F A S C I C U L I M A T H E M A T I C I
 Nr 40

Memudu O. Olatinwo and Christopher O. Imoru

A GENERALIZATION OF SOME RESULTS ON MULTI-VALUED WEAKLY PICARD MAPPINGS IN b-METRIC SPACE

Abstract

In this paper, we establish some convergence results in a complete $b-$ metric space for the Picard iteration associated to two multi-valued weak contractions by employing the concepts of monotone and comparison functions. Our results generalize and extend those of Berinde and Berinde [8], Daffer and Kaneko [15] and Nadler [27]. Theorem 2.1 in our paper generalizes Theorem 5 of Nadler [27] and a recent result of Berinde and Berinde [8], it also extends, improves and unifies several classical results pertainning to single and multi-valued contractive mappings in the fixed point theory. Also, Theorem 2.3 is a generalization and extension of Theorem 5 of Nadler [27] as well as Theorem 4 of Berinde and Berinde [8].

KEY words: multi-valued weak contraction; single-valued contractive mappings.
AMS Mathematics Subject Classification: 47H06, 47H10.

1. Introduction

Let (X, d) be a complete metric space and $C B(X)$ denote the family of all nonempty closed and bounded subsets of X. For $A, B \subset X$, define the distance between A and B by $D(A, B)=\inf \{d(a, b) \mid a \in A, b \in B\}$, the diameter of A and B by $\delta(A, B)=\sup \{d(a, b) \mid a \in A, b \in B\}$, and the Hausdorff-Pompeiu metric on $C B(X)$ by

$$
H(A, B)=\max \{\sup \{d(a, B) \mid a \in A\}, \sup \{d(b, A) \mid b \in B\}\}
$$

$H(A, B)$ is induced by d.
Let $P(X)$ be the family of all nonempty subsets of X and $T: X \rightarrow P(X)$ a multi-valued mapping. Then, an element $x \in X$ such that $x \in T(x)$ is called a fixed point of T. Denote the set of all the fixed points of T by Fix (T), that is, $\operatorname{Fix}(T)=\{x \in X \mid x \in T(x)\}$.

Markins [25] and Nadler [27] initiated the study of fixed point theorems for multi-valued operators. The celebrated Banach's fixed point theorem is extended to the following result of Nadler [27] from the single-valued maps to the multi-valued contractive maps.

Theorem 1 (Nadler [27]). Let (X, d) be a complete metric space and $T: X \rightarrow C B(X)$ a set-valued α-contraction, that is, a mapping for which there exists a constant $\alpha \in(0,1)$, such that

$$
\begin{equation*}
H(T x, T y) \leq \alpha d(x, y), \forall x, y \in X \tag{1}
\end{equation*}
$$

Then T has at least one fixed point.
For the Banach's fixed point theorem and its various generalizations in single-valued case, we refer to Agarwal et al [1], Banach [2], Berinde [3, 4, $5,6,7]$ and some other references in the reference section of this paper.

Apart from Markins [25] and Nadler [27], several other papers have been devoted to the treatment of multi-valued operators and these include Berinde and Berinde [8], Ciric [12], Ciric and Ume [13, 14], Daffer and Kaneko [15], Itoh [18], Kaneko [20, 21], Kubiaczyk and Ali [23], Lim [24], Mizoguchi [26] and some others in the reference section. The following definitions shall be required in the sequel.

Definition 1. A function $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is called (c)-comparison if it satisfies:
(i) φ is monotone increasing;
(ii) $\varphi^{n}(t) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty, \forall \mathrm{t}>0\left(\varphi^{\mathrm{n}}\right.$ stands for the nth iterate of $\left.\varphi\right)$;
(iii) $\sum_{n=0}^{\infty} \varphi^{n}(t)<\infty$ for all $t>0$.

We say that φ is a comparison function if it satisfies (i) and (ii) only. See [3, 4] and [33] for detail.

Remark 1. Every comparison function $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satisfies $\varphi(t)<t$.
Definition 2. Let (X, d) be a metric space and $T: X \rightarrow P(X)$ a multi-valued operator. T is said to be a multi-valued weakly Picard (MWP) Operator if and only if for each $x \in X$ and any $y \in T(x)$, there exists a sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ such that
(i) $x_{0}=x, x_{1}=y$;
(ii) $x_{n+1} \in T\left(x_{n}\right)$ for all $n=0,1, \cdots$;
(iii) the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ is convergent and its limit is a fixed point of T.

Remark 2. A sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ satisfying conditions (i) and (ii) in Definition 2 will be called a sequence of successive approximations of T,
starting from (x, y) or a Picard iteration associated to T or a (Picard) orbit of T at the initial point x_{0}.

Definition 3. Let (X, d) be a metric space and $T: X \rightarrow P(X)$ a multi-valued operator. T is said to be a multi-valued weak contraction or a multi-valued (θ, L)-contraction if and only if there exist two constants $\theta \in(0,1)$ and $L \geq 0$ such that

$$
\begin{equation*}
H(T x, T y) \leq \theta d(x, y)+L D(y, T x), \forall x, y \in X \tag{2}
\end{equation*}
$$

For Definition 3 and Definition 3, see [8].
We state the following results on multi-valued operators:
Theorem 2 (Berinde and Berinde [8]). Let (X, d) be a complete metric space and $T: X \rightarrow C B(X)$ a multi-valued (θ, L)-weak contraction. Then,
(i) Fix $(T) \neq \phi$;
(ii) for any $x_{0} \in X$, there exists an orbit $\left\{x_{n}\right\}_{n=0}^{\infty}$ of T at the point x_{0} that converges to a fixed point u of T, for which the following estimates hold:

$$
\begin{gathered}
d\left(x_{n}, u\right) \leq \frac{h^{n}}{1-h} d\left(x_{1}, x_{0}\right), \quad n=0,1, \cdots \\
d\left(x_{n}, u\right) \leq \frac{h}{1-h} d\left(x_{n}, x_{n-1}\right), \quad n=1,2, \cdots
\end{gathered}
$$

for a certain constant $h<1$.
By replacing the term $\theta d(x, y)$ in condition (2) by $\alpha(d(x, y)) d(x, y)$, where the function $\alpha:[0, \infty) \rightarrow[0,1)$ satisfies $\limsup _{r \rightarrow t^{+}} \alpha(r)<1$, for every $t \in[0, \infty)$, then the authors obtained the following result:

Theorem 3 (Berinde and Berinde [8]). Let (X, d) be a complete metric space and $T: X \rightarrow C B(X)$ a generalized multi-valued (α, L)-weak contraction, that is, a mapping for which there exists a function $\alpha:[0, \infty) \rightarrow$ $[0,1)$ satisfying $\lim \sup \alpha(r)<1$, for every $t \in[0, \infty)$, such that

$$
r \rightarrow t^{+}
$$

$$
\begin{equation*}
H(T x, T y) \leq \alpha(d(x, y)) d(x, y)+L D(y, T x), \forall x, y \in X \tag{3}
\end{equation*}
$$

Then T has at least one fixed point.
Definition 4 (Czerwik [11]). Let X be a (nonempty) set and $s \geq 1$ a real number. A function $d: X \times X \rightarrow \mathbb{R}_{+}$is said to be a b-metric if $\forall x, y, z \in X$,
(i) $d(x, y)=0$ iff $\mathrm{x}=\mathrm{y}$;
(ii) $d(x, y)=d(y, x)$;
(iii) $d(x, z) \leq s[d(x, y)+d(y, z)]$.

The pair (X, d) is called a b-metric space. In fact, the class of b-metric spaces is effectively larger than that of metric spaces, since $a b$-metric is a metric when $s=1$.

In this paper, we obtain more general results than those of Berinde and Berinde [8] using the following two general contractive definitions:

Definition 5. Let (X, d) be a b-metric space and $T: X \rightarrow P(X)$ a multi-valued operator. T is said to be a generalized multi-valued (ψ, φ)-weak contraction if and only if there exist a continuous monotone increasing function $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\varphi(0)=0$ and a continuous (c)-comparison function $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that
$(\star) \quad H(T x, T y) \leq q^{-1}[\psi(d(x, y))+\varphi(D(y, T x))], q>1, \forall x, y \in X$.
We also have that T is a generalized multi-valued ϕ-weak contraction if and only if there exist a function $\alpha:[0, \infty) \rightarrow[0,1)$ and two continuous monotone increasing functions $\phi_{1}, \phi_{2}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\phi_{1}(0)=1$ and $\phi_{2}(0)=0$ such that
$(\star \star) H(T x, T y) \leq[\alpha(d(x, y)) d(x, y)]^{\phi_{1}(D(y, T x))}+\phi_{2}(D(y, T x)), \forall x, y \in X$, where $\limsup _{r \rightarrow t^{+}} \alpha(r)<1$, for every $t \in[0, \infty)$.

Remark 3. (i) If in condition $(\star), \psi(u)=q \theta u, \theta \in(0,1), q \theta<1$, $\forall u \in \mathbb{R}_{+}$and $\varphi(v)=q L v, L \geq 0, \forall v \in \mathbb{R}_{+}$, then we obtain condition (2), which was employed in the proof of Theorem 1.7 by Berinde and Berinde [8] (Theorem 1.7 is Theorem 3 of Berinde and Berinde [8].
(ii) In condition (\star), if $\psi(u)=q \theta u, q \theta<1, \theta \in(0,1), \forall u \in \mathbb{R}_{+}$and $\varphi_{2}(v)=0, \forall v \in \mathbb{R}_{+}$, then we obtain Theorem 1.1 which is Theorem 5 of Nadler [27].
(iii) In a similar manner, the condition ($(\star$) reduces to that employed by Berinde and Berinde [8] if $\phi_{1}(u)=1, \forall u \in \mathbb{R}_{+}$and $\phi_{2}(v)=L v, L \geq 0$, $\forall v \in \mathbb{R}_{+}$, while we obtain the contractive condition in Corollary 2.2 of Daffer and Kaneko [15] when $\phi_{2}(v)=0, \forall v \in \mathbb{R}_{+}$.

However, we shall require the following Lemma in the sequel.
Lemma 1. Let (X, d) be a metric space. Let $A, B \subset X$ and $q>1$. Then, for every $a \in A$, there exists $b \in B$ such that

$$
d(a, b) \leq q H(A, B)
$$

Lemma 1 is contained in Berinde and Berinde [8], Ciric [12] and Rus [32] in a metric space setting.

Lemma 2 (Nadler [27]). : Let $A, B \subset C B(X)$ and let $a \in A$. Then, there exists $b \in B$ such that

$$
d(a, b) \leq H(A, B)+\eta .
$$

Remark 4. The constants α and $\alpha^{k}, k \geq 1$, play the role of η in (1). We shall employ Lemma 2 in the proof of Theorem 2.4 in the sequel.

2. Main results

In this section, we shall establish our main results:
Theorem 4. Let (X, d) be a complete b-metric space with continuous $b-$ metric and $T: X \rightarrow C B(X)$ a generalized multi-valued (ψ, φ)-weak contraction. Suppose that $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a continuous (c)-comparison function and $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a continuous monotone increasing function such that $\varphi(0)=0$. Then,
(i) Fix $(T) \neq \phi$;
(ii) for any $x_{0} \in X$, there exists an orbit $\left\{x_{n}\right\}_{n=0}^{\infty}$ of T at the point x_{0} that converges to a fixed point x^{*} of T;
(iii) the a priori and the a posteriori error estimates are given by

$$
\begin{equation*}
d\left(x_{n}, x^{*}\right) \leq s \sum_{k=0}^{\infty} \psi^{k+n}\left(d\left(x_{0}, x_{1}\right)\right), \quad s \geq 1, n=1,2, \cdots \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
d\left(x_{n}, x^{*}\right) \leq s \sum_{k=0}^{\infty} \psi^{k}\left(d\left(x_{n-1}, x_{n}\right)\right), \quad s \geq 1, n=1,2, \cdots \tag{5}
\end{equation*}
$$

respectively.
Proof. Let $q>1$. Let $x_{0} \in X$ and $x_{1} \in T x_{0}$. If $H\left(T x_{0}, T x_{1}\right)=0$, then $T x_{0}=T x_{1}$, that is, $x_{1} \in T x_{1}$, which implies that Fix $(T) \neq \phi$.

Let $H\left(T x_{0}, T x_{1}\right) \neq 0$. Then, we have by Lemma 1 that there exists $x_{2} \in T x_{1}$ such that

$$
d\left(x_{1}, x_{2}\right) \leq q H\left(T x_{0}, T x_{1}\right),
$$

so that by (\star) we have

$$
\begin{aligned}
d\left(x_{1}, x_{2}\right) & \leq q q^{-1}\left[\psi\left(d\left(x_{0}, x_{1}\right)\right)+\varphi\left(D\left(x_{1}, T x_{0}\right)\right)\right] \\
& =\psi\left(d\left(x_{0}, x_{1}\right)\right)+\varphi\left(D\left(x_{1}, x_{1}\right)\right) \\
& =\psi\left(d\left(x_{0}, x_{1}\right)\right) .
\end{aligned}
$$

If $H\left(T x_{1}, T x_{2}\right)=0$, then $T x_{1}=T x_{2}$, that is, $x_{2} \in T x_{2}$. Let $H\left(T x_{1}, T x_{2}\right) \neq$ 0 . Again, by Lemma 1.12, there exists $x_{3} \in T x_{2}$ such that
(6) $d\left(x_{2}, x_{3}\right) \leq q H\left(T x_{1}, T x_{2}\right) \leq q q^{-1}\left[\psi\left(d\left(x_{1}, x_{2}\right)\right)+\varphi\left(D\left(x_{2}, T x_{1}\right)\right)\right]$

$$
=\psi\left(d\left(x_{1}, x_{2}\right)\right)+\varphi\left(D\left(x_{2}, x_{2}\right)\right)
$$

$$
=\psi\left(d\left(x_{1}, x_{2}\right)\right) \leq \psi^{2}\left(d\left(x_{0}, x_{1}\right)\right)
$$

By induction, we obtain

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq \psi^{n}\left(d\left(x_{0}, x_{1}\right)\right) \tag{7}
\end{equation*}
$$

Therefore, we have by the property (iii) of Definition 4 that
(8) $d\left(x_{n}, x_{n+p}\right) \leq s\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+\cdots+d\left(x_{n+p-1}, x_{n+p}\right)\right]$

$$
\leq s\left[\psi^{n}\left(d\left(x_{0}, x_{1}\right)\right)+\psi^{n+1}\left(d\left(x_{0}, x_{1}\right)\right)+\cdots+\psi^{n+p-1}\left(d\left(x_{0}, x_{1}\right)\right)\right]
$$

$$
\begin{equation*}
d\left(x_{n}, x_{n+p}\right)=s \sum_{k=n}^{n+p-1} \psi^{k}\left(d\left(x_{0}, x_{1}\right)\right) \tag{9}
\end{equation*}
$$

From (9), we have
(10) $d\left(x_{n}, x_{n+p}\right) \leq s \sum_{k=n}^{n+p-1} \psi^{k}\left(d\left(x_{0}, x_{1}\right)\right.$

$$
=s\left[\sum _ { k = 0 } ^ { n + p - 1 } \psi ^ { k } \left(d\left(x_{0}, x_{1}\right)-\sum_{k=0}^{n-1} \psi^{k}\left(d\left(x_{0}, x_{1}\right)\right] \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty\right.\right.
$$

We therefore have from (10), that for any $x_{0} \in X,\left\{x_{n}\right\}_{n=0}^{\infty}$ is a Cauchy sequence in X. Since (X, d) is a complete b-metric space, then $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges to some $x^{*} \in X$. That is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{n}=x^{*} \tag{11}
\end{equation*}
$$

Therefore, by (\star), we have that

$$
\text { (12) } \begin{aligned}
D\left(x^{*}, T x^{*}\right) & \leq s\left[d\left(x^{*}, x_{n+1}\right)+d\left(x_{n+1}, T x^{*}\right)\right] \\
& \leq s\left[d\left(x^{*}, x_{n+1}\right)+H\left(T x_{n}, T x^{*}\right)\right] \\
& \leq s d\left(x^{*}, x_{n+1}\right)+s q^{-1}\left[\psi\left(d\left(x_{n}, x^{*}\right)\right)+\varphi\left(D\left(x^{*}, T x_{n}\right)\right)\right]
\end{aligned}
$$

By using (11), the continuity of the functions ψ, φ and the fact that $x_{n+1} \in$ $T x_{n}$, then $\varphi\left(D\left(x^{*}, T x_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$ and $\psi\left(d\left(x_{n}, x^{*}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$. It follows from (12) that $D\left(x^{*}, T x^{*}\right)=0$ as $n \rightarrow \infty$. Since $T x^{*}$ is closed, then $x^{*} \in T x^{*}$.

To prove the a priori error estimate in (4), we have from (9) that

$$
d\left(x_{n}, x_{n+p}\right) \leq s \sum_{k=n}^{n+p-1} \psi^{k}\left(d\left(x_{0}, x_{1}\right)\right)=s \sum_{k=0}^{p-1} \psi^{n+k}\left(d\left(x_{0}, x_{1}\right)\right)
$$

from which it follows by the continuity of the b-metric that

$$
d\left(x_{n}, x^{*}\right)=d\left(x^{*}, x_{n}\right)=\lim _{p \rightarrow \infty} d\left(x_{n+p}, x_{n}\right) \leq s \sum_{k=0}^{\infty} \psi^{n+k}\left(d\left(x_{0}, x_{1}\right)\right)
$$

giving the result in (4). To prove the a posteriori estimate in (5), we get by condition (\star) and Lemma 1 that

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) & \leq q H\left(T x_{n-1}, T x_{n}\right) \\
& \leq q q^{-1}\left[\psi\left(d\left(x_{n-1}, x_{n}\right)\right)+\varphi\left(D\left(x_{n}, T x_{n-1}\right)\right)\right] \\
& =\psi\left(d\left(x_{n-1}, x_{n}\right)\right)+\varphi\left(D\left(x_{n}, x_{n}\right)\right)=\psi\left(d\left(x_{n-1}, x_{n}\right)\right) .
\end{aligned}
$$

Also, we have

$$
d\left(x_{n+1}, x_{n+2}\right) \leq \psi\left(d\left(x_{n}, x_{n+1}\right)\right) \leq \psi^{2}\left(d\left(x_{n-1}, x_{n}\right)\right)
$$

so that in general, we obtain

$$
\begin{equation*}
d\left(x_{n+k}, x_{n+k+1}\right) \leq \psi^{k+1}\left(d\left(x_{n-1}, x_{n}\right)\right), \quad k=0,1, \cdots \tag{13}
\end{equation*}
$$

Using (13) in (8) yields

$$
\begin{align*}
d\left(x_{n}, x_{n+p}\right) \leq s\left[\psi\left(d\left(x_{n-1}, x_{n}\right)\right)+\psi^{2}(\right. & \left.\left(x_{n-1}, x_{n}\right)\right)+\cdots \\
& \left.+\psi^{p-1}\left(d\left(x_{n-1}, x_{n}\right)\right)\right] \\
= & s \sum_{k=0}^{p-1} \psi^{k}\left(d\left(x_{n-1}, x_{n}\right)\right) \tag{14}
\end{align*}
$$

Again, by taking limits in (14) as $p \rightarrow \infty$ and using the continuity of the b-metric, we have

$$
d\left(x_{n}, x^{*}\right)=d\left(x^{*}, x_{n}\right)=\lim _{p \rightarrow \infty} d\left(x_{n+p}, x_{n}\right) \leq s \sum_{k=0}^{\infty} \psi^{k}\left(d\left(x_{n-1}, x_{n}\right)\right)
$$

giving the required a posteriori error estimate.
Remark 2. Theorem 4 is a generalization and extension of Theorem 2 (which is itself Theorem 3 of Berinde and Berinde [8]). It is also a generalization and extension of Theorem 1 (which is Theorem 5 of Nadler [27]). Indeed, Theorem 4 is a generalization and extension of a multitude of results in the literature pertainning to the single-valued and multi-valued cases.

Theorem 5. Let (X, d) be a complete b-metric space with continuous $b-$ metric and $T: X \rightarrow C B(X)$ a generalized multi-valued ϕ-weak contraction. Suppose that there exist a function $\alpha:[0, \infty) \rightarrow[0,1)$ satisfying $\lim \sup \alpha(r)<1$, for every $t \in[0, \infty)$ and two continuous monotone increas$r \rightarrow t^{+}$ ing functions $\phi_{1}, \phi_{2}: R_{+} \rightarrow R_{+}$such that $\phi_{1}(0)=1$ and $\phi_{2}(0)=0$. Then, T has at least one fixed point.

Proof. The theorem is proved using the idea of Berinde and Berinde [8] as well as Daffer and Kaneko [15]. Suppose that $x_{0} \in X$ and $x_{1} \in T x_{0}$. We choose a positive integer N_{1} such that

$$
\begin{equation*}
\alpha^{N_{1}}\left(d\left(x_{0}, x_{1}\right)\right) \leq\left[1-\alpha\left(d\left(x_{0}, x_{1}\right)\right)\right] d\left(x_{0}, x_{1}\right) \tag{15}
\end{equation*}
$$

By Lemma 2, there exists $x_{2} \in T x_{1}$ such that

$$
\begin{equation*}
d\left(x_{1}, x_{2}\right) \leq H\left(T x_{0}, T x_{1}\right)+\alpha^{N_{1}}\left(d\left(x_{0}, x_{1}\right)\right) \tag{16}
\end{equation*}
$$

Using ($\star \star$) and (15) in (16), then we have

$$
\begin{aligned}
d\left(x_{1}, x_{2}\right) \leq & {\left[\alpha\left(d\left(x_{0}, x_{1}\right)\right) d\left(x_{0}, x_{1}\right)\right]^{\phi_{1}\left(D\left(x_{1}, T x_{0}\right)\right)} } \\
& +\phi_{2}\left(D\left(x_{1}, T x_{0}\right)\right)+\alpha^{N_{1}}\left(d\left(x_{0}, x_{1}\right)\right) \\
= & \alpha\left(d\left(x_{0}, x_{1}\right)\right) d\left(x_{0}, x_{1}\right)+\alpha^{N_{1}}\left(d\left(x_{0}, x_{1}\right)\right) \leq d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

Now, we choose again a positive integer $N_{2}, N_{2}>N_{1}$ such that

$$
\begin{equation*}
\alpha^{N_{2}}\left(d\left(x_{1}, x_{2}\right)\right) \leq\left[1-\alpha\left(d\left(x_{1}, x_{2}\right)\right)\right] d\left(x_{1}, x_{2}\right) \tag{17}
\end{equation*}
$$

Since $T x_{2} \in C B(X)$, by Lemma 2 again, we can select $x_{3} \in T x_{2}$ such that

$$
\begin{equation*}
d\left(x_{2}, x_{3}\right) \leq H\left(T x_{1}, T x_{2}\right)+\alpha^{N_{2}}\left(d\left(x_{1}, x_{2}\right)\right) \tag{18}
\end{equation*}
$$

Again, using ($\star \star$) and (17) in (18), then we get

$$
\begin{aligned}
d\left(x_{2}, x_{3}\right) \leq & {\left[\alpha\left(d\left(x_{1}, x_{2}\right)\right) d\left(x_{1}, x_{2}\right)\right]^{\phi_{1}\left(D\left(x_{2}, T x_{1}\right)\right)} } \\
& +\phi_{2}\left(D\left(x_{2}, T x_{1}\right)\right)+\alpha^{N_{2}}\left(d\left(x_{1}, x_{2}\right)\right) \\
= & \alpha\left(d\left(x_{1}, x_{2}\right)\right) d\left(x_{1}, x_{2}\right)+\alpha^{N_{2}}\left(d\left(x_{1}, x_{2}\right)\right) \leq d\left(x_{1}, x_{2}\right)
\end{aligned}
$$

By induction, since $T x_{k} \in C B(X)$, for each k, we may choose a positive integer N_{k} such that

$$
\begin{equation*}
\alpha^{N_{k}}\left(d\left(x_{k-1}, x_{k}\right)\right) \leq\left[1-\alpha\left(d\left(x_{k-1}, x_{k}\right)\right)\right] d\left(x_{k-1}, x_{k}\right) \tag{19}
\end{equation*}
$$

By selecting $x_{k+1} \in T x_{k}$ such that

$$
\begin{equation*}
d\left(x_{k}, x_{k+1}\right) \leq H\left(T x_{k-1}, T x_{k}\right)+\alpha^{N_{k}}\left(d\left(x_{k-1}, x_{k}\right)\right) \tag{20}
\end{equation*}
$$

so that using ($\star \star$) and (19) in (20) yield

$$
\begin{equation*}
d\left(x_{k}, x_{k+1}\right) \leq d\left(x_{k-1}, x_{k}\right) . \tag{21}
\end{equation*}
$$

Let $d_{k}=d\left(x_{k}, x_{k-1}\right), k=1,2, \cdots$. The inequality relation (21) shows that the sequence $\left\{d_{k}\right\}$ of nonnegative numbers is decreasing. Therefore, $\lim _{k \rightarrow \infty} d_{k}$ exists. Thus, let $\lim _{k \rightarrow \infty} d_{k}=c \geq 0$.

We now prove that the Picard iteration or orbit $\left\{x_{k}\right\} \subset X$ so generated is a Cauchy sequence. By condition on α, for $t=c$ we have $\limsup _{t \rightarrow c^{+}} \alpha(t)<1$. For $k \geq k_{0}$, let $\alpha\left(d_{k}\right)<h$, where $\lim _{t \rightarrow c^{+}} \sup \alpha(t)<h<1$. Using (20), we have by deduction that $\left\{d_{k}\right\}$ satisfies the recurrence inequality:

$$
\begin{equation*}
d_{k+1} \leq d_{k} \alpha\left(d_{k}\right)+\alpha^{N_{k}}\left(d_{k}\right), k=1,2, \cdots . \tag{22}
\end{equation*}
$$

Using induction in (22) leads to

$$
\begin{equation*}
d_{k+1} \leq \Pi_{j=1}^{k} \alpha\left(d_{j}\right) d_{1}+\sum_{m=1}^{k-1} \Pi_{j=m+1}^{k} \alpha\left(d_{j}\right) \alpha^{N_{m}}\left(d_{m}\right)+\alpha^{N_{k}}\left(d_{k}\right), \quad k \geq 1 . \tag{23}
\end{equation*}
$$

We now find a suitable upper bound for the right-hand side of (23), using the fact that $\alpha<1$ as follows:

$$
\begin{align*}
d_{k+1} & \leq \Pi_{j=1}^{k} \alpha\left(d_{j}\right) d_{1}+\sum_{m=1}^{k-1} \Pi_{j=m+1}^{k} \alpha\left(d_{j}\right) \alpha^{N_{m}}\left(d_{m}\right)+\alpha^{N_{k}}\left(d_{k}\right) \tag{24}\\
& <d_{1} h^{k}+\sum_{m=1}^{k-1} h^{k-m} h^{N_{m}}+h^{N_{k}}=d_{1} h^{k}+h^{k} \sum_{m=1}^{k-1} h^{N_{m}-m}+h^{N_{k}} \\
& \leq C_{1} h^{k}+C_{2} h^{k}+C_{3} h^{k}=C_{4} h^{k}, \text { where } C_{4}=C_{1}+C_{2}+C_{3} .
\end{align*}
$$

and $C_{1}, C_{2}, C_{3}, C_{4}$ are constants.
Now, for $k \geq k_{0}$ and $p \in \mathbb{N}$, we have by using (24) and the repeated application of the triangle inequality that

$$
\begin{align*}
d\left(x_{k}, x_{k+p}\right) & \leq s\left[d\left(x_{k}, x_{k+1}\right)+d\left(x_{k+1}, x_{k+2}\right)+\cdots+d\left(x_{k+p-1}, x_{k+p}\right)\right] \tag{25}\\
& =s\left[d_{k+1}+d_{k+2}+\cdots+d_{k+p}\right] \\
& \leq s\left[C_{4}\left(h^{k}+h^{k+1}+\cdots+h^{k+p-1}\right)\right] \\
& =C_{4}\left(\frac{1-h^{p}}{1-h}\right) h^{k} s=C_{5} h^{k} s,
\end{align*}
$$

where C_{5} is a constant.

Since $0<h<1$, then the right-hand side of (25) tends to 0 as $k \rightarrow \infty$, showing that $\left\{x_{k}\right\}$ is a Cauchy sequence. Therefore, $x_{k} \rightarrow u \in X$ as $k \rightarrow \infty$ since X is a complete b-metric space. So,

$$
\begin{align*}
D(u, T u) \leq & s\left[d\left(u, x_{k}\right)+d\left(x_{k}, T u\right)\right] \leq s\left[d\left(u, x_{k}\right)+H\left(T x_{k-1}, T u\right)\right] \tag{26}\\
\leq & s d\left(u, x_{k}\right)+s\left[\alpha\left(d\left(x_{k-1}, u\right)\right) d\left(x_{k-1}, u\right)\right]^{\phi_{1}\left(D\left(u, T x_{k-1}\right)\right)} \\
& +\phi_{2}\left(D\left(u, T x_{k-1}\right)\right) \\
< & s d\left(u, x_{k}\right)+s\left[h d\left(x_{k-1}, u\right)\right]^{\phi_{1}\left(D\left(u, T x_{k-1}\right)\right)} \\
& +s \phi_{2}\left(D\left(u, T x_{k-1}\right)\right), \quad s \geq 1
\end{align*}
$$

By using the fact that $x_{k} \in T x_{k-1}$ and $x_{k} \rightarrow u$ as $k \rightarrow \infty$, we have $D\left(u, T x_{k-1}\right) \rightarrow 0$ as $k \rightarrow \infty$. We therefore, have by the continuity of ϕ_{j} $(j=1,2)$ that $\phi_{1}\left(D\left(u, T x_{k-1}\right)\right) \rightarrow 1$ as $k \rightarrow \infty$ and $\phi_{2}\left(D\left(u, T x_{k-1}\right)\right) \rightarrow 0$ as $k \rightarrow \infty$. Hence, since the right-hand side terms of (26) tend to zero as $k \rightarrow \infty$, we have $u \in T u$. Using the continuity of the b-metric in (25) as $p \rightarrow \infty$, we obtain an error estimate

$$
d\left(x_{k}, u\right)=\lim _{p \rightarrow \infty} d\left(x_{k}, x_{k+p}\right) \leq C_{5} h^{k} s, \quad k \geq k_{0}, \quad s \geq 1
$$

for the Picard iteration process under condition ($\star \star$).

Remark 3. Theorem 5 generalizes and extends Theorem 4 of Berinde and Berinde [8], Theorem 2.1 of Daffer and Kaneko [15] and some related results in kaneko [20, 21] as well as Nadler's fixed point theorem [27]. Similar results in single-valued case are also extended by Theorem 5.

References

[1] Agarwal R.P., Mechan M., O’Regan D., Fixed Point Theory and Applications, Cambridge University Press 2001.
[2] Banach S., Sur les Operations dans les Ensembles Abstraits et leur Applications aux Equations Integrales, Fund. Math., 3(1922), 133-181.
[3] Berinde V., A priori and a posteriori Error Estimates for a Class of φ-Contractions, Bulletins for Applied छ Computing Math., (1999), 183-192.
[4] Berinde V., Iterative Approximation of Fixed Points, Editura Efemeride (2002).
[5] Berinde V., On the Approximation of Fixed Points of Weak φ-Contractive Operators, Fixed Point Theory, 4(2)(2003), 131-142.
[6] Berinde V., On the Approximation of Fixed Points of Weak Contractive Mappings, Carpathian J. Math., 19(1)(2003), 7-22.
[7] Berinde V., Approximating Fixed Points of Weak Contractions Using Picard Iteration, Nonlinear Analysis Forum, 9(1)(2004), 43-53.
[8] Berinde M., Berinde V., On A General Class of Multi-valued Weakly Picard Mappings, J. Math. Anal. Appl., 326(2007), 772-782.
[9] Boyd D.W., Wong J.S.W., On Linear Contractions, Proc. Amer. Math. Soc., 20(1969), 458-464.
[10] Browder F., Nonexpansive Nonlinear Operators in a Banach Space, Proc. Nat. Acad. Sci. U.S.A., 54(1965), 1041-1044.
[11] Czerwik S., Nonlinear Set-valued Contraction Mappings in b-Metric Spaces, Atti Sem. Mat. Fis. Univ. Modena, 46(2)(1998), 263-276. MR1665883 (99j:54043).
[12] Ciric L.B., Fixed Point Theory, Contraction Mapping Principle, FME Press, Beograd 2003.
[13] Ciric L.B., Ume J.S., Common Fixed Point Theorems for Multi-valued Non-self Mappings, Publ. Math. Debrecen, 60(3-4)(2002), 359-371.
[14] Ciric L.B., Ume J.S., On the Convergence of Ishikawa Iterates to A Common Fixed Point of Multi-valued Mappings, Demonstratio Math., 36(4)(2003), 951-956.
[15] Daffer P.Z., Kaneko H., Fixed Points of Generalized Contractive Multi-valued Mappings, J. Math. Anal. Appl., 192(1995), 655-666.
[16] Geraghty M.A., On Contractive Mappings, Proc. Amer. Math. Soc., 40(1973), 604-608.
[17] Goffman C., Pedrick G., First Course in Functional Analysis, Prentice Hall of India, Private Limited, New Delhi-11000 (1993).
[18] Iтон S., Multi-valued Generalized Contractions and Fixed Point Theorems, Comment. Math. Univ. Carolin., 18(1977), 247-258.
[19] Joshi M.C., Bose R.K., Some Topics in Nonlinear Functional Analysis, Wiley Eastern Limited (1985).
[20] Kaneko H., A General Principle for Fixed Points of Contractive Multi-valued Mappings, Math. Japon., 31(1986), 407-411.
[21] Kaneko H., Generalized Contractive Multi-valued Mappings and their Fixed Points, Math. Japon., 33(1988), 57-64.
[22] Khamsi M.A., Kirk W.A., An Introduction to Metric Spaces and Fixed Point Theory, John Wiley \& Sons, Inc. (2001).
[23] Kubiaczyk I., Ali N.M., On the Convergence of the Ishikawa Iterates to A Common Fixed Point for A Pair of Multi-valued Mappings, Acta Math. Hungar., 75(3)(1997), 253-257.
[24] Lim T.C., On Fixed Point Stability for Set-valued Contractive Mappings with Applications to Generalized Differential Equations, J. Math. Anal. Appl., 110(2)(1985), 436-441.
[25] Markins J.T., A Fixed Point Theorem for Set-valued Mappings, Bull. Amer. Math. Soc., 74(1968), 639-640.
[26] Mizoguchi N., Takahashi W., Fixed Point Theorems for Multi-valued Mappings on Complete Metric Spaces, J. Math. Anal. Appl., 141(1989), 177-188.
[27] Nadler S.B., Multi-valued Contraction Mappings, Pacific J. Math., 30(1969), 282-291.
[28] Picard E., Memoire sur la Theorie des Equations aux Derivees partielles et
la Methode des Approximations Successives, J. Math. Pures et Appl., 6(1890), 145-210.
[29] Rhoades B.E., A Comparison of Various Definitions of Contractive Mappings, Trans. Amer. Math. Soc., 226(1977), 257-290.
[30] Rhoades B.E., A Fixed Point Theorem for A Multi-valued Non-self Mapping, Comment. Math. Univ. Carolin., 37(1996), 401-404.
[31] Rhoades B.E., Watson B., Fixed Points for Set-valued Mappings on Metric Spaces, Math. Japon., 35(4)(1990), 735-743.
[32] Rus I.A., Fixed Point Theorems for Multi-valued Mappings in Complete Metric Spaces, Math. Japon., 20(1975), 21-24.
[33] Rus I.A., Generalized Contractions and Applications, Cluj Univ. Press, Cluj Napoca (2001).
[34] Rus I.A., Petrusel A., Petrusel G., Fixed Point Theory, 1950-2000, Romanian Contributions, House of the Book of Science, Cluj Napoca (2002).
[35] Singh S.L., Bhatnagar C., Hashim A.M., Round-off Stability of Picard Iterative Procedure for Multi-valued Operators, Nonlinear Anal. Forum, 10(2005), 13-19.
[36] Zeidler E., Nonlinear Functional Analysis and its Applications-Fixed Point Theorems, Springer-Verlag, New York, Inc. (1986).

Memudu Olaposi Olatinwo
Department of Mathematics
Obafemi Awolowo University, Ile-Ife, Nigeria
e-mail: polatinwo@oauife.edu.ng or molaposi@yahoo.com

Christopher O. Imoru
Department of Mathematics
Obafemi Awolowo University, Ile-Ife, Nigeria
e-mail: cimoru@oauife.edu.ng

Received on 19.10.2007 and, in revised form, on 05.12.2007.

