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Abstract. In this paper, we shall introduce a Jungck-Noor
three-step iteration process to establish a strong convergence re-
sult for a pair of nonselfmappings in an arbitrary Banach space
by employing a general contractive condition.
Our result is a generalization and extension of a multitude of
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1. Introduction

Let (E, ||.||) be a Banach space and T : E → E a selfmap of E. Suppose
that FT = {p ∈ E | Tp = p} is the set of fixed points of T.

There are several iteration processes for which the fixed points of oper-
ators have been approximated over the years by various authors. In the
Banach space setting, we shall state some of these iteration processes as
follows:

For x0 ∈ E, the sequence {xn}∞n=0 defined by

(1) xn+1 = (1− αn)xn + αnTxn, n = 0, 1, · · · ,

where {αn}∞n=0 ⊂ [0, 1], is called the Mann iteration process (see Mann [13]).
For x0 ∈ E, the sequence {xn}∞n=0 defined by

(2)
{

xn+1 = (1− αn)xn + αnTzn

zn = (1− βn)xn + βnTxn
, n = 0, 1, · · · ,
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where {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1], is called the Ishikawa
iteration process (see Ishikawa [8]). The three-step iteration process of Noor
[14] is defined iteratively by the sequence {xn}∞n=0 as follows:

(3)





xn+1 = (1− αn)xn + αnTzn

zn = (1− βn)xn + βnTyn

yn = (1− γn)xn + γnTxn

, n = 0, 1, · · · , x0 ∈ E,

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are sequences in [0, 1].
The following is the iteration process introduced by Singh et al [22] to

establish some stability results: Let S and T be operators on an arbitrary
set Y with values in E such that T (Y ) ⊆ S(Y ) and S(Y ) is a complete
subspace of E. Then, for x0 ∈ Y , the sequence {Sxn}∞n=0 defined by

(4) Sxn+1 = (1− αn)Sxn + αnTxn, n = 0, 1, · · · ,

where {αn}∞n=0 is a sequence in [0, 1] is called the Jungck-Mann iteration
process.

If αn = 1 and Y = E in (2), then we obtain

(5) Sxn+1 = Txn, n = 0, 1, 2, · · · ,

which is the Jungck iteration. See Jungck [9] for detail.
Berinde [4] obtained a strong convergence result in an arbitrary Banach

space for the Ishikawa iteration process, while Rafiq [16] continued the study
in a normed space by using the Noor three-step iteration process. Moreover,
both authors employed the following contractive definition: For a mapping
T : E → E, there exist real numbers α, β, γ satisfying 0 ≤ α < 1, 0 ≤ β < 1

2 ,
0 ≤ γ < 1

2 respectively such that for each x, y ∈ E, at least one of the
following is true:





(z1) d(Tx, Ty) ≤ αd(x, y),
(z2) d(Tx, Ty) ≤ β [d(x, Tx) + d(y, Ty)] ,
(z3) d(Tx, Ty) ≤ γ [d(x, Ty) + d(y, Tx)] .

(6)

(6) is called the Zamfirescu contraction condition which was employed by
Zamfirescu [23]. Condition (6) implies

(7) d(Tx, Ty) ≤ 2δd(x, Tx) + δd(x, y), ∀ x, y ∈ E,

where δ = max
{

α, β
1−β , γ

1−γ

}
, 0 ≤ δ < 1. See Theorem 2.4 of Berinde [3],

Theorem 2 of Berinde [4] and Theorem 3 of Rafiq [16] for the deduction
of (7).
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Condition (z1) of (6) is known as the Banach’s contraction condition. It
is a significant condition in the Banach’s fixed point theorem which is con-
tained in Banach [1], Zeidler [24] and several other references. Any mapping
satisfying condition (z2) of (6) is called a Kannan mapping, while Chatterjea
[6] employed condition (z3) to establish fixed point result in 1972.

In the next section, we shall introduce a Jungck-Noor iteration process
to extend the results of Berinde [4] and Rafiq [16] in an arbitrary Banach
space. In establishing our result, a more general contractive condition than
(6) will be considered.

2. Preliminaries

We shall introduce the following iteration process in establishing our
results. Let (E, ||.||) be a Banach space and Y an arbitrary set. Let
S, T : Y → E be two nonselfmappings such that T (Y ) ⊆ S(Y ), S(Y ) is
a complete subspace of E and S is injective. Then, for x0 ∈ Y , define the
sequence {Sxn}∞n=0 iteratively by

(8)





Sxn+1 = (1− αn)Sxn + αnTzn

Szn = (1− βn)Sxn + βnTyn

Syn = (1− γn)Sxn + γnTxn

, n = 0, 1, · · · ,

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are sequences in [0, 1]. The iteration
process defined in (8) will be called the Jungck-Noor iteration process. The
iteration processes (1)-(5) are special cases of (8).

(i) For instance, if in (8), S is identity operator and Y = E, then we
obtain the Noor three-step iteration process of (3).

(ii) Since S is injective, if γn = 0 in (8), we obtain the Jungck-Ishikawa
iteration process of Olatinwo [15].

(iii) Again, since S is injective, if Y = E, αn = 1, βn = γn = 0, then for
x0 ∈ Y , Jungck-Noor iteration process (8) reduces to the Jungck iteration
process of (5). In addition to the iteration process (8), we shall employ the
following contractive definition:

Definition 1. For two nonselfmappings S, T : Y → E with T (Y ) ⊆
S(Y ), where S(Y ) is a complete subspace of E, there exist: real numbers
M ≥ 0, a ∈ [0, 1) and a monotone increasing function ϕ : IR+ → IR+ such
that ϕ(0) = 0 and for all x, y ∈ Y , we have

(9) ||Tx− Ty|| ≤ ϕ(||Sx− Tx||) + a||Sx− Sy||
1 + M ||Sx− Tx|| .

If M = 0, Y = E and S is identity operator in (9), then we obtain the
contractive condition which was earlier introduced in Imoru and Olatinwo
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[7] to establish some stability results. The contractive condition (9) is more
general than (6) or (7) in the sense that it reduces to (7) if Y = E, M = 0,
ϕ(u) = 2δu, ∀ u ∈ IR+, a = δ ∈ [0, 1) and S is identity operator. Condition
(9) also reduces to that of Singh et al [22] if M = 0, and ϕ(u) = Lu, L ≥ 0,
∀ u ∈ IR+.

Definition 2. Let X and Y be two nonempty sets and S, T : X → Y
two mappings. Then, an element x∗ ∈ X is a coincidence point of S and T
if and only if Sx∗ = Tx∗. Denote the set of the coincidence points of S and
F by C(S, T ). There are several papers and monographs on the coincidence
point theory. However, we refer our readers to Rus [20] and Rus et al [21]
for the Definition 2 and some coincidence point results.

In this paper, we shall employ the Jungck-Noor iteration process defined
in (8) to establish a strong convergence result for a pair of nonselfmappings
in an arbitrary Banach space using the contractive condition (9). Our result
is a generalization and extension of some of the results of Kannan [11, 12],
Rhoades [17, 18] and those of Berinde [4], Rafiq [16] and Olatinwo [15].

3. Main result

Theorem 1. Let (E, ||.||) be an arbitrary Banach space and Y is an
arbitrary set. Suppose that S, T : Y → E are nonselfoperators such that
T (Y ) ⊆ S(Y ), S(Y ) a complete subspace of E and S is an injective operator.
Let z be a coincidence point of S and T (that is, Sz = Tz = p). Suppose
that S and T satisfy condition (9). Let ϕ : IR+ → IR+ be a monotone
increasing function such that ϕ(0) = 0. For x0 ∈ Y, let {Sxn}∞n=0 be the
Jungck-Noor iteration process defined by (8), where {αn}∞n=0, {βn}∞n=0 and
{γn}∞n=0 are sequences in [0, 1] such that

∑∞
n=0 αn = ∞. Then, {Sxn}∞n=0

converges strongly to p.

Proof. Let C(S, T ) be the set of the coincidence points of S and T . It has
been shown in Olatinwo [15] that S and T satisfying condition (9) have a
unique coincidence point z ∈ C(S, T ).

We now prove that {Sxn}∞n=0 converges strongly to p (where Sz = Tz =
p) using condition (9). Therefore,

||Sxn+1 − p|| ≤ (1− αn)||Sxn − p||+ αn||Tz − Tzn||(10)

≤ (1− αn)||Sxn − p||+ αn

[
ϕ(||Sz − Tz||) + a||Sz − Szn||

1 + L||Sz − Tz||
]

= (1− αn)||Sxn − p||+ aαn||p− Szn||.
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Now, we have that

||p− Szn|| = ||(1− βn)(p− Sxn) + βn(p− Tyn)||(11)
≤ (1− βn)||Sxn − p||+ aβn||p− Syn||.

Using (11) in (10) yields

(12) ||Sxn+1−p|| ≤ [1− (1−a)αn−aαnβn]||Sxn−p||+a2αnβn||p−Syn||.
Furthermore, we have

||p− Syn|| ≤ (1− γn)||Sxn − p||+ γn||p− Txn||(13)
≤ (1− γn + aγn)||p− Sxn||.

Using (13) in (12) yields

||Sxn+1 − p|| ≤ [1− (1− a)αn − (1− a)aαnβn(14)
− (1− a)a2αnβnγn]||Sxn − p||

≤ [1− (1− a)αn]||Sxn − p||
≤ Πn

j=0[1− (1− a)αj ]||Sx0 − p||
≤ e−(1−a)

Pn
j=0 αj ||Sx0 − p|| → 0 as n →∞.

Therefore, we obtain from (14) that lim
n→∞ ||Sxn+1 − p|| = 0, i.e. {Sxn}∞n=0

converges strongly to p. ¥

Remark 2. Theorem 1 is a generalization and extension of a multitude
of results. In particular, Theorem 1 is a generalization and extension of both
Theorem 1 and Theorem 2 of Berinde [4], Theorem 3 of Rafiq [16], Theorem
2 and Theorem 3 of Kannan [11], Theorem 3 of Kannan [12], Theorem 4 of
Rhoades [17] (which is Theorem 4.10 of Berinde [3]) as well as Theorem 8
of Rhoades [18] (which is Theorem 5.6 of Berinde [3]).

Corollary 1 (Olatinwo [15]). Let(E, ||.||) be an arbitrary Banach space
and Y is an arbitrary set. Suppose that S, T : Y → E are nonselfoperators
such that T (Y ) ⊆ S(Y ), S(Y ) a complete subspace of E, and S is an injec-
tive operator. Let z be a coincidence point of S and T (that is, Sz = Tz = p).
Suppose that S and T satisfy condition (9). Let ϕ : IR+ → IR+ be a
monotone increasing function such that ϕ(0) = 0. For x0 ∈ Y , let {Sxn}∞n=0

be the Jungck-Ishikawa iteration process defined by

(15)

{
Sxn+1 = (1− αn)Sxn + αnTzn

Szn = (1− βn)Sxn + βnTxn, n = 0, 1, · · · ,

where {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1] such that
∑∞

n=0 αn = ∞.
Then, {Sxn}∞n=0 converges strongly to p.
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