\alpha}=M(p)=\left\{\left(a_{k}\right): \sum_{k}\left|a_{k}\right|^{q_{k}} N^{-\frac{q_{k}}{p_{k}}}<\infty, \text { for some integer } N>1\right\}
$$

3. Main results

The proof of the following result is easy, so omitted.
Theorem 1. $\ell\left\{E_{k}, \Lambda, p\right\}$ is a linear space for any sequence $p=\left(p_{k}\right)$.
Theorem 2. If $p_{k} \geq 1$, for all $k \in N$ and each E_{k} is complete seminormed space, seminormed by f_{k}, for all $k \in N$, then $\ell\left\{E_{k}, \Lambda, p\right\}$ is a complete paranormed space, paranormed by

$$
h(x)=\left[\sum_{k=1}^{\infty}\left(f_{k}\left(r \lambda_{k} x_{k} p_{k}^{-t_{k}}\right)\right)^{p_{k}}\right]^{\frac{1}{M}}
$$

where $M=\max \left\{1, \sup p_{k}\right\}$.
Proof. It is clear that for any $x \in \ell\left\{E_{k}, \Lambda, p\right\}, h(x) \geq 0$, and $h(\theta)=0$. Further for $x, y \in \ell\left\{E_{k}, \Lambda, p\right\}$, we have $h(x+y) \leq h(x)+h(y)$. When $x \rightarrow \theta$, we have $h(\eta x) \rightarrow 0$. Also when $\eta \rightarrow 0, h(\eta x) \rightarrow 0$ follows from the following:

Since $\eta \rightarrow 0$, without loss of generality let $|\eta|<1$. Then

$$
h(\eta x)=\left[\sum_{k=1}^{\infty}\left(f_{k}\left(r \eta \lambda_{k} x_{k} p_{k}^{-t_{k}}\right)\right)^{p_{k}}\right]^{\frac{1}{M}} \leq|\eta| h(x) \rightarrow 0, \quad \text { as } \eta \rightarrow 0
$$

Hence h is a paranorm on $\ell\left\{E_{k}, \Lambda, p\right\}$.
Let $\left(x^{(i)}\right)$ be a Cauchy sequence in $\ell\left\{E_{k}, \Lambda, p\right\}$. Then for a given $\varepsilon>0$, there exists n_{0} such that $h\left(x^{i}-x^{j}\right)<\varepsilon$, for all $i, j \geq n_{0}$.

$$
\begin{align*}
& \Rightarrow\left[\sum_{k=1}^{\infty}\left(f_{k}\left(r \lambda_{k}\left(x_{k}^{i}-x_{k}^{j}\right) p_{k}^{-t_{k}}\right)\right)^{p_{k}}\right]^{\frac{1}{M}}<\varepsilon, \text { for all } i, j \geq n_{0} \tag{1}\\
& \Rightarrow\left(f_{k}\left(r \lambda_{k}\left(x_{k}^{i}-x_{k}^{j}\right) p_{k}^{-t_{k}}\right)\right)<\varepsilon, \quad \text { for all } i, j \geq n_{0} \\
& \Rightarrow\left(x_{k}^{i}-x_{k}^{j}\right)<\varepsilon, \quad \text { for all } i, j \geq n_{0}, \quad \text { for all } k \in N .
\end{align*}
$$

Hence $\left(x_{k}^{i}\right)_{i=1}^{\infty}$ is a Cauchy sequence in E_{k}, for each $k \in N$.
Since E_{k} are complete for each $k \in N$, so $\left(x_{k}^{i}\right)_{i=1}^{\infty}$ converges in E_{k}, for each $k \in N$. Let $\lim _{i \rightarrow \infty} x_{k}^{i}=x_{k}$, for each $k \in N$.

On taking limit as $j \rightarrow \infty$ in (1), we have

$$
\begin{aligned}
& {\left[\sum_{k=1}^{\infty}\left(f_{k}\left(r \lambda_{k}\left(x_{k}^{i}-x_{k}\right) p_{k}^{-t_{k}}\right)\right)^{p_{k}}\right]^{\frac{1}{M}}<\varepsilon, \quad \text { for all } i \geq n_{0}} \\
& \Rightarrow\left(x^{(i)}-x\right) \in \ell\left\{E_{k}, \Lambda, p\right\}
\end{aligned}
$$

Since $\ell\left\{E_{k}, \Lambda, p\right\}$ is a linear space, so we have $x=x^{(i)}-\left(x^{(i)}-x\right) \in$ $\ell\left\{E_{k}, \Lambda, p\right\}$.

Thus $\ell\left\{E_{k}, \Lambda, p\right\}$ is a complete paranormed space.
This completes the proof of the Theorem.
Proposition 1. The space $\ell\left\{E_{k}, \Lambda, p\right\}$ is normal.
Proof. Let $x=\left(x_{k}\right) \in \ell\left\{E_{k}, \Lambda, p\right\}$ and $\left|\alpha_{k}\right| \leq 1$, for all $k \in N$.
Since $\left|\alpha_{k}\right|^{p_{k}} \leq \max \left(1,\left|\alpha_{k}\right|^{H}\right) \leq 1$, for all $k \in N$, so

$$
\sum_{k}\left(f_{k}\left(\lambda_{k}\left(\alpha_{k} x_{k}\right) r\right)\right)^{p_{k}} t_{k} \leq \sum_{k}\left(f_{k}\left(\lambda_{k} x_{k} r\right)\right)^{p_{k}} t_{k}
$$

Thus $x \in \ell\left\{E_{k}, \Lambda, p\right\}$ and $\left|\alpha_{k}\right| \leq 1$ for all $k \in N$ implies $\alpha x \in \ell\left\{E_{k}, \Lambda, p\right\}$.
Hence $\ell\left\{E_{k}, \Lambda, p\right\}$ is a normal space.
The next result follows immediately from Lemma 1 and Proposition 1.

Proposition 2. The space $\ell\left\{E_{k}, \Lambda, p\right\}$ is monotone.
Note: The symmetric property of the space $\ell\left(E_{k}, \Lambda, p\right)$ depends on the sequence $\left(p_{k}\right)$. If $p_{k}=p$, for all $k \in N$, one can easily verify that $\ell\left(E_{k}, \Lambda, p\right)=\ell_{p}\left(E_{k}\right)$ if and only if

$$
0<\inf _{k}\left|\lambda_{k}\right| \leq \sup _{k}\left|\lambda_{k}\right|<\infty
$$

In this case the space $\ell\left(E_{k}, \Lambda, p\right)$ is symmetric, since $\ell\left(E_{k}, \Lambda, p\right)$ is symmetric.

But if $\left(p_{k}\right)$ is not a constant sequence, then $\ell\left(E_{k}, \Lambda, p\right)$ is not symmetric in general. This follows from the following example.

Example 1. Let $E_{k}=C$, for all $k \in N, \lambda_{k}=1$, for all $k \in N, p_{k}=1$, for k odd and $p_{k}=2$, for k even.

Consider the sequence $\left(x_{k}\right)$ defined by

$$
x_{k}= \begin{cases}0, & \text { if } k \text { is odd } \\ k^{-1}, & \text { if } k \text { is even }\end{cases}
$$

Then $\left(x_{k}\right) \in \ell\left(E_{k}, \Lambda, p\right)$.
Let $\left(y_{k}\right)$ be a rearrangement of $\left(x_{k}\right)$ defined as

$$
y_{k}= \begin{cases}(k+1)^{-1}, & \text { if } k \text { is odd } \\ 0, & \text { if } k \text { is even }\end{cases}
$$

Then $\left(y_{k}\right) \notin \ell\left(E_{k}, \Lambda, p\right)$.
Hence $\ell\left(E_{k}, \Lambda, p\right)$ is not symmetric.
Following the similar arguments we can easily get the next result.

Theorem 3. (i) The space $\ell\left\{E_{k}, \Lambda, p\right\}$ is symmetric if and only if $\left(p_{k}\right)$ is a constant sequence and $0<\underset{k}{\inf }\left|\lambda_{k}\right| \leq{ }_{k}^{\text {sup }}\left|\lambda_{k}\right|<\infty$.
(ii) If $\left(p_{k}\right)$ is not a constant sequence, then $\ell\left\{E_{k}, \Lambda, p\right\}$ is not symmetric in general.

Proposition 3. The spaces $\ell\left(E_{k}, \Lambda, p\right)$ and $\ell\left\{E_{k}, \Lambda, p\right\}$ are not convergence free.

Proof. The result follows from the following example.
Example 2. Let $E_{k}=C$, for all $k \in N, \lambda_{k}=1$, for all $k \in N, p_{k}=2$, for k odd and $p_{k}=1$, for k even. Consider the sequence $\left(x_{k}\right)$ defined by

$$
x_{k}= \begin{cases}k^{-1}, & \text { if } k \text { is odd } \\ 0, & \text { if } k \text { is even }\end{cases}
$$

Then $\left(x_{k}\right) \in \ell\left(E_{k}, \Lambda, p\right)$.
Consider the sequence $\left(y_{k}\right)$ defined by

$$
y_{k}= \begin{cases}1, & \text { if } k \text { is odd } \\ 0, & \text { if } k \text { is even }\end{cases}
$$

Then $\left(y_{k}\right) \notin \ell\left(E_{k}, \Lambda, p\right)$.
Hence $\ell\left(E_{k}, \Lambda, p\right)$ is not convergence free. Similarly we can show that $\ell\left\{E_{k}, \Lambda, p\right\}$ is not convergence free.

Theorem 4. If $0<p_{k} \leq q_{k} \leq s u p q_{k}$, then $\ell\left\{E_{k}, \Lambda, p\right\} \subseteq \ell\left\{E_{k}, \Lambda, q\right\}$.
Proof. Let $x \in \ell\left\{E_{k}, \Lambda, p\right\}$. Then there exists $r>0$ such that

$$
\begin{align*}
& \quad \sum_{k=1}^{\infty}\left(f_{k}\left(\lambda_{k} x_{k} r\right)\right)^{p_{k}} t_{k}<\infty \\
& \Rightarrow\left(f_{k}\left(\lambda_{k} x_{k} r\right)\right)^{p_{k}} t_{k} \rightarrow 0, \text { as } k \rightarrow \infty \\
& \Rightarrow \text { the exists } k_{0} \in N \text { such that } \\
& \left(f_{k}\left(\lambda_{k} x_{k} r\right)\right)^{p_{k}} t_{k}<H^{-1}, \text { for all } k \geq k_{0},\left(H=\sup _{k} p_{k}\right) . \\
& \Rightarrow\left(f_{k}\left(\lambda_{k} x_{k} r\right)\right)^{p_{k}}<1, \quad \text { for all } k \geq k_{0} \\
& \Rightarrow\left(f_{k}\left(\lambda_{k} x_{k} r\right)\right)^{q_{k}} \leq\left(f_{k}\left(\lambda_{k} x_{k} r\right)\right)^{p_{k}}, \quad \text { for all } k \geq k_{0} . \tag{2}
\end{align*}
$$

Also

$$
\begin{equation*}
0<p_{k} \leq q_{k} \Rightarrow \frac{1}{q_{k}} \leq \frac{1}{p_{k}} \tag{3}
\end{equation*}
$$

Thus $\left(f_{k}\left(\lambda_{k} x_{k} r\right)\right)^{q_{k}} q_{k}^{-1} \leq\left(f_{k}\left(\lambda_{k} x_{k} r\right)\right)^{p_{k}} t_{k}$, for all sufficiently large k, by (2) and (3). So, $\sum_{k=1}^{\infty}\left(f_{k}\left(\lambda_{k} x_{k} r\right)\right)^{q_{k}} q_{k}^{-1}<\infty \Rightarrow\left(x_{k}\right) \in \ell\left\{E_{k}, \Lambda, q\right\}$.

Hence the result.
Proposition 4. Let $\left(p_{k}\right)$ be a given sequence of strictly positive real numbers. Then $\left(\lambda_{k}\right) \in M(E, E)$ if and only if $\left(\left(\lambda_{k}\right)^{p_{k}}\right) \in \ell_{\infty}$, where $E=$ $\ell\left(E_{k}, p\right)$ or $\ell\left\{E_{k}, p\right\}$.

Corollary 1. $M(E, E)=\ell_{\infty}$, for $E=\ell\left(E_{k}, p\right)$ or $\ell\left\{E_{k}, p\right\}$ if and only if $h=$ infp $_{k}>0$ and $H=$ supp $_{k}<\infty$.

Proposition 5. Let $h=\inf p_{k}$ and $H=\sup p_{k}$. Then the following are equivalent:
(i) $H<\infty$ and $h>0$.
(ii) $\ell\left\{E_{k}, \Lambda, p\right\}=\ell\left(E_{k}, \Lambda, p\right)$.

Proof. Suppose (i) holds. Then for any $r>0$, we have

$$
\begin{equation*}
\min \left(1, r^{H}\right) \leq r^{p_{k}} \leq \max \left(1, r^{H}\right), \quad \text { for all } k \in N . \tag{4}
\end{equation*}
$$

From (4) we have

$$
\begin{gather*}
\sum_{k=1}^{\infty}\left(f_{k}\left(\lambda_{k} x_{k} r\right)\right)^{p_{k}} t_{k}\left\{\max \left(1, r^{H}\right)\right\}^{-1} h \leq \sum_{k=1}^{\infty}\left(f_{k}\left(\lambda_{k} x_{k}\right)\right)^{p_{k}} \tag{5}\\
\leq \sum_{k=1}^{\infty}\left(f_{k}\left(\lambda_{k} x_{k} r\right)\right)^{p_{k}} t_{k}\left\{\min \left(1, r^{H}\right)\right\}^{-1} H .
\end{gather*}
$$

From (5) we get $\ell\left\{E_{k}, \Lambda, p\right\}=\ell\left(E_{k}, \Lambda, p\right)$.
Conversely let (ii) holds. Then $H<\infty$. Consider the sequence (x_{k}), defined as

$$
x_{k}=\left|\lambda_{k}\right|^{-1} I_{k}, \quad \text { for all } k \in N,
$$

where I_{k} is the identity element of E_{k}, for all $k \in N$.
Then $\left(x_{k}\right) \in \ell\left\{E_{k}, \Lambda, p\right\}$. So there exists $r>0$ and $M>0$ such that $r^{p_{k}} \leq M p_{k}$, for all $k \in N$. Then by inequality (4) we have $h>0$.

Hence the result.
Theorem 5. Let $p_{k} \geq 1$, for all $k=1,2,3, \ldots$. Then $\ell\left\{E_{k}, \Lambda, p\right\}$ is separable if E_{k} is separable for all $k=1,2,3, \ldots$.

Proof. Let $E_{k}, k=1,2,3, \ldots$ be separable. Then there exists countable dense subsets $H_{k} \subset E_{k}, k=1,2,3, \ldots$. We show that $\ell\left\{H_{k}, \Lambda, p\right\}$ is a countable dense subset of $\ell\left\{E_{k}, \Lambda, p\right\}$. Since H_{k} is countable, so $\ell\left\{H_{k}, \Lambda, p\right\}$ is also countable.

Let x be a limit point of $\ell\left\{H_{k}, \Lambda, p\right\}$. Then there exists a sequence $\left(x^{(n)}\right)$ in $\ell\left\{H_{k}, \Lambda, p\right\}$ such that
$x^{(n)} \rightarrow x$ in the seminorm of $\ell\left\{E_{k}, \Lambda, p\right\}$.
$\Rightarrow h\left(x^{(n)}-x\right) \rightarrow 0$, as $n \rightarrow \infty$.
$\Rightarrow \sum_{k=1}^{\infty}\left(f_{k}\left(\lambda_{k} r^{-1}\left(x_{k}^{(n)}-x_{k}\right) p_{k}^{-t_{k}}\right)\right)^{p_{k}} \rightarrow 0$, as $n \rightarrow \infty$, for some $r>0$.
\Rightarrow Given $\varepsilon>0$, there exists $n_{0} \in N$, such that
$\sum_{k=1}^{\infty}\left(f_{k}\left(\lambda_{k} r^{-1}\left(x_{k}^{(n)}-x_{k}\right) p_{k}^{-t_{k}}\right)\right)^{p_{k}}<\varepsilon$, for all $n \geq n_{0}$, for some $r>0$.
$\Rightarrow\left(x_{k}^{(n)}-x_{k}\right)_{k \in N} \in \ell\left\{E_{k}, \Lambda, p\right\}$, for all $n \geq n_{0}$.
Since $\ell\left\{E_{k}, \Lambda, p\right\}$ is linear, so $x \in \ell\left\{E_{k}, \Lambda, p\right\}$.
Hence $\overline{\ell\left\{H_{k}, \Lambda, p\right\}} \subseteq \ell\left\{E_{k}, \Lambda, p\right\}$.
Conversely let $x \in \ell\left\{E_{k}, \Lambda, p\right\}-\ell\left\{H_{k}, \Lambda, p\right\}$. Since $x_{k} \in E_{k}$ and H_{k} is dense in E_{k}, so for a given $\varepsilon>0$, we can choose $x_{k}^{\varepsilon} \in H_{k}$ such that

$$
f_{k}\left(x_{k}^{\varepsilon}-x_{k}\right)<r\left|\lambda_{k}\right|^{-1}\left[\frac{\varepsilon^{M} p_{k}}{2^{k}}\right]^{\frac{1}{k}}
$$

Then $h\left(x_{k}^{\varepsilon}\right)-\left(x_{k}\right)=\sum_{k=1}^{\infty}\left(f_{k}\left(\lambda_{k} r^{-1}\left(x_{k}^{\varepsilon}-x_{k}\right)\right)\right)^{p_{k}} t_{k}<\varepsilon$.
Hence $x \in \overline{\ell\left\{H_{k}, \Lambda, p\right\}}$.
Thus $\overline{\ell\left\{H_{k}, \Lambda, p\right\}}=\ell\left\{E_{k}, \Lambda, p\right\}$.
This completes the proof of the theorem.
For the next result we will take E_{k} 's to be normed linear spaces, normed by $\|\cdot\|_{E_{k}}$ for all $k \in N$.

Theorem 6. If $p_{k}>1$, for all $k \in N$, then
(a) $\left[\ell\left\{E_{k}, \Lambda, p\right\}\right]^{\alpha}=\left\{\left(a_{k}\right): a_{k} \in E_{k}^{*}\right.$, for all $k \in N$ and

$$
\left.\sum_{k=1}^{\infty}\left\|\lambda_{k}^{-1} a_{k}\right\|_{E_{k}}^{q_{k}} N^{-\frac{q_{k}}{p_{k}}}<\infty \text { for some integer } N>1\right\}
$$

(b) $\left[\ell\left\{E_{k}, \Lambda, p\right\}\right]^{\alpha}=\left\{\left(a_{k}\right): a_{k} \in E_{k}^{*}\right.$, for all $k \in N$ and

$$
\left.\sum_{k=1}^{\infty}\left\|\lambda_{k}^{-1} r^{-1} p_{k}^{t_{k}} a_{k}\right\|_{E_{k}}^{q_{k}} N^{-\frac{q_{k}}{p_{k}}}<\infty, \text { for some integer } N>1 \text { and for } r>0\right\}
$$ where $\frac{1}{p_{k}}+\frac{1}{q_{k}}=1$, for all $k \in N$.

Proof. We have the following well known inequality

$$
\left|a_{k} y_{k}\right| \leq\left|a_{k}\right|^{q_{k}}+\left|y_{k}\right|^{p_{k}}, \quad \text { for all } k \in N .
$$

The proof follows from the above inequality, Lemma 3 and the following expression

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left\|a_{k}\right\|_{E_{k}^{*}}\left\|x_{k}\right\|_{E_{k}} & =\sum_{k+1}^{\infty}\left\|\lambda_{k}^{-1} a_{k}\right\|\left\|_{E_{k}^{*}}\right\| \lambda_{k} x_{k} \|_{E_{k}} \\
& =\sum_{k=1}^{\infty}\left\|r^{-1} \lambda_{k}^{-1} p_{k}^{t_{k}} a_{k}\right\|_{E_{k}^{*}}\left\|r \lambda_{k} t_{k}^{t_{k}} x_{k}\right\|_{E_{k}}
\end{aligned}
$$

Acknowledgement. The authors thank the referee for the comments and suggestions those improved the presentation of the paper.

References

[1] Goes G., Goes S., Sequences of bounded variation and sequences of Fourier coefficients, Math. Zeit, 118(1970) 93-102.
[2] Gupta M., The generalized spaces $\ell^{1}(X)$ and $m_{0}(X)$, J. Math. Anal. Appl., 76(1980), 357-366.
[3] Kamthan P.K., Bases in a certain class of Frechet spaces, Tamkang J. Math., 7(1976), 41-49.
[4] Kamthan P.K., Gupta M., Sequence Spaces and Series, Marcel Dekker, (1981).
[5] Lascarides C.G., On the equivalence of certain sets of sequences, Indian J. Math., 25(1)(1983), 41-52.
[6] Leonard I.E., Banach sequence spaces, J. Math. Anal. Appl., 54(1976), 245-265.
[7] Maddox I.J., Spaces of strongly summable sequences, Quart. J. Math. Oxford, 18(1967), 345-355.
[8] Maddox I.J., Continuous and Köthe-Toeplitz duals of certain srquence spaces, Proc. Camb. Phil. Soc., 65(1969), 431-435.
[9] Nakano H., Modular sequence spaces, Proc. Japan Acad., 27(1951) 508-512.
[10] Nanda S., Strongly almost summable and strongly almost convergent sequences, Acta Math. Hung., 49(1-2)(1987), 71-76.
[11] Rath D., Tripathy B.C., Characterization of certain matrix operators, J. Orissa Math. Soc., 8(1989), 121-134.
[12] Ratha A., Continuous linear functionals and operators on some vector sequence spaces, Indian J. Math., 38(1)(1996), 81-90.
[13] Ratha A., Srivastava P.D., On some vector valued sequence spaces $\mathcal{L}_{\infty}^{(p)}\left(E_{k}, \Lambda\right)$, Ganita, 47(1)(1996), 1-12.
[14] Simons S., The spaces $\ell\left(p_{\nu}\right)$ and $m\left(p_{\nu}\right)$, Proc. London Math. Soc., 15(1965), 422-436.
[15] Tripathy B.C., Sen M., Generalized statistically convergent sequences, Indian J. Pure Appl. Math., 32(11), 1689-1694.

Binod Chandra Tripathy
Mathematical Sciences Division
Institute of Advanced Study in Science and Technology Paschim Boragaon, GARCHUK, GUWAHATI-781035, ASSAM, India
e-mail: tripathybc@yahoo.com or tripathybc@rediffmail.com

Mausumi Sen

Mathematical Sciences Division
Institute of Advanced Study in Science and Technology Paschim Boragaon, GARCHUK, GUWAHATI-781035, ASSAM, India
e-mail: sen_mausumi@rediffmail.com
Received on 01.12.2006 and, in revised form, on 21.03.2007.

