F A S C I C U L I M A T H E M A T I C I
 Nr 40

Elsayed Mohammed Elsayed

ON THE SOLUTION OF RECURSIVE SEQUENCE OF ORDER TWO

Abstract. We obtain in this paper the solution of the following difference equation

$$
x_{n+1}=\frac{x_{n}}{x_{n-1}\left(x_{n} \pm 1\right)}, \quad n=0,1, \ldots
$$

where the initial conditions x_{-1}, x_{0} are arbitrary real numbers.
KEY words: difference equations, recursive sequence, periodic solution.
AMS Mathematics Subject Classification: 39A10.

1. Introduction

In this paper we obtain the solution of the following recursive sequence

$$
\begin{equation*}
x_{n+1}=\frac{x_{n}}{x_{n-1}\left(x_{n} \pm 1\right)}, \quad n=0,1, \ldots \tag{1}
\end{equation*}
$$

where the initial conditions x_{-1}, x_{0} are arbitrary real numbers.
Recently there has been a lot of interest in studying the global attractivity, boundedness character the periodic nature, and giving the solution of nonlinear difference equations. For some results in this area, see for example [1-11]. Since Cinar [1,2,3] investigated the solutions of the following difference equations

$$
x_{n+1}=\frac{x_{n-1}}{1+a x_{n} x_{n-1}}, \quad x_{n+1}=\frac{x_{n-1}}{-1+a x_{n} x_{n-1}}, \quad x_{n+1}=\frac{a x_{n-1}}{1+b x_{n} x_{n-1}} .
$$

Elabbasy et al. [4] investigated the global stability, periodicity character and give the solution of special case of the following recursive sequence

$$
x_{n+1}=a x_{n}-\frac{b x_{n}}{c x_{n}-d x_{n-1}} .
$$

Elabbasy et al. [5] studied the global stability, periodicity character and give the solution of some special cases of the difference equation

$$
x_{n+1}=\frac{\alpha x_{n-k}}{\beta+\gamma \prod_{i=0}^{k} x_{n-i}} .
$$

Elabbasy et al. [6] investigated the global stability, periodicity character and give the solution of some special cases of the difference equation

$$
x_{n+1}=\frac{d x_{n-l} x_{n-k}}{c x_{n-s}-b}+a .
$$

Karatas et al. [8] gave that the solution of the difference equation

$$
x_{n+1}=\frac{x_{n-5}}{1+x_{n-2} x_{n-5}} .
$$

Simsek et al. [11] obtained the solution of the difference equation

$$
x_{n+1}=\frac{x_{n-3}}{1+x_{n-1}}
$$

Here, we recall some notations and results which will be useful in our investigation.

Let I be some interval of real numbers and let

$$
f: I^{k+1} \rightarrow I
$$

be a continuously differentiable function. Then for every set of initial conditions $x_{-k}, x_{-k+1}, \ldots, x_{0} \in I$, the difference equation

$$
\begin{equation*}
x_{n+1}=f\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right), \quad n=0,1, \ldots, \tag{2}
\end{equation*}
$$

has a unique solution $\left\{x_{n}\right\}_{n=-k}^{\infty}$ [10].
A point $\bar{x} \in I$ is called an equilibrium point of $\mathrm{Eq}(2)$ if

$$
\bar{x}=f(\bar{x}, \bar{x}, \ldots, \bar{x})
$$

That is, $x_{n}=\bar{x}$ for $n \geq 0$, is a solution of $\mathrm{Eq}(2)$, or equivalently, \bar{x} is a fixed point of f.

Definition. [Periodicity] A sequence $\left\{x_{n}\right\}_{n=-k}^{\infty}$ is said to be periodic with period p if $x_{n+p}=x_{n}$ for all $n \geq-k$.

2. Main results

2.1. First equation

In this section we give a specific form of the solutions of the difference equation

$$
\begin{equation*}
x_{n+1}=\frac{x_{n}}{x_{n-1}\left(x_{n}+1\right)}, \quad n=0,1, \ldots \tag{3}
\end{equation*}
$$

where the initial conditions x_{-1}, x_{0} are arbitrary real numbers with x_{-1}, $x_{0} \notin\{0,-1\}$.

Theorem 1. Let $\left\{x_{n}\right\}_{n=-1}^{\infty}$ be a solution of $E q(3)$. Then equation (3) have all solutions and the solutions are

$$
\begin{aligned}
& x_{5 n-1}=k, \quad x_{5 n}=h, \quad x_{5 n+1}=\frac{h}{k(1+h)}, \\
& x_{5 n+2}=\frac{1}{(k+h+h k)}, \quad x_{5 n+3}=\frac{k}{h(1+k)},
\end{aligned}
$$

where $x_{-1}=k, x_{-0}=h$.
Proof. For $n=0$ the result holds. Now suppose that $n>0$ and that our assumption holds for $n-1$. We shall show that the result holds for n. From our assumption for $n-1$, we have the following:

$$
\begin{aligned}
& x_{5 n-6}=k, \quad x_{5 n-5}=h, \quad x_{5 n-4}=\frac{h}{k(1+h)}, \\
& x_{5 n-3}=\frac{1}{(k+h+h k)}, \quad x_{5 n-2}=\frac{k}{h(1+k)},
\end{aligned}
$$

Now, it follows from $\mathrm{Eq}(3)$ that

$$
\begin{aligned}
x_{5 n-1} & =\frac{x_{5 n-2}}{x_{5 n-3}\left(1+x_{5 n-2}\right)}=\frac{k(k+h+h k)}{h(1+k)\left(1+\frac{k}{h(1+k)}\right)} \\
& =\frac{k(k+h+h k)}{h(1+k)+k}=k \\
x_{5 n} & =\frac{x_{5 n-1}}{x_{5 n-2}\left(1+x_{5 n-1}\right)}=\frac{h k(1+k)}{k(1+k)}=h . \\
x_{5 n+1} & =\frac{x_{5 n}}{x_{5 n-1}\left(1+x_{5 n}\right)}=\frac{h}{k(1+h)} . \\
x_{5 n+2} & =\frac{x_{5 n+1}}{x_{5 n}\left(1+x_{5 n+1}\right)}=\frac{h}{k(1+h) h\left(1+\frac{h}{k(1+h)}\right)}=\frac{1}{(k(1+h)+h)} .
\end{aligned}
$$

$$
\begin{aligned}
x_{5 n+3} & =\frac{x_{5 n+2}}{x_{5 n+1}\left(1+x_{5 n+2}\right)}=\frac{k(1+h)}{(k+k h+h) h\left(1+\frac{1}{(k(1+h)+h)}\right)} \\
& =\frac{k(1+h)}{h(k+k h+h+1)}=\frac{k(1+h)}{h(k+1)(h+1)}=\frac{k}{h(k+1)}
\end{aligned}
$$

Thus, the proof is completed.

Theorem 2. Suppose that $\left\{x_{n}\right\}_{n=-1}^{\infty}$ be a solution of equation (3). Then all solutions of equation (3) are periodic with period five.

Proof. From $\mathrm{Eq}(3)$, we see that

$$
\begin{aligned}
x_{n+1} & =\frac{x_{n}}{x_{n-1}\left(1+x_{n}\right)}, \\
x_{n+2} & =\frac{x_{n+1}}{x_{n}\left(1+x_{n+1}\right)}=\frac{x_{n}}{x_{n} x_{n-1}\left(1+x_{n}\right)\left(1+\frac{x_{n}}{x_{n-1}\left(1+x_{n}\right)}\right)} \\
& =\frac{1}{\left(x_{n-1}\left(1+x_{n}\right)+x_{n}\right)} . \\
x_{n+3} & =\frac{x_{n+2}}{x_{n+1}\left(1+x_{n+2}\right)} \\
& =\frac{x_{n-1}\left(1+x_{n}\right)}{\left(x_{n-1}+x_{n} x_{n-1}+x_{n}\right) x_{n}\left(1+\frac{1}{\left(x_{n-1}+x_{n} x_{n-1}+x_{n}\right)}\right)} \\
& =\frac{x_{n-1}\left(1+x_{n}\right)}{x_{n}\left(x_{n-1}+x_{n} x_{n-1}+x_{n}+1\right)}=\frac{x_{n-1}}{x_{n}\left(1+x_{n-1}\right)} \\
x_{n+4} & =\frac{x_{n+3}}{x_{n+2}\left(1+x_{n+3}\right)}=\frac{x_{n-1}\left(x_{n-1}+x_{n} x_{n-1}+x_{n}\right)}{x_{n}\left(1+x_{n-1}\right)\left(1+\frac{x_{n-1}}{x_{n}\left(1+x_{n-1}\right)}\right)} \\
& =\frac{x_{n-1}\left(x_{n-1}+x_{n} x_{n-1}+x_{n}\right)}{\left(x_{n}\left(1+x_{n-1}\right)+x_{n-1}\right)}=x_{n-1} \\
x_{n+5} & =\frac{x_{n+4}}{x_{n+3}\left(1+x_{n+4}\right)}=\frac{x_{n-1}\left(1+x_{n-1}\right) x_{n}}{x_{n-1}\left(1+x_{n-1}\right)}=x_{n} .
\end{aligned}
$$

This completes the proof.
Theorem 3. $E q(3)$ have three equilibrium points which are $0, \frac{\sqrt{5}-1}{2}$, $\frac{-\sqrt{5}-1}{2}$.

Proof. For the equilibrium points of $\mathrm{Eq}(3)$, we can write

$$
\bar{x}=\frac{\bar{x}}{\bar{x}(\bar{x}+1)} .
$$

Then

$$
\bar{x}^{3}+\bar{x}^{2}-\bar{x}=0,
$$

or

$$
\bar{x}\left(\bar{x}^{2}+\bar{x}-1\right)=0 .
$$

Thus the equilibrium points of $\operatorname{Eq}(3)$ is $\bar{x}=0, \bar{x}=\frac{\sqrt{5}-1}{2}, \bar{x}=\frac{-\sqrt{5}-1}{2}$.
Remark 1. $\mathrm{Eq}(3)$ has no prime period two solution.

Numerical examples

For confirming the results of this section, we consider numerical examples which represent different types of solutions to $\mathrm{Eq}(3)$.

Example 1. See Fig. 1, since $x_{-1}=15, x_{0}=-2$.

Figure 1.
Example 2. See Fig. 2, since $x_{-1}=-5, x_{0}=4.2$.

Figure 2.

2.2. Second equation

In this section we give a specific form of the solutions of the difference equation

$$
\begin{equation*}
x_{n+1}=\frac{x_{n}}{x_{n-1}\left(x_{n}-1\right)}, \quad n=0,1, \ldots \tag{4}
\end{equation*}
$$

where the initial conditions x_{-1}, x_{0} are arbitrary real numbers with $x_{-1}, x_{0} \notin$ $\{0,1\}, x_{-1}+x_{0} \neq x_{0} x_{-1}$.

Theorem 4. Let $\left\{x_{n}\right\}_{n=-1}^{\infty}$ be a solution of $E q(4)$. Then equation (4) have all solutions and the solutions are

$$
\begin{aligned}
& x_{5 n-1}=k, \quad x_{5 n}=h, \quad x_{5 n+1}=\frac{h}{k(h-1)} \\
& x_{5 n+2}=\frac{1}{(k+h-h k)}, \quad x_{5 n+3}=\frac{k}{h(k-1)}
\end{aligned}
$$

where $x_{-1}=k, x_{-0}=h$.
Proof. For $n=0$ the result holds. Now suppose that $n>0$ and that our assumption holds for $n-1$. We shall show that the result holds for n. From our assumption for $n-1$, we have the following:

$$
\begin{aligned}
& x_{5 n-6}=k, \quad x_{5 n-5}=h, \quad x_{5 n-4}=\frac{h}{k(h-1)} \\
& x_{5 n-3}=\frac{1}{(k+h-h k)}, \quad x_{5 n-2}=\frac{k}{h(k-1)}
\end{aligned}
$$

Now, it follows from $\mathrm{Eq}(4)$ that

$$
\begin{aligned}
x_{5 n-1} & =\frac{x_{5 n-2}}{x_{5 n-3}\left(x_{5 n-2}-1\right)}=\frac{k(k+h-h k)}{(k-h(k-1))}=k . \\
x_{5 n} & =\frac{x_{5 n-1}}{x_{5 n-2}\left(x_{5 n-1}-1\right)}=\frac{h k(k-1)}{k(k-1)}=h . \\
x_{5 n+1} & =\frac{x_{5 n}}{x_{5 n-1}\left(x_{5 n}-1\right)}=\frac{h}{k(h-1)} . \\
x_{5 n+2} & =\frac{x_{5 n+1}}{x_{5 n}\left(x_{5 n+1}-1\right)}=\frac{1}{(h+k-h k)} . \\
x_{5 n+3} & =\frac{x_{5 n+2}}{x_{5 n+1}\left(x_{5 n+2}-1\right)}=\frac{k}{h(k-1)} .
\end{aligned}
$$

Thus, the proof is completed.

Theorem 5. Suppose that $\left\{x_{n}\right\}_{n=-1}^{\infty}$ be a solution of equation (4). Then all solutions of equation (4) are periodic with period five.

Proof. From Eq(4), we see that

$$
\begin{aligned}
x_{n+1} & =\frac{x_{n}}{x_{n-1}\left(x_{n}-1\right)}, \\
x_{n+2} & =\frac{x_{n+1}}{x_{n}\left(x_{n+1}-1\right)}=\frac{1}{x_{n-1} x_{n}\left(x_{n}-1\right)\left(\frac{x_{n}}{x_{n-1}\left(x_{n}-1\right)}-1\right)} \\
& =\frac{1}{\left(x_{n}-x_{n-1} x_{n}+x_{n-1}\right)}, \\
x_{n+3} & =\frac{x_{n+2}}{x_{n+1}\left(x_{n+2}-1\right)} \\
& =\frac{x_{n-1}\left(x_{n}-1\right)}{\left(x_{n}-x_{n-1} x_{n}+x_{n-1}\right) x_{n}\left(\frac{1}{\left(x_{n}-x_{n-1} x_{n}+x_{n-1}\right)}-1\right)} \\
& =\frac{x_{n-1}\left(x_{n}-1\right)}{x_{n}\left(1-x_{n}+x_{n-1} x_{n}-x_{n-1}\right)} \\
& =\frac{x_{n-1}\left(x_{n}-1\right)}{x_{n}\left(x_{n}-1\right)\left(x_{n-1}-1\right)}=\frac{x_{n-1}}{x_{n}\left(x_{n-1}-1\right)} . \\
x_{n+4}= & \frac{x_{n+3}}{x_{n+2}\left(x_{n+3}-1\right)}=\frac{\left(x_{n}-x_{n-1} x_{n}+x_{n-1}\right) x_{n-1}}{x_{n}\left(x_{n-1}-1\right)\left(\frac{x_{n-1}}{x_{n}\left(x_{n-1}-1\right)}-1\right)}=x_{n-1} \\
x_{n+5}= & \frac{x_{n+4}}{x_{n+3}\left(x_{n+4}-1\right)}=\frac{x_{n-1}\left(x_{n-1}-1\right) x_{n}}{x_{n-1}\left(x_{n-1}-1\right)}=x_{n} .
\end{aligned}
$$

This completes the proof.
Theorem 6. $E q(4)$ have three equilibrium points which are $0, \frac{1+\sqrt{5}}{2}$, $\frac{1-\sqrt{5}}{2}$.

Proof. For the equilibrium points of $\mathrm{Eq}(4)$, we can write

$$
\bar{x}=\frac{\bar{x}}{\bar{x}(\bar{x}-1)} .
$$

Then

$$
\bar{x}^{3}-\bar{x}^{2}-\bar{x}=0
$$

or

$$
\bar{x}\left(\bar{x}^{2}-\bar{x}-1\right)=0
$$

Thus the equilibrium points of $\mathrm{Eq}(4)$ is $\bar{x}=0, \bar{x}=\frac{1+\sqrt{5}}{2}, \bar{x}=\frac{1-\sqrt{5}}{2}$.

Remark 2. $\mathrm{Eq}(4)$ has no prime period two solution.

Numerical examples

Example 3. Consider $x_{-1}=7, x_{0}=3$. See Fig. 3.

Figure 3.

Example 4. See Fig. 4, since $x_{-1}=-6, x_{0}=-8$.

Figure 4.

References

[1] Cinar C., On the positive solutions of the difference equation $x_{n+1}=$ $\frac{x_{n-1}}{1+a x_{n} x_{n-1}}$, Appl. Math. Comp., 158(3)(2004), 809-812.
[2] Cinar C., On the positive solutions of the difference equation $x_{n+1}=$ $\frac{x_{n-1}}{-1+a x_{n} x_{n-1}}$, Appl. Math. Comp., 158(3)(2004), 793-797.
[3] Cinar C., On the positive solutions of the difference equation $x_{n+1}=$ $\frac{a x_{n-1}}{1+b x_{n} x_{n-1}}$, Appl. Math. Comp., 156(2004), 587-590.
[4] Elabbasy E.M., El-Metwally H., Elsayed E.M., On the difference equation $x_{n+1}=a x_{n}-\frac{b x_{n}}{c x_{n}-d x_{n-1}}$, Adv. Differ. Equ., Volume 2006, Article ID 82579, 1-10.
[5] Elabbasy E.M., El-Metwally H., Elsayed E.M., On the difference equations $x_{n+1}=\frac{\alpha x_{n-k}}{\beta+\gamma \prod_{i=0}^{k} x_{n-i}}$, J. Conc. Appl. Math., $5(2)(2007)$, 101-113.
[6] Elabbasy E.M., El-Metwally H., Elsayed E.M., Qualitative behavior of higher order difference equation, Soochow Journal of Mathematical, 33(4)(2007), 861-873.
[7] El-Metwally H., Grove E.A., Ladas G., McGrath, On the difference equation $y_{n+1}=\frac{y_{n-(2 k+1)}+p}{y_{n-(2 k+1)}+q y_{n-2 l}}$, New Progress in Difference Equations, CRC, 2004, 433-453.
[8] Karatas R., Cinar C., Simsek D., On positive solutions of the difference equation $x_{n+1}=\frac{x_{n-5}}{1+x_{n-2} x_{n-5}}$, Int. J. Contemp. Math. Sci., $1(10)(2006)$, 495-500.
[9] Kocic V.L., Ladas G., Global behavior of nonlinear difference equations of higher order with applications, Kluwer Academic Publishers, Dordrecht, 1993.
[10] Kulenovic M.R.S., Ladas G., Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures, Chapman 83 Hall / CRC Press, 2001.
[11] Simsek D., Cinar C., Yalcinkaya I., On the recursive sequence $x_{n+1}=$ $\frac{x_{n-3}}{1+x_{n-1}}$, Int. J. Contemp. Math. Sci., 1(10)(2006), 475-480.

$$
\begin{aligned}
& \text { ElSayed Mohammed Elsayed } \\
& \text { Mathematics Department } \\
& \text { Faculty of Science } \\
& \text { Mansoura University } \\
& \text { Mansoura 35516, Egypt } \\
& \text { e-mail: emelsayed@mans.edu.eg }
\end{aligned}
$$

Received on 24.11.2007 and, in revised form, on 19.04.2008.

