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Abstract. Let H(x), x = (x1, x2, . . . , xn), be an entire harmonic
function in <n.Fryant and Shankar [1] had obtained growth prop-
erties of H explicitly in terms of its Fourier coefficients. In this
paper, we obtain the characterizations of generalized order and
type and introduce the generalized lower order for H.Special case
of functions of slow growth has also been considered. Our results
generalize some of the results obtained in [1].
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1. Introduction

Let Hk denote the set of all homogeneous harmonic polynomials in the
n variables x1, x2, . . . xn, having real coefficients. Then Hk is a vector space
of dimension dk where

dk = (n + 2k − 2)
(n + k − 3)!
k! (n− 2)!

(see [9, p.145]) with respect to the inner product

< f, g > =
1

ωn−1

∫

|x|=1

f(x) g(x) dσ1,

where ωn−1 denotes the area of the unit sphere |x| = (
∑n

i=1 x2
i )

1/2 = 1
and dσ1 is the element of surface area on this sphere. Let {Y m

k }dk
m=1 be an

orthonormal basis for Hk.These orthonormal, homogeneous and harmonic
polynomials Y m

k are called spherical harmonics of degree k and satisfy the
orthogonality relation (see [9, p.141]):

∫

|x|=1

Y µ
k (x) Y ν

j (x)dσ1 = 0 if j 6= k,



80 Girja S. Srivastava

Let H be harmonic in a neighborhood Ω of the origin in <n, that is, H
satisfies the Laplace equation

∂2H

∂x2
1

+
∂2H

∂x2
2

+ · · · +
∂2H

∂x2
n

= 0

throughout Ω. Then on the sphere {x : |x| ≤ η, 0 < η < ∞} contained in
Ω, the function H has the Fourier series expansion in terms of the spherical
harmonics as

(1) H(x) =
∞∑

k=0

dk∑

m=1

akm rkY m
k (x/r), r = |x|

where
akm =

1
ωn−1 ρn+2k−1

∫

|x|=η

H(x) Y m
k (x) dσ

and dσ = ηn−1dσ1 is the element of surface area on the sphere |x| = η. The
series (1) converges in the L2 norm on the sphere |x| = η and converges
uniformly and absolutely on compact subsets of the interior |x| < η.

Let us put |ak| =
[

dk∑
i=1

(aki)2
]1/2

. Fryant and Shankar [1] obtained radius

of convergence of the disk of uniform convergence of the series (1) in terms
of the sequence {ak}. Thus we have

Theorem A. [1, Theorem 1] The series

∞∑

k=0

dk∑

m=1

akm rkY m
k (x/r), r = |x|,

converges absolutely and uniformly on compact subsets of the disk |x| < R
where

R−1 = lim sup
k→∞

|ak|1/k

and further, such convergence obtains within no larger ball centered at the
origin. The series(1) represents an entire function when R = ∞.

Let M(r,H) = M(r) = max
|x|=r

|H(x)|. On the lines of usual definitions

of order and type for an entire function of a complex variable, Fryant and
Shankar [1] defined the growth parameters for an entire harmonic function
H(x). Thus the order ρ of H(x) is defined to be

(2) ρ = lim sup
r→∞

log log M(r)
log r

,
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and for 0 < ρ < ∞, the type T of H(x) is defined as

(3) T = lim sup
r→∞

log M(r)
rρ

.

Fryant and Shankar [1, Theorems 3 and 4] obtained characterizations of
the order and type in terms of the coefficients {ak}. However, they did not
consider the lower order of H as well as the further classification of entire
harmonic functions which are of fast growth or zero order. In this note,
we obtain the characterizations of growth parameters for these classes of
functions. We use the generalized functions as given by Seremeta [6] and
Shah [7].

2. Generalized order and generalized type

We first give some definitions.
Let φ : [a,∞) → R be a real valued function such that

(i) φ(x) > 0,
(ii) φ(x) is differentiable ∀x ∈ [a,∞),
(iii) φ(x) is strictly increasing, and
(iv) φ(x) →∞ as x →∞.
Further, for every real valued function γ(x) such that γ(x) → 0 as x →∞,
φ satisfies

(4) lim
x→∞

φ [(1 + γ(x) ) x]
φ(x)

= 1.

Then φ is said to belong to the class L0. The function φ(x) is said to belong
to the class Λ if φ(x) ∈ L0 and in place of (4), satisfies the stronger condition

(5) lim
x→∞

φ (cx)
φ(x)

= 1,

for all c, 0 < c < ∞. Functions φ satisfying (5) are also called slowly
increasing functions (see [5]).

Let f(z) be an entire function, its maximum modulus function being
given by

M(r, f) = max
|z|=r

|f(z)|.

Using the generalized functions of the class L0 and Λ, Seremeta [6], obtained
the following characterizations:
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Theorem B. Let α(t) ∈ Λ, β(t) ∈ L0. Set F (t, c) = β−1 [c α(t)]. If
dF (t, c)/d ln t = O(1) as t → ∞ for all c, 0 < c < ∞, then for the entire

function f(z) =
∞∑

n=0

cnzn,

(6) lim sup
r→∞

α (ln M(r, f))
β (ln r)

= lim sup
n→∞

α (n)

β
(

ln |cn|−1/n
) .

Theorem C. Let α(t) ∈ L0, β(t) ∈ L0, γ(t) ∈ L0. Let ρ be a fixed number,
0 < ρ < ∞. Set F (t, σ, ρ) = γ−1

{[
β−1 (σ α(t))

]1/ρ
}
. Suppose that

for all σ, 0 < σ < ∞, F satisfies: (a) If γ(t) ∈ Λand α(t) ∈ Λ, then
dF (t, σ, ρ)/d ln t = O(1) as t → ∞ (b) If γ(t) ∈ L0 − Λ or α(t) ∈ L0 − Λ,
then lim

t→∞ d lnF (t, σ, ρ)/d ln t = 1/ρ. Then we have

(7) lim sup
r→∞

α (ln M(r, f))
β [(γ(r))ρ]

= lim sup
n→∞

α (n/ρ)

β
{[

γ
(
e1/ρ |cn|−1/n

)]ρ} .

Later, S.M. Shah [7] called the left hand quantity in (6) as the generalized
order ρ(α, β, f) and introduced the generalized lower order λ(α, β, f) as

λ(α, β, f) = lim inf
r→∞

α (ln M(r, f))
β (ln r)

.

Further, Shah proved that

Theorem D. [7, Theorem 2] Let f(z) =
∞∑

n=0

cnzn be an entire function.

Set F (t) = β−1(α(t)). Let, for some function ψ(t) tending to ∞ (howsoever
slowly) as t →∞,

(8)
β(tψ(t))

β(et)
→ 0 as t →∞,

(9)
dF (t)

d(log t)
= 0(1) as t →∞,

(10) |cn/cn+1| is ultimately a non decreasing function of n.

Then
λ(α, β, f) = lim inf

n→∞
α (n)

β
(
ln |cn|−1/n

) .
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In the context of the entire harmonic function H(x) defined above, we
introduce the following functions of a complex variable z :

g(z) = ω−1
n−1

∞∑

k=0

|ak|
√

dkz
k and h(z) =

∞∑

k=0

|ak|2z2k.

Then

Mg(r) = max
|z|=r

|g(z)| = ω−1
n−1

∞∑

k=0

|ak|
√

dkr
k and

Mh(r) = max
|z|=r

|h(z)| =
∞∑

k=0

|ak|2r2k.

Fryant and Shankar [1, Theorems 2 and 3] showed that if H(x) is entire then
g(z) and h(z) are also entire. Further, we have

(11) Mh(r) ≤ M2(r) ≤ M2
g (r).

For the entire harmonic function H(x), we define the generalized order and
generalized lower order as

ρ ≡ ρ(α, β, H) = lim sup
r→∞

α (ln M(r))
β (ln r)

,

λ ≡ λ (α, β,H) = lim inf
r→∞

α (lnM(r))
β (ln r)

.

Further, when ρ is a non-zero, finite number, we define the generalized type
as

T ≡ T (α, β, H, ρ) = lim sup
r→∞

α (lnM(r))
β [(γ(r))ρ]

.

Here, the functions α(t), β(t), γ(t) pertain to the functions defined as in
Theorems B and C above.

We now prove

Theorem 1. Let H(x) be an entire harmonic function. Then its gener-
alized order is given as

(12) ρ = lim sup
k→∞

α (k)

β
(
ln |ak|−1/k

) .

Proof. From (11), we have

(13) ln Mh(r) ≤ 2 ln M(r) ≤ 2 ln Mg(r).
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Since α is a monotonic increasing function, we have

(14)
α (lnMh(r))

β (ln r)
≤ α (2 ln M(r))

β (ln r)
≤ α (2 ln Mg(r))

β (ln r)
.

From (6), we have for the entire function h(z),

lim sup
r→∞

α (lnMh(r))
β (ln r)

= lim sup
k→∞

α(2k)

β
(
ln |ak|−2

)(15)

= lim sup
k→∞

α (k)

β
(

ln |ak|−1/k
) .

Similarly, for the entire function g(z), we get

lim sup
r→∞

α (lnMg(r))
β (ln r)

= lim sup
k→∞

α (k)

β
(

1
k ln{ω−1

n−1 d
1/2
k |ak|−1}

) .

Now dk = (n + 2k − 2)
(n + k − 3)!
k! (n− 2)!

∼= 2kn−2 e3−n

(n− 2)| (using Stirling’s

formula) for all large values of k. Hence we get

1
k

ln
{

ω−1
n−1 d

1/2
k |ak|−1

} ∼= 1
k

ln |ak|−1 .

Thus

(16) lim sup
r→∞

α (lnMg(r))
β (ln r)

= lim sup
k→∞

α (k)

β
(
ln |ak|−1/k

) .

Since α(t) ∈ Λ, on combining the inequalities in (14), (15) and (16), we
finally get (12). This proves Theorem 1. ¥

Next we prove

Theorem 2. Let H(x) be an entire harmonic function such that (i)
|ak/ak+1| is ultimately a non decreasing function of k, (ii) functions α(t)
and β(t) satisfy the conditions (8) and (9). Then

λ ≡ λ(α, β,H) = lim inf
r→∞

α (lnM(r))
β (ln r)

= lim inf
k→∞

α (k)

β
(
ln |ak|−1/k

) .

Proof. As in Theorem 1, since α(t) ∈ Λ, we get from (13)

(17) lim inf
r→∞

α (lnMh(r))
β (ln r)

= lim inf
r→∞

α (lnM(r))
β (ln r)

= lim inf
r→∞

α (lnMg(r))
β (ln r)

.
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From the definition of dk, we find that

dk

dk+1
=

(k + 1)(n + 2k − 2)
(n + 2k)(n + k − 2)

which is a non-decreasing function of k for n ≥ 2.
Thus if (i) above holds then the ratio |ak

√
dk / ak+1

√
dk+1 | is also non

-decreasing for all large values of k.Consequently, we have from Theorem D,

lim inf
r→∞

α (ln Mg(r))
β (ln r)

= lim inf
k→∞

α (k)

β
(

ln
∣∣ω−1

n−1

√
dk ak

∣∣−1/k
)(18)

= lim inf
k→∞

α (k)

β
(

ln |ak|−1/k
) .

Again, under the assumption (i) above,|ak/ak+1|2 will be a non -decreasing
function of k . Hence applying Theorem D to the entire function h(z), we
get

lim inf
r→∞

α (ln Mh(r))
β (ln r)

= lim inf
k→∞

α (2k)

β
(

1
2k ln |ak|−2

)(19)

= lim inf
k→∞

α (k)

β
(

ln |ak|−1/k
) .

Using the relations (17), (18) and (19), we get the desired result and Theo-
rem 2 is proved. ¥

Remark 1. Taking α(t) = β(t) = ln t in Theorem 1, we get Theorem 3
of [1]. Similarly, on choosing α(t) = β(t) = ln t in Theorem 2 above we get
the coefficient characterization for the classical lower order of H(x).

Now we shall give the characterization of generalized type.

Theorem 3. Let H(x) be an entire harmonic function of generalized
order ρ, 0 < ρ < ∞. Let α(t) ∈ Λ, β(t) ∈ L0, γ(t) ∈ Λ. Set F (t, σ, ρ) =
γ−1{[β−1 (σ α(t))]1/ρ}. Suppose that for all σ, 0 < σ < ∞, dF (t, σ, ρ)/d ln t
= O(1) as t →∞. Then we have

(20) lim sup
r→∞

α (lnM(r))
β [(γ(r))ρ]

= lim sup
k→∞

α (k)

β
{[

γ
(
|ak|−1/k

)]ρ} .

Proof. We consider the entire functions

g(z) = ω−1
n−1

∞∑

k=0

|ak|
√

dkz
k, and h(z) =

∞∑

k=0

|ak|2z2k.
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As before, we have

lnMh(r) ≤ 2 lnM(r) ≤ 2 ln Mg(r).

Hence
α(lnMh(r)) ≤ α(2 ln M(r)) ≤ α(2 lnMg(r)).

Since α(t) ∈ Λ, we have from the above inequalities,

(21) lim sup
r→∞

α (lnMh(r))
β [(γ(r))ρ]

≤ lim sup
r→∞

α (lnM(r))
β [(γ(r))ρ]

≤ lim sup
r→∞

α (lnMg(r))
β [(γ(r))ρ]

.

Considering the entire function h(z), from Theorem C above, we have

lim sup
r→∞

α (lnMh(r))
β [(γ(r))ρ]

= lim sup
k→∞

α(k/ρ)
β

{[
γ

(
e1/ρ(|ak|2)−1/2k

)]ρ}

= lim sup
k→∞

α(k)

β
{[

γ
(
|ak|−1/k

)]ρ}

since α(t) ∈ Λ and γ(t) ∈ Λ. Now, as shown in the proof of Theorem 1,
(dk)1/2k → 1 as k →∞. Hence for the entire function g(z), we have

lim sup
r→∞

α (lnMg(r))
β [(γ(r))ρ]

= lim sup
k→∞

α(k/ρ)

β
{[

γ
(
e1/ρ(|ak|ω−1

n−1

√
dk)−1/k

)]ρ
}

= lim sup
k→∞

α (k)

β
{[

γ
(
|ak|−1/k

)]ρ} ,

since α(t) ∈ Λ and γ(t) ∈ Λ. Hence from the inequalities in (21), we get
(20). This proves Theorem 3. ¥

Remark 2. It is to be noted that in our assumptions, we have taken the
functions α(t) and γ(t) to be in the class Λ. This is necessary in view of the
inequalities in (13). Hence, let us take α(t) = ln(p−2)(t) and γ(t) = ln(q−1)(t)
and β(t) = t, p > q > 1 and

ln(k)(t) = ln ln . . . ln︸ ︷︷ ︸
k times

(t)

Then from (20) we obtain

lim sup
r→∞

ln(p−1) M(r)(
ln(q−1) r

)ρ = lim sup
k→∞

ln(p−2)(k)(
ln(q−1) |ak|−1/k

)ρ .

The above formula characterizes the (p, q)- type of the entire harmonic func-
tion (see [3],Theorem 1) corresponding to the case p > q > 1. The case
p = q = 2 can be considered in a manner similar to [1, Theorem 4].
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3. Entire harmonic functions of slow growth

In this section we consider harmonic functions of slow growth. The gen-
eralized order and lower generalized order studied above leave an important
case, that is, when α(t) = β(t). This represents the case of entire functions of
slow growth and the coefficient formulae derived above are not valid for this
case as the assumptions made in Theorem B and Theorem D on the func-
tions F (t, c) or F (t) can not hold. To overcome this difficulty, Kapoor and
Nautiyal [4] introduced a new class of functions. Thus a function φ(t) ∈ Ω
if φ(t) satisfies (4) and there exists a function δ(t) ∈ Λ and t0, K1 and K2

such that for all t > t0,

(22) 0 < K1 ≤ d(φ(t))
d(δ(ln t))

≤ K2 < ∞.

Further a function φ(t) ∈ Ω if φ(t) satisfies (4) and

(23) lim
t→∞

d(φ(t))
d(ln(t))

= K, 0 < K < ∞.

Kapoor and Nautiyal [4, p 66] showed that Ω, Ω ⊆ Λ and Ω ∩ Ω = Φ.
Let α(t) ∈ Ω or Ω. Then following Kapoor & Nautiyal [ 4, p. 66], for

the entire harmonic functions H(x) we define the generalized order ρ∗ and
generalized lower order λ∗ as

ρ∗ = ρ(α, α, H) = lim sup
r→∞

α(ln M(r))
α(ln r)

,

λ∗ = λ(α, α, H) = lim inf
r→∞

α(lnM(r))
α(ln r)

.

It is to be noted that if the function α(t) ∈ Ω then ρ∗ and λ∗ reduce to
the case of ordinary case of functions of slow growth i.e. ρ(2, 2) and λ(2, 2),
(see [2]).

Let f(z) =
∑∞

k=0
ckz

k be an entire function. Then we have [4, Theo-
rem 4]

(24) ρ(α, α, f) =
{

max{1, L∗} if α(t) ∈ Ω
1 + L∗ if α(t) ∈ Ω

L∗ = lim sup
n→∞

α(k)
α(ln |ck|−1/k)

.

Further

(25) λ(α, α, f) =

{
max{1, l∗} if α(t) ∈ Ω

1 + l∗ if α(t) ∈ Ω
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where
l∗ = lim inf

n→∞
α(k)

α(ln |ck|−1/k)

and the sequence |ck/ck+1| is ultimately a non decreasing function of k.
Now we state

Theorem 4. Let H(x) be an entire harmonic function of generalized
order ρ∗ . Then

(26) ρ∗ =

{
max{1, L∗∗} if α(t) ∈ Ω,

1 + L∗∗ if α(t) ∈ Ω,

where
L∗∗ = lim sup

k→∞
α(k)

α(ln |ak|−1/k)
.

Further, the generalized lower order λ∗ is given by

(27) λ∗ =

{
max{1, l∗∗} if α(t) ∈ Ω

1 + l∗∗ if α(t) ∈ Ω

where
l∗∗ = lim inf

k→∞
α(k)

α(ln |ak|−1/k)

and the sequence |ak/ak+1| is ultimately a non -decreasing function of k.

The proof of above results follow on the lines of proofs of Theorems 1
& 2 and (24) and (25), since Ω , Ω ⊆ Λ. Hence we omit the details.
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