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Abstract. The idea of difference sequence spaces were intro-
duced by Kizmaz [6] and generalized by Et. and Colak [4]. Later
Tripathy, Esi and Tripathy [15] introduced the notion of the new
difference operator ∆n

m for n,m ∈ N . In this paper we intro-
duced some new type of generalized difference sequence spaces
defined by a modulus function and the new type of statistically
convergent generalized difference sequence space. We study their
different properties and obtain some inclusion relations involving
these new type difference sequence spaces.
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1. Introduction

The difference sequence space Z(∆) was introduced by Kizmaz [6] as
follows:

Z(∆) = {(xk) ∈ w : (∆xk) ∈ Z},
for Z = `∞, c, and c0 where ∆xk = xk − xk+1, for all k ∈ N . Later, these
difference sequence spaces were generalized by Et and Colak [4] as follows:

Let r ∈ N be fixed, then

Z(∆r) = {(xk) : (∆rxk) ∈ Z}

for Z = `∞, c, and c0 where ∆rxk = ∆r−1xk −∆r−1xk + 1 and ∆0xk = xk

for all k ∈ N .
The generalized difference has the following binomial representation:

∆rxk =
n∑

k=1

(−1)ν

(
n

r

)
xk+v, for all k ∈ N.
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Recently, on generalizing this difference operator, Tripathy, Esi and Tripathy
[15] have introduced a new type of generalized difference operator as follows:

Let r,m ∈ N be fixed, then

Z(∆r
m) = {(xk) : (∆r

mxk) ∈ Z}, for Z = `∞, c, and c0.

where ∆r
m = ∆r−1

m xk − ∆r−1
m xk + 1 and ∆0

mxk = xk for all k ∈ N . This
generalized difference notion has the following binomial representation:

∆r
mxk =

n∑

k=1

(−1)ν

(
r

ν

)
xk+mv

The notion of modulus function was introduced by Nakano [13]. The
Notion was further investigated by Ruckle [14] and many others. We recall
that a modulus f is a function from [0,∞) to [0,∞) such that
(i) f(x) = 0 if and only if x = 0,
(ii) f(x + y) ≤ f(x) + f(y),
(iii) f is continuous, and ,
(iv) f is continuous from right at 0.

It is immediate from (ii) and (iv) that f is continuous on [0,∞). Also
from condition (ii), we have f(nx) ≤ nf(x) for all n ∈ N and so n−1f(x) ≤
f(xn−1), for all n ∈ N . A modulus function may be bounded (for example,
f(x) = x(1 + x)−1) or unbounded( for example, f(x) = x). Ruckle [14],
Maddox [10], Esi[2] and several authors used a modulus f to construct some
sequence spaces.

Remark. If f is a modulus function, then the composition fs = f.f....f
(s times) is also a modulus function, where s is a positive integer.

Let p = (pk) be a sequence of positive real numbers. We have the follow-
ing well known inequality, which will be used throughout this paper:

(1) |ak + bk|pk ≤ D(|ak|pk + |bk|pk |)
where ak and bk complex numbers, D = max{1, 2H−1} and H = supkpk < ∞
(one may refer to maddox [11]).

Spaces of strongly summable sequencees were studied at the initial stage
by Kuttner [7], Maddox [9] and others. The class of sequences those are
strongly Cesàro summable with respect to a modulus was introduced by
Maddox [10] as an extension of the definition of strongly Cesàro summable
sequences. Connor [1] further extended this definition to a definition of
strongly A-summability with respect to a modulus when A is non-negative
regular matrix.

Let Λ = (λi) be a non-decreasing sequence of positive real numbers tend-
ing to infinity and λ1 = 1 and λi+1 ≤ λi + 1, for all i ∈ N .
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The generalized de la Vallee-Poussin means is defined by ti(x) = λ−1
i

∑
k∈Ii

xk,

where Ii = [i−λi +1, i]. A sequence x = (xk) is said to be (V, λ)-summable
to a number L if ti(x) → L, as i →∞ (see for instance Leindler [8]).

2. Definitions and preliminaries

Throughout E will represent a seminormed space, seminormed by q. We
define w(E) to be the vector space of all E-valued sequences. Let f be
a modulus function, p = (pk) be any sequence of positive real numbers,

A = (ank) be a non-negative matrix such that sup
n

∞∑
k=1

ank < ∞ and r,m ∈ N

be fixed.
We define the following sets of sequences in this article:

[V E
λ , A,∆r

m, f, p]0 =

{
x ∈ w(E) : lim

i→∞
λ−1

i

∑
k∈Ii

ank[f(q(∆r
m xk))]pk = 0,

uniformly in n

}

[V E
λ , A,∆r

m, f, p]1 =

{
x ∈ w(E) : lim

i→∞
λ−1

i

∑
k∈Ii

ank[f(q(∆r
m xk − L))]pk = 0,

uniformly in n, for some L

}
.

[V E
λ , A,∆r

m, f, p]∞ =



x ∈ w(E) : sup

n
sup

i
λ−1

i

∑

k∈Ii

ank[f(q(∆r
m xk))]pk < ∞



 .

If x ∈ [V E
λ , A,∆r

m, f, p]1 then we write x → L([V E
λ , A,∆r

m, f, p]1) and
L will be called [Λ, A,∆r

m, E, f, p]1-limit of x = (xk) with respect to the
modulus function f .

For m = 1, these spaces are denoted by [V E
λ , A,∆r, f, p]Z , for Z = 0, 1,∞

respectively.
We define

[V E
λ ,∆r

m, f, p]1 =

{
x ∈ w(E) : lim

i→∞
λ−1

i

∑
k∈Ii

[f(q(∆r
m xk − L))]pk = 0,

for some L

}
.

Similarly [V E
λ ,∆r

m, f, p]0 and [V E
λ , ∆r

m, f, p]∞ can be defined.
For E = C, the set of complex numbers, q(x) = |x|; f(x) = x; pk = 1, for

all k ∈ N ; r = 0, m = 0 the spaces [V E
λ , ∆r

m, f, p]Z , for Z = 0, 1,∞ represent
the spaces [V, λ]Z , for Z = 0, 1,∞. These spaces are called as λ-strongly
summable to zero, λ-stromgly summable and λ-strongly bounded by the
de la Vallee-Poussin method. In the special case, where λi = i, for all
i = 1, 2, 3, ... the sets [V, λ]0, [V, λ] and [V, λ]∞ reduce to the sets w0, w and
w∞ introduced and studied by Maddox [9].
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3. Main results

In this section we prove the result of this article.

Theorem 1. Let the sequence p = (pk) be bounded. Then the sequence
spaces [V E

λ , A,∆r
m, f, p]Z are linear spaces over the complex field C, for Z =

0, 1 and ∞.

Proof. We prove the theorem for the class of sequences [V E
λ , A,∆r

m, f, p]∞.
For the other cases the theorem can be proved following similar techniques.
Let x, y ∈ [V E

λ , A,∆r
m, f, p]∞ and α, β ∈ C. Then there exist positive inte-

gers M1 and M2 such that |α| ≤ M1 and |β| ≤ M2. We have

λ−1
i

∑

k∈Ii

ank[f(q(∆r
m (αxk + βyk))]pk

≤ λ−1
i

∑

k∈Ii

ank[f(|α|q(∆r
m xk)) + f(|β|q(∆r

m yk))]pk

≤ D(M1)Hλ−1
i

∑

k∈Ii

ank[f(q(∆r
m xk))]pk

+ D(M2)Hλ−1
i

∑

k∈Ii

ank[f(q(∆r
m yk))]pk

→ 0, uniformly in n.

This proves that [V E
λ , A,∆r

m, f, p]∞ is a linear space. ¥

Theorem 2. Let f be a modulus function, then

[V E
λ , A,∆r

m, f, p]0 ⊂ [V E
λ , A, ∆r

m, f, p]1 ⊂ [V E
λ , A,∆r

m, f, p]∞.

Proof. The first inclusion is obvious. We establish the second inclusion.
Let x ∈ [V E

λ , A,∆r
m, f, p]1. Let xk → L([V E

λ , A,∆r
m, f, p]1), then there exists

positive integer M1 such that q(L) ≤ M1. Then we have

λ−1
i

∑

k∈Ii

ank[f(q(∆r
m xk))]pk ≤ Dλ−1

i

∑

k∈Ii

ank[f(q(∆r
m xk − L))]pk

+ D(M1, f(1))Hλ−1
i

∑

k∈Ii

ank

Thus x ∈ [V E
λ , A,∆r

m, f, p]∞, since x ∈ [V E
λ , A,∆r

m, f, p]1.
This complete the proof. ¥
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Theorem 3. Let p = (pk) ∈ `∞, then [V E
λ , A,∆r

m, f, p]∞ is a paranormed
space with

g(x) = sup
i


λ−1

i

∑

k∈Ii

ank[f(q(∆r
m xk))]pk




1
M

where M = max(1, supkpk).

Proof. From Theorem 1, for each x ∈ [V E
λ , A,∆r

m, f, p]0, g(x) exists.
Clearly, g(−x) = g(x). It is trivial that ∆r

mxk = θ for x = θ. Hence, we get
g(θ) = 0. By Minkowski’s inequality, we have g(x + y) ≤ g(x) + g(y). Now
we show that the scalar multiplication is continuous. Let α be any fixed
complex number. By definition of f , we have x → θ implies,g(αx) → 0.
Similarly we have x fixed and α → 0 implies g(αx) → 0. Finally x → θ and
α → 0 implies g(αx) → 0.

This completes the proof. ¥

Theorem 4. If r ≥ 1, then the inclusion [V E
λ , A,∆r−1

m , f, p]Z ⊂ [V E
λ , A,

∆r
m, f, p]Z is strict for Z = 0, 1 and ∞. In general, [V E

λ , A,∆j
m, f, p]Z ⊂

[V E
λ , A,∆r

m, f, p]Z , for j = 0, 1, 2, ...r − 1 and the inclusions are strict, for
Z = 0, 1 and ∞.

Proof. The result follows from the following inequality:

λ−1
i

∑

k∈li

ank[f(q(∆r
mxk))]pk ≤ Dλ−1

i

∑

k∈li

ank[f(q(∆r−1
m xk))]pk

+ Dλ−1
i

∑

k∈li

ank[f(q(∆r−1
m xk+1))]pk .

Proceeding inductively, we have [V E
λ , A,∆j

m, f, p]Z ⊂ [V E
λ , A,∆r

m, f, p]Z , for
j = 0, 1, 2, ..., r− 1. The inclusion is strict follows from the following exam-
ples. ¥

Example 1. Let E = C, q(x) = |x|; λi = 1, for all i ∈ N ; pk = 3, for
all k ∈ N . Let f(x) = x, for all x ∈ [0,∞); ank = k−2, for all n, k ∈ N ;
m = 1, r ≥ 1. Then consider the sequence x = (xk) defined by xk = kr, for
all k ∈ N . We have ∆rxk = (−1)rr! and ∆r−1xk = (−1)rr!(k + (r− 1)2−1),
for all k ∈ N . Hence, (xk) ∈ [V C

λ , A, ∆r, f, p]Z for Z = 1,∞ but (xk) /∈
[V C

λ , A,∆r−1, f, p]Z , for Z = 1,∞.

Example 2. In the above example,if one considers pk = 2, for all k ∈ N ,
then (xk) = (kr) ∈ [V C

λ , A,∆r, f, p]0, but (xk) 6∈ [V C
λ , A,∆r−1, f, p]0.

Theorem 5. Let f be a modulus function, then
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(a) Let 0 < pk ≤ qk, for all k ∈ N and (qkp
−1
k ) be bounded, then

[V E
λ , A,∆r

m, f, q]1 ⊂ [V E
λ , A, ∆r

m, f, p]1.
(b) If 0 < inf

k pk < pk ≤ 1, for all k, then [V E
λ , A,∆r

m, f, p]1 ⊂ [V E
λ , A,∆r

m, f ]1.
(c) If 1 ≤ pk < sup

k pk < ∞, then [V E
λ , A,∆r

m, f ]1 ⊂ [V E
λ , A,∆r

m, f, p]1.

Proof. (a) Following the technique applied in page 351, in the discussions
after Theorem 5 by Maddox[9], one can easily prove this part.

The proofs of the parts (b) and (c) are consequence of part (a). ¥

Theorem 6. Let f be a modulus function and s be a positive integer.
Then,

[V E
λ , A, ∆r

m, f, q]∞ ⊂ [V E
λ , A, ∆r

m, f, p]∞

Proof. Let ε > 0 be given and choose δ with 0 < δ < 1 such that
f(t) < ε for 0 ≤ t ≤ δ. Write yk = f s−1(q(∆r

mxk − L)) and consider

∑

k∈Ir

ank[f(yk)]pk =
∑
k∈Ir
yk≤δ

ank[f(yk)]pk +
∑
k∈Ir
yk>δ

ank[f(yk)]pk .

Since f is continuous, we have

(2)
∑
k∈Ir
yk≤δ

ank[f(yk)]pk ≤ εH
∑
k∈Ir
yk≤δ

ank

and for yk > δ, we use the fact that, yk < yk
δ ≤ 1 + yk

δ and so, by the
definition of f , we have for yk > δ,

f(yk) < 2f(1)
yk

δ
.

Hence

(3)
1
λi

∑
k∈Ir
yk≤δ

ank[f(yk)]pk ≤ max(1, (2f(1)δ−1)H)
1
λi

∑
k∈Ii
yk≤δ

anky
pk
k

From (2) and (3), we obtain [V E
λ , A,∆r

m, f, q]∞ ⊂ [V E
λ , A,∆r

m, f, p]∞. ¥

4. Statistical convergence

The notion of statistical convergence was introduced by Fast[5] and stud-
ied by various authors. Mursaleen[12] introduced the new concept of λ-stati-
stical convergence as follows:
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A sequence x = (xk) is said to be λ-statistically convergent or sλ-convergent
to L if for every ε > 0,

lim
i→∞

1
λi
|{k ∈ Ii : |xk − L| ≥ ε}| = 0,

where the vertical bars indicate the number of elements in the enclosed set.
In this case we write Sλ-lim x = L or xk → L(Sλ). Sλ denotes the class of
all λ-statistically convergent sequences.

Definition. A sequence x = (xk) is said to be (λ,∆r
m, E, p)-statistically

convergent to L if for every ε > 0,

lim
i→∞

λ−1
i |{k ∈ Ii : [q(∆r

mxk − L)]pk ≥ ε}| = 0,

where the vertical bars indicate the number of elements in the enclosed set.
In this case we write [SE

λ , ∆r
m, p] − lim x = L or xk → L([SE

λ , ∆r
m, p]). In

the case pk = 1, for all k ∈ N and m = 1, [SE
λ , ∆r

m, p] reduces to Sλ(∆r, E),
which is studied by Et, Altin and Altinok [3].

For λi = i, for all i ∈ N , the space [SE
λ ,∆r

m, p] is denoted by [SE , ∆r
m, p].

The following definition will be used in this section:

`∞(∆r
m, E, p) =

{
x ∈ w(E) : sup

k
[q(∆r

mxk)]pk < ∞
}

.

¥

Theorem 7. (a) [V E
λ , ∆r

m, p]1 ⊂ [SE
λ ,∆r

m, p] and the inclusion is strict.
(b) If x ∈ `∞(∆r

m, E, p) ∩ [SE
λ , ∆r

m, p], then x ∈ [V E
λ , ∆r

m, p]1.
(c) `∞(∆r

m, E, p) ∩ [SE
λ , ∆r

m, p] = [V E
λ , ∆r

m, p]1 ∩ `∞(∆r
m, E, p).

Proof. (a) Let ε > 0 and xk → [V E
λ ,∆r

m, p]1. Then we have

λ−1
i

1
λi

∑

k∈Ii

(q(∆r
mxk − L))pk ≥ εH |{k ∈ Ii : (q(∆r

mxk − L))pk ≥ ε}|.

Hence xk → [SE
λ ,∆r

m, p]. ¥
The inclusion relation is strict follows from the following example.

Example 3. Let E = C and consider the sequence x = (xk) such
that ∆r

mxk = k, for all k = j2, j ∈ N and ∆r
mxk = 0, otherwise. Then

x /∈ `∞(∆r
m, E, p) and x /∈ [V E

λ , ∆r
m, p]1 but xk → 0([SE

λ , ∆r
m, p]).

(b). Suppose that xk → L([SE
λ , ∆r

m, p]) and x ∈ `∞(∆r
m, E, p), say

sup
k [q(∆r

mxk − L)]pk ≤ T . Given ε > 0, let

Gi = {k ∈ Ii : [q(∆r
mxk − L)]pk ≥ ε} and(4)

Hi = {k ∈ Ii : [q(∆r
mxk − L)]pk < ε}
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Then we have

λ−1
i

∑

k∈Ii

(q(∆r
mxk − L))pk = λ−1

i

∑

k∈Gi

(q(∆r
mxk − L))pk(5)

+ λ−1
i

∑

k∈Hi

(q(∆r
mxk − L))pk ≤ Tλ−1

i |G1|+ εH .

Hence xk → L([V E
λ , ∆r

m, p]1).

(c) The proof follows from (a) and (b).

Theorem 8. If lim inf
i→∞

λi
i > 0, then [SE , ∆r

m, p]) ⊂ [SE
λ , ∆r

m, p]).

Proof. For given ε > 0, we get

{k ≤ i : [q(∆r
mxk − L)]pk ≥ ε} ⊃ G1, for G1 refer Eq(4).

Thus

i−1|{k ≤ i : [q(∆r
mxk − L)]pk ≥ ε}| ≥ i−1|Gi|

=
λi

i

1
λi
|Gi|.

Hence x ∈ [SE
λ ,∆r

m, p]. ¥

Theorem 9. Let f be a modulus and 0 < h = inf
k

pk ≤ pk ≤ sup
k

pk =

H < ∞. Then
[V E

λ , ∆r
m, f, p]1 ⊂ [SE

λ , ∆r
m, p].

Proof. Let x ∈ [V E
λ , ∆r

m, f, p]1 and ε > 0 be given

λ−1
i

∑

k∈Ii

[f(q(∆r
mxk − L))]pk = λ−1

i

∑

k∈Gi

[f(q(∆r
mxk − L))]pk

+ λ−1
i

∑

k∈Hi

[f(q(∆r
mxk − L))]pk ,

where Gi and Hi are as in Eq(4).

≥ λ−1
i

∑

k∈Gi

[f(q(∆r
mxk − L))]pk ≥ λ−1

i

∑

k∈Gi

[f(ε)]pk

≥ λ−1
i

∑

k∈Gi

min ([f(ε)]h, [f(ε)]H) ≥ λ−1
i |Gi| min ([f(ε)]h, [f(ε)]H).

Hence x ∈ [SE
λ ,∆r

m, f, p]. ¥
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Theorem 10. Let f be a bounded and 0 < h = inf
k

pk ≤ pk ≤ sup
k

pk =

H < ∞. Then

[V E
λ , ∆r

m, f, p]1 ⊃ [SE
λ ,∆r

m, p].

Proof. Suppose that f is bounded. Let ε > 0 be given. Since f is
bounded, there exists an integer T such that f(x) < T for all x ≥ 0. Then

λ−1
i

∑

k∈Ii

[f(q(∆r
mxk − L))]pk = λ−1

i

∑

k∈Gi

[f(q(∆r
mxk − L))]pk

+ λ−1
i

∑

k∈Hi

[f(q(∆r
mxk − L))]pk ,

where Gi and Hi are as in Eq(4).

≤ λ−1
i

∑

k∈Gi

max[T h, TH ] + λ−1
i

∑

k∈Hi

[f(ε)]pk

≤ max[T h, TH ]λ−1
i |Gi|+ max([f(ε)]h, [f(ε)]H).

¥

Hence x ∈ [V E
λ , ∆r

m, f, p]1.

Theorem 11. Let f be bounded and 0 < h = inf
k

pk ≤ pk ≤ sup
k

pk =

H < ∞. Then

[V E
λ , ∆r

m, f, p]1 = [SE
λ ,∆r

m, p].

Proof. Let f be bounded, by Theorem 9 and Theorem 10, we have

[V E
λ , ∆r

m, f, p]1 ⊃ [SE
λ ,∆r

m, p].

Conversely, suppose that f is unbounded. Then there exists a sequence (zk)
of positive numbers with f(zk) = k2 for k ∈ N . If we choose ∆r

mxj = zk,
for all j = k2, j ∈ N and ∆r

m = 0 otherwise. Then we have

λ−1
i |{k ∈ Ii : |∆r

mxk|pk ≥ ε}| ≤ (λi−1)
1
2 λ−1

i ,

for all i and so x ∈ [SE
λ , ∆r

m, p], but x /∈ [V E
λ , ∆r

m, p]1, for E = C. This
contradicts to [V E

λ , ∆r
m, f, p]1 = [SE

λ , ∆r
m, p]. ¥
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