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Abstract.We obtain in this paper the solution of the following
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, n = 0, 1, . . .
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1. Introduction

In this paper we obtain the solution of the following recursive sequence

(1) xn+1 =
xn

xn−1(xn ± 1)
, n = 0, 1, . . .

where the initial conditions x−1, x0 are arbitrary real numbers.
Recently there has been a lot of interest in studying the global attrac-

tivity, boundedness character the periodic nature, and giving the solution
of nonlinear difference equations. For some results in this area, see for ex-
ample [1-11]. Since Cinar [1,2,3] investigated the solutions of the following
difference equations

xn+1 =
xn−1

1 + axnxn−1
, xn+1 =

xn−1

−1 + axnxn−1
, xn+1 =

axn−1

1 + bxnxn−1
.

Elabbasy et al. [4] investigated the global stability, periodicity character
and give the solution of special case of the following recursive sequence

xn+1 = axn − bxn

cxn − dxn−1
.
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Elabbasy et al. [5] studied the global stability, periodicity character and
give the solution of some special cases of the difference equation

xn+1 =
αxn−k

β + γ
∏k

i=0 xn−i

.

Elabbasy et al. [6] investigated the global stability, periodicity character
and give the solution of some special cases of the difference equation

xn+1 =
dxn−lxn−k

cxn−s − b
+ a.

Karatas et al. [8] gave that the solution of the difference equation

xn+1 =
xn−5

1 + xn−2xn−5
.

Simsek et al. [11] obtained the solution of the difference equation

xn+1 =
xn−3

1 + xn−1
.

Here, we recall some notations and results which will be useful in our inves-
tigation.

Let I be some interval of real numbers and let

f : Ik+1 → I

be a continuously differentiable function. Then for every set of initial con-
ditions x−k, x−k+1, ..., x0 ∈ I, the difference equation

(2) xn+1 = f(xn, xn−1, ..., xn−k), n = 0, 1, . . . ,

has a unique solution {xn}∞n=−k [10].
A point x ∈ I is called an equilibrium point of Eq(2) if

x = f(x, x, ..., x).

That is, xn = x for n ≥ 0, is a solution of Eq(2), or equivalently, x is a fixed
point of f .

Definition. [Periodicity] A sequence {xn}∞n=−k is said to be periodic with
period p if xn+p = xn for all n ≥ −k. ¥
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2. Main results

2.1. First equation

In this section we give a specific form of the solutions of the difference
equation

(3) xn+1 =
xn

xn−1(xn + 1)
, n = 0, 1, . . .

where the initial conditions x−1, x0 are arbitrary real numbers with x−1,
x0 /∈ {0,−1}.

Theorem 1. Let {xn}∞n=−1 be a solution of Eq(3). Then equation (3)
have all solutions and the solutions are

x5n−1 = k, x5n = h, x5n+1 =
h

k (1 + h)
,

x5n+2 =
1

(k + h + hk)
, x5n+3 =

k

h (1 + k)
,

where x−1 = k, x−0 = h.

Proof. For n = 0 the result holds. Now suppose that n > 0 and that
our assumption holds for n − 1. We shall show that the result holds for n.
From our assumption for n− 1, we have the following:

x5n−6 = k, x5n−5 = h, x5n−4 =
h

k (1 + h)
,

x5n−3 =
1

(k + h + hk)
, x5n−2 =

k

h (1 + k)
,

Now, it follows from Eq(3) that

x5n−1 =
x5n−2

x5n−3(1 + x5n−2)
=

k (k + h + hk)

h (1 + k) (1 +
k

h (1 + k)
)

=
k (k + h + hk)
h (1 + k) + k

= k.

x5n =
x5n−1

x5n−2(1 + x5n−1)
=

hk (1 + k)
k(1 + k)

= h.

x5n+1 =
x5n

x5n−1(1 + x5n)
=

h

k(1 + h)
.

x5n+2 =
x5n+1

x5n(1 + x5n+1)
=

h

k(1 + h)h(1 +
h

k(1 + h)
)

=
1

(k(1 + h) + h)
.



8 Elsayed M. Elsayed

x5n+3 =
x5n+2

x5n+1(1 + x5n+2)
=

k(1 + h)

(k + kh + h)h(1 +
1

(k(1 + h) + h)
)

=
k(1 + h)

h(k + kh + h + 1)
=

k(1 + h)
h(k + 1)(h + 1)

=
k

h(k + 1)
.

Thus, the proof is completed. ¥

Theorem 2. Suppose that {xn}∞n=−1 be a solution of equation (3). Then
all solutions of equation (3) are periodic with period five.

Proof. From Eq(3), we see that

xn+1 =
xn

xn−1(1 + xn)
,

xn+2 =
xn+1

xn(1 + xn+1)
=

xn

xnxn−1(1 + xn)(1 +
xn

xn−1(1 + xn)
)

=
1

(xn−1(1 + xn) + xn)
.

xn+3 =
xn+2

xn+1(1 + xn+2)

=
xn−1(1 + xn)

(xn−1 + xnxn−1 + xn)xn(1 +
1

(xn−1 + xnxn−1 + xn)
)

=
xn−1(1 + xn)

xn(xn−1 + xnxn−1 + xn + 1)
=

xn−1

xn(1 + xn−1)
.

xn+4 =
xn+3

xn+2(1 + xn+3)
=

xn−1(xn−1 + xnxn−1 + xn)

xn(1 + xn−1)(1 +
xn−1

xn(1 + xn−1)
)

=
xn−1(xn−1 + xnxn−1 + xn)

(xn(1 + xn−1) + xn−1)
= xn−1.

xn+5 =
xn+4

xn+3(1 + xn+4)
=

xn−1(1 + xn−1)xn

xn−1(1 + xn−1)
= xn.

This completes the proof. ¥

Theorem 3. Eq(3) have three equilibrium points which are 0,
√

5−1
2 ,

−√5−1
2 .

Proof. For the equilibrium points of Eq(3), we can write

x =
x

x(x + 1)
.
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Then
x3 + x2 − x = 0,

or
x(x2 + x− 1) = 0.

Thus the equilibrium points of Eq(3) is x = 0, x =
√

5−1
2 , x = −√5−1

2 . ¥

Remark 1. Eq(3) has no prime period two solution.

Numerical examples

For confirming the results of this section, we consider numerical examples
which represent different types of solutions to Eq(3).

Example 1. See Fig. 1, since x−1 = 15, x0 = −2.

0 5 10 15 20 25 30
−2

0

2

4

6

8

10

12

14

16

n

x(
n)

plot of x(n+1)= x(n)/(x(n−1)(x(n)+1))

Figure 1.

Example 2. See Fig. 2, since x−1 = −5, x0 = 4.2.
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Figure 2.
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2.2. Second equation

In this section we give a specific form of the solutions of the difference
equation

(4) xn+1 =
xn

xn−1(xn − 1)
, n = 0, 1, . . .

where the initial conditions x−1, x0 are arbitrary real numbers with x−1, x0 /∈
{0, 1}, x−1 + x0 6= x0x−1.

Theorem 4. Let {xn}∞n=−1 be a solution of Eq(4). Then equation (4)
have all solutions and the solutions are

x5n−1 = k, x5n = h, x5n+1 =
h

k (h− 1)
,

x5n+2 =
1

(k + h− hk)
, x5n+3 =

k

h (k − 1)
,

where x−1 = k, x−0 = h.

Proof. For n = 0 the result holds. Now suppose that n > 0 and that
our assumption holds for n − 1. We shall show that the result holds for n.
From our assumption for n− 1, we have the following:

x5n−6 = k, x5n−5 = h, x5n−4 =
h

k (h− 1)
,

x5n−3 =
1

(k + h− hk)
, x5n−2 =

k

h (k − 1)
,

Now, it follows from Eq(4) that

x5n−1 =
x5n−2

x5n−3(x5n−2 − 1)
=

k (k + h− hk)
(k − h (k − 1))

= k.

x5n =
x5n−1

x5n−2(x5n−1 − 1)
=

hk (k − 1)
k(k − 1)

= h.

x5n+1 =
x5n

x5n−1(x5n − 1)
=

h

k(h− 1)
.

x5n+2 =
x5n+1

x5n(x5n+1 − 1)
=

1
(h + k − hk)

.

x5n+3 =
x5n+2

x5n+1(x5n+2 − 1)
=

k

h(k − 1)
.

Thus, the proof is completed. ¥
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Theorem 5. Suppose that {xn}∞n=−1 be a solution of equation (4). Then
all solutions of equation (4) are periodic with period five.

Proof. From Eq(4), we see that

xn+1 =
xn

xn−1(xn − 1)
,

xn+2 =
xn+1

xn(xn+1 − 1)
=

xn

xn−1xn(xn − 1)(
xn

xn−1(xn − 1)
− 1)

=
1

(xn − xn−1xn + xn−1)
,

xn+3 =
xn+2

xn+1(xn+2 − 1)

=
xn−1(xn − 1)

(xn − xn−1xn + xn−1)xn(
1

(xn − xn−1xn + xn−1)
− 1)

=
xn−1(xn − 1)

xn(1− xn + xn−1xn − xn−1)

=
xn−1(xn − 1)

xn(xn − 1)(xn−1 − 1)
=

xn−1

xn(xn−1 − 1)
.

xn+4 =
xn+3

xn+2(xn+3 − 1)
=

(xn − xn−1xn + xn−1)xn−1

xn(xn−1 − 1)(
xn−1

xn(xn−1 − 1)
− 1)

= xn−1

xn+5 =
xn+4

xn+3(xn+4 − 1)
=

xn−1(xn−1 − 1)xn

xn−1(xn−1 − 1)
= xn.

This completes the proof. ¥

Theorem 6. Eq(4) have three equilibrium points which are 0, 1+
√

5
2 ,

1−√5
2 .

Proof. For the equilibrium points of Eq(4), we can write

x =
x

x(x− 1)
.

Then
x3 − x2 − x = 0,

or
x(x2 − x− 1) = 0.

Thus the equilibrium points of Eq(4) is x = 0, x = 1+
√

5
2 , x = 1−√5

2 . ¥
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Remark 2. Eq(4) has no prime period two solution.

Numerical examples

Example 3. Consider x−1 = 7, x0 = 3. See Fig. 3.
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Figure 3.

Example 4. See Fig. 4, since x−1 = −6, x0 = −8.
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