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Abstract. In this paper, we establish some convergence results
in a complete b−metric space for the Picard iteration associated to
two multi-valued weak contractions by employing the concepts of
monotone and comparison functions. Our results generalize and
extend those of Berinde and Berinde [8], Daffer and Kaneko [15]
and Nadler [27]. Theorem 2.1 in our paper generalizes Theorem 5
of Nadler [27] and a recent result of Berinde and Berinde [8], it also
extends, improves and unifies several classical results pertainning
to single and multi-valued contractive mappings in the fixed point
theory. Also, Theorem 2.3 is a generalization and extension of
Theorem 5 of Nadler [27] as well as Theorem 4 of Berinde and
Berinde [8].
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1. Introduction

Let (X, d) be a complete metric space and CB(X) denote the family of
all nonempty closed and bounded subsets of X. For A, B ⊂ X, define the
distance between A and B by D(A,B) = inf {d(a, b) | a ∈ A, b ∈ B}, the
diameter of A and B by δ(A,B) = sup {d(a, b) | a ∈ A, b ∈ B}, and the
Hausdorff-Pompeiu metric on CB(X) by

H(A,B) = max {sup {d(a, B) | a ∈ A} , sup {d(b, A) | b ∈ B}}

H(A, B) is induced by d.
Let P (X) be the family of all nonempty subsets of X and T : X → P (X)

a multi-valued mapping. Then, an element x ∈ X such that x ∈ T (x) is
called a fixed point of T . Denote the set of all the fixed points of T by Fix
(T ), that is, Fix (T ) = {x ∈ X | x ∈ T (x)}.
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Markins [25] and Nadler [27] initiated the study of fixed point theorems
for multi-valued operators. The celebrated Banach’s fixed point theorem is
extended to the following result of Nadler [27] from the single-valued maps
to the multi-valued contractive maps.

Theorem 1 (Nadler [27]). Let (X, d) be a complete metric space and
T : X → CB(X) a set-valued α-contraction, that is, a mapping for which
there exists a constant α ∈ (0, 1), such that

(1) H(Tx, Ty) ≤ αd(x, y), ∀ x, y ∈ X.

Then T has at least one fixed point.

For the Banach’s fixed point theorem and its various generalizations in
single-valued case, we refer to Agarwal et al [1], Banach [2], Berinde [3, 4,
5, 6, 7] and some other references in the reference section of this paper.

Apart from Markins [25] and Nadler [27], several other papers have been
devoted to the treatment of multi-valued operators and these include Berinde
and Berinde [8], Ciric [12], Ciric and Ume [13, 14], Daffer and Kaneko [15],
Itoh [18], Kaneko [20, 21], Kubiaczyk and Ali [23], Lim [24], Mizoguchi [26]
and some others in the reference section. The following definitions shall be
required in the sequel.

Definition 1. A function ϕ : IR+ → IR+ is called (c)-comparison if it
satisfies:

(i) ϕ is monotone increasing;
(ii) ϕn(t) → 0 as n →∞, ∀ t > 0 (ϕn stands for the nth iterate of ϕ);
(iii)

∑∞
n=0 ϕn(t) < ∞ for all t > 0.

We say that ϕ is a comparison function if it satisfies (i) and (ii) only. See
[3, 4] and [33] for detail.

Remark 1. Every comparison function ϕ : IR+ → IR+ satisfies ϕ(t) < t.

Definition 2. Let (X, d) be a metric space and T : X → P (X) a
multi-valued operator. T is said to be a multi-valued weakly Picard (MWP)
Operator if and only if for each x ∈ X and any y ∈ T (x), there exists a
sequence {xn}∞n=0 such that

(i) x0 = x, x1 = y;
(ii) xn+1 ∈ T (xn) for all n = 0, 1, · · · ;
(iii) the sequence {xn}∞n=0 is convergent and its limit is a fixed point

of T .

Remark 2. A sequence {xn}∞n=0 satisfying conditions (i) and (ii) in
Definition 2 will be called a sequence of successive approximations of T ,
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starting from (x, y) or a Picard iteration associated to T or a (Picard) orbit
of T at the initial point x0.

Definition 3. Let (X, d) be a metric space and T : X → P (X) a
multi-valued operator. T is said to be a multi-valued weak contraction or
a multi-valued (θ, L)-contraction if and only if there exist two constants
θ ∈ (0, 1) and L ≥ 0 such that

(2) H(Tx, Ty) ≤ θd(x, y) + LD(y, Tx), ∀ x, y ∈ X.

For Definition 3 and Definition 3, see [8].
We state the following results on multi-valued operators:

Theorem 2 (Berinde and Berinde [8]). Let (X, d) be a complete
metric space and T : X → CB(X) a multi-valued (θ, L)-weak contraction.
Then,

(i) Fix (T ) 6= φ;
(ii) for any x0 ∈ X, there exists an orbit {xn}∞n=0 of T at the point x0

that converges to a fixed point u of T , for which the following estimates hold:

d(xn, u) ≤ hn

1− h
d(x1, x0), n = 0, 1, · · · ,

d(xn, u) ≤ h

1− h
d(xn, xn−1), n = 1, 2, · · · ,

for a certain constant h < 1.

By replacing the term θd(x, y) in condition (2) by α(d(x, y))d(x, y), where
the function α : [0,∞) → [0, 1) satisfies lim sup

r→t+
α(r) < 1, for every t ∈ [0,∞),

then the authors obtained the following result:

Theorem 3 (Berinde and Berinde [8]). Let (X, d) be a complete
metric space and T : X → CB(X) a generalized multi-valued (α, L)-weak
contraction, that is, a mapping for which there exists a function α : [0,∞) →
[0, 1) satisfying lim sup

r→t+
α(r) < 1, for every t ∈ [0,∞), such that

(3) H(Tx, Ty) ≤ α(d(x, y))d(x, y) + LD(y, Tx), ∀ x, y ∈ X.

Then T has at least one fixed point.

Definition 4 (Czerwik [11]). Let X be a (nonempty) set and s ≥ 1
a real number. A function d : X × X → IR+ is said to be a b-metric if
∀ x, y, z ∈ X,

(i) d(x, y) = 0 iff x = y;
(ii) d(x, y) = d(y, x);
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(iii) d(x, z) ≤ s[d(x, y) + d(y, z)].
The pair (X, d) is called a b−metric space. In fact, the class of b−metric
spaces is effectively larger than that of metric spaces, since a b−metric is a
metric when s = 1.

In this paper, we obtain more general results than those of Berinde and
Berinde [8] using the following two general contractive definitions:

Definition 5. Let (X, d) be a b−metric space and T : X → P (X) a
multi-valued operator. T is said to be a generalized multi-valued (ψ,ϕ)-weak
contraction if and only if there exist a continuous monotone increasing func-
tion ϕ : IR+ → IR+ with ϕ(0) = 0 and a continuous (c)-comparison function
ψ : IR+ → IR+ such that

(?) H(Tx, Ty) ≤ q−1[ψ(d(x, y)) + ϕ(D(y, Tx))], q > 1, ∀ x, y ∈ X.

We also have that T is a generalized multi-valued φ-weak contraction if
and only if there exist a function α : [0,∞) → [0, 1) and two continuous
monotone increasing functions φ1, φ2 : IR+ → IR+ with φ1(0) = 1 and
φ2(0) = 0 such that

(??) H(Tx, Ty) ≤ [α(d(x, y))d(x, y)]φ1(D(y,Tx))+φ2(D(y, Tx)), ∀ x, y ∈ X,

where lim sup
r→t+

α(r) < 1, for every t ∈ [0,∞).

Remark 3. (i) If in condition (?), ψ(u) = qθu, θ ∈ (0, 1), qθ < 1,
∀ u ∈ IR+ and ϕ(v) = qLv, L ≥ 0, ∀ v ∈ IR+, then we obtain condition (2),
which was employed in the proof of Theorem 1.7 by Berinde and Berinde
[8] (Theorem 1.7 is Theorem 3 of Berinde and Berinde [8].

(ii) In condition (?), if ψ(u) = qθu, qθ < 1, θ ∈ (0, 1), ∀ u ∈ IR+ and
ϕ2(v) = 0, ∀ v ∈ IR+, then we obtain Theorem 1.1 which is Theorem 5 of
Nadler [27].

(iii) In a similar manner, the condition (??) reduces to that employed by
Berinde and Berinde [8] if φ1(u) = 1, ∀ u ∈ IR+ and φ2(v) = Lv, L ≥ 0,
∀ v ∈ IR+, while we obtain the contractive condition in Corollary 2.2 of
Daffer and Kaneko [15] when φ2(v) = 0, ∀ v ∈ IR+.

However, we shall require the following Lemma in the sequel.

Lemma 1. Let (X, d) be a metric space. Let A, B ⊂ X and q > 1. Then,
for every a ∈ A, there exists b ∈ B such that

d(a, b) ≤ qH(A, B).

Lemma 1 is contained in Berinde and Berinde [8], Ciric [12] and Rus [32]
in a metric space setting.
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Lemma 2 (Nadler [27]). : Let A,B ⊂ CB(X) and let a ∈ A. Then,
there exists b ∈ B such that

d(a, b) ≤ H(A,B) + η.

Remark 4. The constants α and αk, k ≥ 1, play the role of η in (1).
We shall employ Lemma 2 in the proof of Theorem 2.4 in the sequel.

2. Main results

In this section, we shall establish our main results:

Theorem 4. Let (X, d) be a complete b−metric space with continuous
b−metric and T : X → CB(X) a generalized multi-valued (ψ, ϕ)-weak
contraction. Suppose that ψ : IR+ → IR+ is a continuous (c)-comparison
function and ϕ : IR+ → IR+ is a continuous monotone increasing function
such that ϕ(0) = 0. Then,

(i) Fix (T ) 6= φ;
(ii) for any x0 ∈ X, there exists an orbit {xn}∞n=0 of T at the point x0

that converges to a fixed point x∗ of T ;
(iii) the a priori and the a posteriori error estimates are given by

(4) d(xn, x∗) ≤ s
∞∑

k=0

ψk+n(d(x0, x1)), s ≥ 1, n = 1, 2, · · · ,

(5) d(xn, x∗) ≤ s

∞∑

k=0

ψk(d(xn−1, xn)), s ≥ 1, n = 1, 2, · · · ,

respectively.

Proof. Let q > 1. Let x0 ∈ X and x1 ∈ Tx0. If H(Tx0, Tx1) = 0, then
Tx0 = Tx1, that is, x1 ∈ Tx1, which implies that Fix (T ) 6= φ.

Let H(Tx0, Tx1) 6= 0. Then, we have by Lemma 1 that there exists
x2 ∈ Tx1 such that

d(x1, x2) ≤ qH(Tx0, Tx1),

so that by (?) we have

d(x1, x2) ≤ q q−1[ψ(d(x0, x1)) + ϕ(D(x1, Tx0))]
= ψ(d(x0, x1)) + ϕ(D(x1, x1))
= ψ(d(x0, x1)).
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If H(Tx1, Tx2) = 0, then Tx1 = Tx2, that is, x2 ∈ Tx2. Let H(Tx1, Tx2) 6=
0. Again, by Lemma 1.12, there exists x3 ∈ Tx2 such that

d(x2, x3) ≤ qH(Tx1, Tx2) ≤ q q−1[ψ(d(x1, x2)) + ϕ(D(x2, Tx1))](6)
= ψ(d(x1, x2)) + ϕ(D(x2, x2))
= ψ(d(x1, x2)) ≤ ψ2(d(x0, x1))

By induction, we obtain

(7) d(xn, xn+1) ≤ ψn(d(x0, x1)).

Therefore, we have by the property (iii) of Definition 4 that

d(xn, xn+p) ≤ s[d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+p−1, xn+p)](8)
≤ s[ψn(d(x0, x1)) + ψn+1(d(x0, x1)) + · · ·+ ψn+p−1(d(x0, x1))]

(9) d(xn, xn+p) = s

n+p−1∑

k=n

ψk(d(x0, x1))

From (9), we have

d(xn, xn+p) ≤ s

n+p−1∑

k=n

ψk(d(x0, x1)(10)

= s

[
n+p−1∑

k=0

ψk(d(x0, x1)−
n−1∑

k=0

ψk(d(x0, x1)

]
→ 0 as n →∞.

We therefore have from (10), that for any x0 ∈ X, {xn}∞n=0 is a Cauchy se-
quence in X. Since (X, d) is a complete b−metric space, then {xn}∞n=0 con-
verges to some x∗ ∈ X. That is,

(11) lim
n→∞xn = x∗.

Therefore, by (?), we have that

D(x∗, Tx∗) ≤ s[d(x∗, xn+1) + d(xn+1, Tx∗)](12)
≤ s[d(x∗, xn+1) + H(Txn, Tx∗)]
≤ sd(x∗, xn+1) + sq−1[ψ(d(xn, x∗)) + ϕ(D(x∗, Txn))]

By using (11), the continuity of the functions ψ, ϕ and the fact that xn+1 ∈
Txn, then ϕ(D(x∗, Txn)) → 0 as n → ∞ and ψ(d(xn, x∗)) → 0 as n → ∞.
It follows from (12) that D(x∗, Tx∗) = 0 as n → ∞. Since Tx∗ is closed,
then x∗ ∈ Tx∗.
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To prove the a priori error estimate in (4), we have from (9) that

d(xn, xn+p) ≤ s

n+p−1∑

k=n

ψk(d(x0, x1)) = s

p−1∑

k=0

ψn+k(d(x0, x1)),

from which it follows by the continuity of the b−metric that

d(xn, x∗) = d(x∗, xn) = lim
p→∞ d(xn+p, xn) ≤ s

∞∑

k=0

ψn+k(d(x0, x1)),

giving the result in (4). To prove the a posteriori estimate in (5), we get by
condition (?) and Lemma 1 that

d(xn, xn+1) ≤ qH(Txn−1, Txn)
≤ q q−1[ψ(d(xn−1, xn)) + ϕ(D(xn, Txn−1))]
= ψ(d(xn−1, xn)) + ϕ(D(xn, xn)) = ψ(d(xn−1, xn)).

Also, we have

d(xn+1, xn+2) ≤ ψ(d(xn, xn+1)) ≤ ψ2(d(xn−1, xn)),

so that in general, we obtain

(13) d(xn+k, xn+k+1) ≤ ψk+1(d(xn−1, xn)), k = 0, 1, · · · .

Using (13) in (8) yields

d(xn, xn+p) ≤ s[ψ(d(xn−1, xn)) + ψ2(d(xn−1, xn)) + · · ·
+ ψp−1(d(xn−1, xn))]

= s

p−1∑

k=0

ψk(d(xn−1, xn))(14)

Again, by taking limits in (14) as p → ∞ and using the continuity of the
b−metric, we have

d(xn, x∗) = d(x∗, xn) = lim
p→∞ d(xn+p, xn) ≤ s

∞∑

k=0

ψk(d(xn−1, xn)),

giving the required a posteriori error estimate. ¥

Remark 2. Theorem 4 is a generalization and extension of Theorem 2
(which is itself Theorem 3 of Berinde and Berinde [8]). It is also a gener-
alization and extension of Theorem 1 (which is Theorem 5 of Nadler [27]).
Indeed, Theorem 4 is a generalization and extension of a multitude of results
in the literature pertainning to the single-valued and multi-valued cases.
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Theorem 5. Let (X, d) be a complete b−metric space with continuous
b−metric and T : X → CB(X) a generalized multi-valued φ-weak con-
traction. Suppose that there exist a function α : [0,∞) → [0, 1) satisfying
lim sup

r→t+
α(r) < 1, for every t ∈ [0,∞) and two continuous monotone increas-

ing functions φ1, φ2 : IR+ → IR+ such that φ1(0) = 1 and φ2(0) = 0. Then,
T has at least one fixed point.

Proof. The theorem is proved using the idea of Berinde and Berinde [8]
as well as Daffer and Kaneko [15]. Suppose that x0 ∈ X and x1 ∈ Tx0. We
choose a positive integer N1 such that

(15) αN1(d(x0, x1)) ≤ [1− α(d(x0, x1))]d(x0, x1).

By Lemma 2, there exists x2 ∈ Tx1 such that

(16) d(x1, x2) ≤ H(Tx0, Tx1) + αN1(d(x0, x1)).

Using (??) and (15) in (16), then we have

d(x1, x2) ≤ [α(d(x0, x1))d(x0, x1)]
φ1(D(x1,Tx0))

+ φ2(D(x1, Tx0)) + αN1(d(x0, x1))
= α(d(x0, x1))d(x0, x1) + αN1(d(x0, x1)) ≤ d(x0, x1).

Now, we choose again a positive integer N2, N2 > N1 such that

(17) αN2(d(x1, x2)) ≤ [1− α(d(x1, x2))]d(x1, x2).

Since Tx2 ∈ CB(X), by Lemma 2 again, we can select x3 ∈ Tx2 such that

(18) d(x2, x3) ≤ H(Tx1, Tx2) + αN2(d(x1, x2)).

Again, using (??) and (17) in (18), then we get

d(x2, x3) ≤ [α(d(x1, x2))d(x1, x2)]
φ1(D(x2,Tx1))

+ φ2(D(x2, Tx1)) + αN2(d(x1, x2))
= α(d(x1, x2))d(x1, x2) + αN2(d(x1, x2)) ≤ d(x1, x2).

By induction, since Txk ∈ CB(X), for each k, we may choose a positive
integer Nk such that

(19) αNk(d(xk−1, xk)) ≤ [1− α(d(xk−1, xk))] d(xk−1, xk).

By selecting xk+1 ∈ Txk such that

(20) d(xk, xk+1) ≤ H(Txk−1, Txk) + αNk(d(xk−1, xk)),
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so that using (??) and (19) in (20) yield

(21) d(xk, xk+1) ≤ d(xk−1, xk).

Let dk = d(xk, xk−1), k = 1, 2, · · · . The inequality relation (21) shows that
the sequence {dk} of nonnegative numbers is decreasing. Therefore, lim

k→∞
dk

exists. Thus, let lim
k→∞

dk = c ≥ 0.

We now prove that the Picard iteration or orbit {xk} ⊂ X so generated
is a Cauchy sequence. By condition on α, for t = c we have lim sup

t→c+
α(t) < 1.

For k ≥ k0, let α(dk) < h, where lim
t→c+

supα(t) < h < 1. Using (20), we have

by deduction that {dk} satisfies the recurrence inequality:

(22) dk+1 ≤ dkα(dk) + αNk(dk), k = 1, 2, · · · .

Using induction in (22) leads to

(23) dk+1 ≤ Πk
j=1α(dj)d1 +

k−1∑

m=1

Πk
j=m+1α(dj)αNm(dm)+αNk(dk), k ≥ 1.

We now find a suitable upper bound for the right-hand side of (23), using
the fact that α < 1 as follows:

dk+1 ≤ Πk
j=1α(dj)d1 +

k−1∑

m=1

Πk
j=m+1α(dj)αNm(dm) + αNk(dk)(24)

< d1h
k +

k−1∑

m=1

hk−mhNm + hNk = d1h
k + hk

k−1∑

m=1

hNm−m + hNk

≤ C1h
k + C2h

k + C3h
k = C4h

k, where C4 = C1 + C2 + C3.

and C1, C2, C3, C4 are constants.
Now, for k ≥ k0 and p ∈ IN, we have by using (24) and the repeated

application of the triangle inequality that

d(xk, xk+p) ≤ s[d(xk, xk+1) + d(xk+1, xk+2) + · · ·+ d(xk+p−1, xk+p)](25)
= s[dk+1 + dk+2 + · · ·+ dk+p]
≤ s[C4(hk + hk+1 + · · ·+ hk+p−1)]

= C4

(
1− hp

1− h

)
hks = C5h

ks,

where C5 is a constant.
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Since 0 < h < 1, then the right-hand side of (25) tends to 0 as k → ∞,
showing that {xk} is a Cauchy sequence. Therefore, xk → u ∈ X as k →∞
since X is a complete b−metric space. So,

D(u, Tu) ≤ s[d(u, xk) + d(xk, Tu)] ≤ s[d(u, xk) + H(Txk−1, Tu)](26)

≤ sd(u, xk) + s [α(d(xk−1, u))d(xk−1, u)]φ1(D(u,Txk−1))

+φ2(D(u, Txk−1))

< sd(u, xk) + s [h d(xk−1, u)]φ1(D(u,Txk−1))

+ sφ2(D(u, Txk−1)), s ≥ 1.

By using the fact that xk ∈ Txk−1 and xk → u as k → ∞, we have
D(u, Txk−1) → 0 as k → ∞. We therefore, have by the continuity of φj

(j = 1, 2) that φ1(D(u, Txk−1)) → 1 as k → ∞ and φ2(D(u, Txk−1)) → 0
as k → ∞. Hence, since the right-hand side terms of (26) tend to zero as
k → ∞, we have u ∈ Tu. Using the continuity of the b−metric in (25) as
p →∞, we obtain an error estimate

d(xk, u) = lim
p→∞ d(xk, xk+p) ≤ C5h

ks, k ≥ k0, s ≥ 1,

for the Picard iteration process under condition (??). ¥

Remark 3. Theorem 5 generalizes and extends Theorem 4 of Berinde
and Berinde [8], Theorem 2.1 of Daffer and Kaneko [15] and some related
results in kaneko [20, 21] as well as Nadler’s fixed point theorem [27]. Similar
results in single-valued case are also extended by Theorem 5.
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