N. SUBRAMANIAN, B.C. TRIPATHY AND C. MURUGESAN

THE DOUBLE SEQUENCE SPACE Γ^2

ABSTRACT. Let Γ^2 denote the space of all prime sense double entire sequences and Λ^2 the space of all prime sense double analytic sequences. This paper is devoted to the general properties of Γ^2 . KEY WORDS: entire sequence, analytic sequence, double sequence, dual.

AMS Mathematics Subject Classification: 40A05, 40C05, 40D05.

1. Introduction

Throughout w, Γ and Λ denote the classes of all, entire and analytic scalar valued single sequences respectively.

We write w^2 for the set of all complex sequences (x_{mn}) , where $m, n \in N$, the set of positive integers. Then w^2 is a linear space under the coordinatewise addition and scalar multiplication.

Some initial works on double sequence space is found in Bromwich[2]. Later on it was investigated by Hardy [3], Moricz [4], Moricz and Rhoades [5], Basarir and Solancan [1], Tripathy [6], Colak and Turkmenoglu [7] and many others.

We need the following inequality in the sequel of the paper.

For $a, b \ge 0$ and 0 , we have

(1)
$$(a+b)^p \leq a^p + b^p.$$

The double series $\sum_{m,n=1}^{\infty} x_{mn}$ is convergent if and only if the double se-

quence (S_{mn}) is convergent, where $S_{mn} = \sum_{i,j=1}^{m,n} x_{ij} \ (m, n = 1, 2, 3, ...)$ (see [9]).

A sequence $x = (x_{mn})$ is said to be double analytic if $\sup_{m,n} |x_{mn}|^{1/m+n} < \infty$.

The vector space of all double analytic sequences will be denoted by Λ^2 . A sequence $x = (x_{mn})$ is called double entire sequence if $|x_{mn}|^{\frac{1}{m+n}} \to 0$, as $m, n \to \infty$. The double entire sequences will be denoted by Γ^2 . Let $\phi = \{ \text{all finite sequences} \}$. Consider a double sequence $x = (x_{ij})$. The $(m, n)^{th}$ section $x^{[m,n]}$ of the sequence is defined by $x^{[m,n]} = \sum_{i,j=0}^{\infty} x_{ij} \delta_{ij}$, for all $m, n \in N$.

$$\delta_{mn} = \begin{pmatrix} 0, & 0, & \dots 0, & 0, & \dots \\ 0, & 0, & \dots 0, & 0, & \dots \\ \vdots & & & & \\ 0, & 0, & \dots 1, & 0, & \dots \\ 0, & 0, & \dots 0, & 0, & \dots \end{pmatrix}$$

with 1 in the $(m, n)^{th}$ position and zero otherwise. An *FK*-space (or a metric space) X is said to have *AK* property if (δ_{mn}) is a Schauder basis for X. Or equivalently $x^{[m,n]} \to x$. An *FDK*-space is a double sequence space endowed with a complete metrizable; locally convex topology under which the coordinate mappings $x = (x_k) \to (x_{mn})$ $(m, n \in N)$ are also continuous. If X is a sequence space, we give the following definitions:

(i)
$$X' =$$
 the continuous dual of X ;
(ii) $X^{\alpha} = \{a = (a_{mn}) : \sum_{m,n=1}^{\infty} |a_{mn}x_{mn}| < \infty$, for each $x \in X$;
(iii) $X^{\beta} = \{a = (a_{mn}) : \sum_{m,n=1}^{\infty} a_{mn}x_{mn}$, is convergent, for each $x \in X$;
(iv) $X^{\gamma} = \{a = (a_{mn}) : \sup_{m,n\geq 1} |\sum_{m,n=1}^{\infty} a_{mn}x_{mn}| < \infty$, for each $x \in X$;
(v) let X be an FK-space $\supset \phi$, then $X^{f} = \{f(\delta_{mn}) : f \in X\}$;
(vi) $X^{\wedge} = \{a = (a_{mn}); \sup_{m,n} |a_{mn}x_{mn}|^{1/m+n} < \infty$, for each $x \in X$ };
 $X^{\alpha}, X^{\beta}, X^{\gamma}$ are called α -(or Kothe-Toeplitz) dual of X,
 β (generalized Kethe Toeplitz) dual of X, α dual of X and β dual of X.

 $\beta\text{-}(\text{generalized-Kothe-Toeplitz})$ dual of $X,\,\gamma\text{-}\text{dual}$ of X and $\wedge\text{-}\text{dual}$ of X respectively.

2. Definitions and preliminaries

Let w^2 denote the set of all complex double sequences. A sequence $x = (x_{mn})$ is said to be analytic if $\sup_{(m,n)} |x_{mn}|^{1/m+n} < \infty$. The vector space of all prime sense double analytic sequences will be denoted by Λ^2 . A sequence $x = (x_{mn})$ is called prime sense double entire sequence if $|x_{mn}|^{1/m+n} \to 0$ as $m, n \to \infty$. The double entire sequences will be denoted by Γ^2 . The spaces \wedge^2 and Γ^2 are metric spaces with the metric

(2)
$$d(x,y) = \sup_{m,n} \{ |x_{mn} - y_{mn}|^{1/m+n} : m, n = 1, 2, 3... \}$$

for all $x = \{x_{mn}\}$ and $y = \{y_{mn}\}$ in Γ^2 .

Proposition 1. Γ^2 has monotone metric.

Proof. We know that

$$d(x,y) = \sup_{m,n} \left\{ |x_{mn} - y_{mn}|^{1/m+n} : m, n = 1, 2, 3, \dots \right\}$$

$$d(x^{n}, y^{n}) = \sup_{n,n} \left\{ |x_{nn} - y_{nn}|^{1/2n} \right\} \text{ and} d(x^{m}, y^{m}) = \sup_{m,m} \left\{ |x_{mm} - y_{mm}|^{1/2m} \right\}.$$

Let m > n. Then $\sup_{m,m} \left\{ |x_{mm} - y_{mm}|^{1/2m} \right\} \ge \sup_{n,n} \left\{ |x_{nn} - y_{nn}|^{1/2n} \right\}$

(3)
$$d(x^m, y^m) \ge d(x^n, y^n), \quad m > n$$

Also $\{d(x^n, x^n) : n = 1, 2, 3, ...\}$ is monotonically increasing bounded by d(x, y).

For such a sequence

(4)
$$\sup_{n,n} \left\{ |x^{nn} - y^{nn}|^{1/2n} \right\} = \lim_{n \to \infty} d(x^n, y^n) = d(x, y)$$

From(3) and (4) it follows that $d(x, y) = \sup_{m,n} \left\{ |x_{mn} - y_{mn}|^{1/m+n} \right\}$ is a monotone metric for Γ^2 . This completes the proof.

Proposition 2. The dual space of Γ^2 is Λ^2 . In other words $(\Gamma^2)^* = \Lambda^2$. **Proof.** The proof is easy, so omitted.

Proposition 3. Γ^2 is separable.

Proof. The proof is easy, so omitted.

Proposition 4. Λ^2 is not separable.

Proof. Since $|x_{mn}|^{1/m+n} \to 0$ as $m, n \to \infty$, so it may so happen that first row or column may not be convergent, even may not be bounded. Let S be the set that has double sequences such that the first row is built up of sequences of zeros and ones. Then S will be uncountable. Consider open balls of radius 3^{-1} units. Then these open balls will not cover Λ^2 .

Hence Λ^2 is not separable. This completes the proof.

Proposition 5. Γ^2 is not reflexive.

Proof. Γ^2 is separable by Proposition 3. But $(\Gamma^2)^* = \Lambda^2$, by Proposition 2. Since Λ^2 is not separable, by Proposition 4. Therefore Γ^2 is not reflexive. This completes the proof.

Proposition 6. Γ^2 is not an inner product space and hence not a Hilbert space.

Proof. Let us take

$$x = (x_{mn}) = \begin{pmatrix} 1 & 1/2 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & \dots \\ \vdots & & & & \end{pmatrix} \text{ and } y = (y_{mn}) = \begin{pmatrix} 1 & -1/2 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & \dots \\ \vdots & & & & & \end{pmatrix}$$

$$d(x,\theta) = \sup \begin{pmatrix} |x_{11} - 0|^{1/2}, |x_{12} - 0|^{1/3}, \dots \\ |x_{21} - 0|^{1/2}, |x_{22} - 0|^{1/4}, \dots \\ \vdots \end{pmatrix}$$

$$= \sup \begin{pmatrix} |1 - 0|^{1/2}, |1/2 - 0|^{1/3}, \dots \\ 0, & 0, & \dots \\ \vdots \end{pmatrix}$$

$$= \sup \begin{pmatrix} |1|^{1/2}, |1/2|^{1/3}, 0, \dots \\ 0, & 0, & \dots \\ \vdots \end{pmatrix}$$

Here and later on in the paper sup will represent the supremum of the elements inside the matrix. We get $d(x, \theta) = 1$.

Similarly $d(y, \theta) = 1$. Hence $d(x, \theta) = d(y, \theta) = 1$

$$\begin{array}{rcl} x+y & = & \begin{pmatrix} 1 & 1/2 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & \dots \\ \vdots & & & & \\ 0 & 0 & 0 & 0 & \dots \end{pmatrix} + \begin{pmatrix} 1 & -1/2 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & \dots \\ \vdots & & & & \\ 0 & 0 & 0 & 0 & \dots \end{pmatrix} \\ & = & \begin{pmatrix} 2 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & \dots \\ \vdots & & & \\ 0 & 0 & 0 & 0 & \dots \end{pmatrix} \end{array}$$

 $d(x+y, x-y) = \sup\{(|x_{mn}+y_{mn}| - |x_{mn}-y_{mn}|)^{1/m+n} : m, n = 1, 2, 3, \ldots\}.$

$$d(x_{mn} + y_{mn}, \theta) = \sup \begin{pmatrix} |x_{11} + y_{11}|^{1/2}, |x_{12} + y_{12}|^{1/3}, \dots \\ \vdots & \end{pmatrix}$$
$$= \sup \begin{pmatrix} |1 + 1|^{1/2}, |1/2 - 1/2|^{1/3}, \dots \\ \vdots & \end{pmatrix}$$
$$= \sup \begin{pmatrix} |2|^{1/2}, 0, \dots \\ 0, 0, \dots \\ \vdots & \end{pmatrix} = \sup \begin{pmatrix} 1.414, 0, \dots \\ 0, 0, \dots \\ \vdots & \end{pmatrix} = 1.414$$

Therefore $d(x + y, \theta) = 1.414$. Similarly $d(x - y, \theta) = 1$.

By parallelogram law, $[d(x + y, \theta)]^2 + [d(x - y, \theta)]^2 = 2[(d(x, \theta))^2 + (d(\theta, y))^2].$

 $\implies (1.414)^2 + 1^2 = 2[1^2 + 1^2] \implies 2.999396 = 4.$

Hence the parallelogram law is not satisfied. Therefore Γ^2 is not an inner product space. Assume that Γ^2 is a Hilbert space. But then Γ^2 would satisfy reflexivity condition. [Theorem 4.6.6 [10]]. Proposition 5, Γ^2 is not reflexive. Thus Γ^2 is not a Hilbert space. This completes the proof.

Proposition 7. Γ^2 is not rotund.

Proof. Let us take $x = (x_{mn})$ and $y = (y_{mn})$ defined by

$$x_{mn} = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & \dots \\ \vdots & & & & \end{pmatrix} \text{ and } y_{mn} = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & \dots \\ \dots & & & & & \end{pmatrix}$$

Then $x = (x_{mn})$ and $y = (y_{mn})$ are in Γ^2 . Also

$$d(x,y) = \sup \begin{pmatrix} |x_{11} - y_{11}|^{\frac{1}{2}}, & |x_{12} - y_{12}|^{\frac{1}{3}}, & \dots, & |x_{1n} - y_{1n}|^{\frac{1}{1+n}}, & 0, \dots \end{pmatrix}$$

$$\vdots \\ |x_{m1} - y_{m1}|^{\frac{1}{m+1}}, & |x_{m2} - y_{m2}|^{\frac{1}{m+2}}, &\dots, & |x_{mn} - y_{mn}|^{\frac{1}{m+1}}, & 0, \dots \end{pmatrix}$$

$$0, &\dots, &\dots, & 0, \dots \end{pmatrix}$$

Therefore

$$d(x,\theta) = \sup \begin{pmatrix} 1, & 0, & 0, & 0, & \dots \\ 0, & 0, & 0, & 0, & \dots \\ \vdots & & & \\ 0, & 0, & 0, & 0, & \dots \end{pmatrix}$$

 $d(\theta, y) = 1$. Obviously $x = (x_{mn}) \neq y = (y_{mn})$.

But

$$(x_{mn}) + (y_{mn}) = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & \dots \\ \vdots & & & \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & \dots \\ \vdots & & & & \end{pmatrix}$$
$$= \begin{pmatrix} 2 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & \dots \\ \dots & & & & \end{pmatrix}$$

$$d\left(\frac{x_{mn} + y_{mn}}{2}, \theta\right)$$

$$= \sup \begin{pmatrix} \left(\frac{|x_{11} + y_{11}|}{2}\right)^{\frac{1}{2}}, & \left(\frac{|x_{12} + y_{12}|}{2}\right)^{\frac{1}{3}}, & \dots, \left(\frac{|x_{1n} + y_{1n}|}{2}\right)^{\frac{1}{n+1}}, & 0, & 0, \dots \\ \vdots \\ \left(\frac{|x_{m1} + y_{m1}|}{2}\right)^{\frac{1}{m+1}}, \left(\frac{|x_{m2} + y_{m2}|}{2}\right)^{\frac{1}{m+2}}, & \dots, \left(\frac{|x_{mn} + y_{mn}|}{2}\right)^{\frac{1}{m+1}}, & 0, & 0, \dots \\ \dots, & \dots, & \dots, & \dots, & \dots, & \dots, \end{pmatrix} \\ d\left(\frac{x_{mn} + y_{mn}}{2}, \theta\right) = \sup \begin{pmatrix} 1, & 0, & 0, & 0, & \dots \\ 0, & 0, & 0, & 0, & \dots \\ \vdots & & \end{pmatrix} = 1.$$

Therefore Γ^2 is not rotund. This completes the proof.

Proposition 8. Weak convergence and strong convergence are equivalent in Γ^2 .

Proof. Step 1. Always strong convergence implies weak convergence.

Step 2. So it is enough to show that weakly convergence implies strongly convergence in Γ^2 .

 $y^{(\eta)}$ tends to y weakly in Γ^2 , where $(y_{mn}^{(\eta)}) = y^{(\eta)}$ and $y = (y_{mn})$. Take any $x = (x_{mn}) \in \Gamma^2$ and

(5)
$$f(z) = \sum_{m,n=1}^{\infty} |z_{mn} x_{mn}|^{1/m+n}$$
, for each $z = (z_{mn}) \in \Gamma^2$.

Then $f \in (\Gamma^2)^*$ by Proposition 2. By hypothesis $f(y^{(\eta)}) \to f(y)$ as $\eta \to \infty$.

(6)
$$f(y^{(\eta)} - y) \to 0, \text{ as } \eta \to \infty.$$

96

$$\Rightarrow \sum_{m,n=1}^{\infty} (|y_{mn}^{(\eta)} - y_{mn}|^{1/m+n} |x_{mn}|^{1/m+n}) \to 0, \text{ as } \eta \to \infty.$$
 By using (5) and (6) we get

Since
$$x = (x_{mn}) \in \Lambda^2$$
 we have $\sum_{m,n=1}^{\infty} |x_{mn}|^{1/m+n} < \infty$, for all $x \in \Lambda^2$.

$$\Rightarrow \sum_{m,n=1}^{\infty} (|y_{mn}^{(\eta)} - y_{mn}|^{1/m+n}) \to 0 \text{ as } \eta \to \infty.$$

$$\Rightarrow \sup_{mn} (|(y_{mn}^{(\eta)} - y_{mn}), 0|^{1/m+n}) \to 0 \text{ as } \eta \to \infty.$$

$$\Rightarrow \sup_{mn} (|(y_{mn}^{(\eta)} - y_{mn})|^{1/m+n}) \to 0, \text{ as } \eta \to \infty.$$

$$\Rightarrow d((y^{(\eta)} - y), 0) \to 0, \text{ as } \eta \to \infty.$$
This completes the proof.

Proposition 9. We shall construct an infinite matrix A for which $\Gamma_A^2 = \Gamma^2$.

Example. Consider the matrix

$$\begin{cases} y_{11} \quad y_{12} \quad \dots \quad y_{1n} \quad 0 \quad 0 \quad \dots \\ y_{21} \quad y_{22} \quad \dots \quad y_{2n} \quad 0 \quad 0 \quad \dots \\ \vdots \\ y_{m1} \quad y_{m2} \quad \dots \quad y_{mn} \quad 0 \quad 0 \quad \dots \\ 0 \quad 0 \quad \dots \quad 0 \quad 0 \quad 0 \quad 0 \quad \dots \\ 0 \quad 1 \quad 0 \quad \dots \\ 0 \quad 0 \quad 1 \quad \dots \\ \vdots \\ \vdots \\ \end{cases}$$

 $y_{11}, y_{12}, ..., y_{1n} = x_{11}, x_{12}, ..., x_{1n}$

 $y_{21}, y_{22}, ..., y_{2n} = x_{11}, x_{12}, ..., x_{1n}$

 $y_{31}, y_{32}, \dots, y_{3n} = x_{21}, x_{22}, \dots, x_{2n}$

 $y_{41}, y_{42}, ..., y_{4n} = x_{21}, x_{22}, ..., x_{2n}$

 $y_{51}, y_{52}, \dots, y_{5n} = x_{21}, x_{22}, \dots, x_{2n}$

 $y_{61}, y_{62}, ..., y_{6n} = x_{21}, x_{22}, ..., x_{2n}$:

and so on. For any $x = (x_{mn}) \in \Gamma^2$. $|(Ax)_{mn}| = \lim_{m,n\to\infty} |\sum x_{mn}|^{1/m+n} \leq d(x,0)$, where metric defined on Γ^2 is given by

(7)
$$[d(x,\theta)]_{\Gamma^2_A} \le [d(x,\theta)]_{\Gamma^2}$$

Conversely. Given $x \in [d(x,\theta)]_{\Gamma^2_A}$ fix any m, n then, $\lim_{m,n\to\infty} |x_{mn}|^{1/m+n} \leq (Ax)_{mn} \Rightarrow \lim_{m,n\to\infty} |x_{mn}|^{1/m+n} \leq [d(x,\theta)]_{\Gamma^2_A} \Rightarrow$

(8)
$$[d(x,\theta)]_{\Gamma^2} \le [d(x,\theta)]_{\Gamma^2_A}$$

Therefore the matrix $A = (x_{mnlk})$ for which the summability field $[d(x, \theta)]_{\Gamma^2} = [d(x, \theta)]_{\Gamma^2_A}$ is given by

1	0	0)
1	0	0	
0	1	0	
0	1	0	
0	1	0	
0	1	0	
0	0	1	
0	0	1	
0	0	1	
0	0	1	
0	0	1	
0	0	1	
0	0	1	
0	0	1	
(:			
	$\begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$ \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \vdots \\ \end{pmatrix} $	$ \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \vdots \\ \end{pmatrix} $

//Program for generalization:

```
\#include \langle iostream.h \rangle
#include \langle conio.h \rangle
#include \langle math.h \rangle
\#include \langle fstream.h \rangle
void main()
{
clrscr();
int m,n,i,nn=0,j,count=1,k,1pp,abc;
ofstream fout, fout 1;
fout.open("aa1.txt");
fout1.open("aa2.txt");
cout << "enter the value of m:";
cin >> m;
for(i=1;i<=m;i++)
{
nn=nn+pow(2,i);
}
while(count<=nn)
{
cout<< " - ";
fout<< " - ";
for(abc=1;abc <= m+3;abc++)
```

```
{
cout<< " ";
fout<< " ";
}
\operatorname{cout} << " - \langle n";
fout << " - " \setminus n;
for(j = 1; j \le m; j + +)
{
for(k=1;k<=pow(2,j);k++)
{
for(pp=1;pp<=2;pp++)
{
fout1 << "Y" << count << "," << pp << "";
}
fout 1 << ".....Y" << count << ", n = ";
cout<< " | ";
fout<< " | ";
for(int q=1;q<=m+1;q++)
{
if(q==j)
{
cout << "1";
fout << "1";
}
else
{
cout << "0";
fout << "0";
}
}
for(l=1;l<=2;l++)
{
foutl << "X" << "j" << "," << l<< "";
}
fout1<<".....X" << j << "n";
\begin{array}{l} \operatorname{cout} <<"\dots \mid \backslash n"; \\ \operatorname{fout} << "\dots \mid \backslash n"; \end{array}
fout 1 < < "... \mid n;
\operatorname{count}++;
}
}
}
```

```
\operatorname{cout} << "\cdot \setminus n \cdot \setminus n \cdot \setminus n";
fout << " \cdot \setminus n \cdot \setminus n \cdot \setminus n";
cout << " | -";
fout << " | -";
for(abc=1;abc <<=m+1;abc++)
{
cout<< " ";
fout<< " ";
}
cout << "-|";
fout << "-|";
fout 1 < < ".\n.\n";
fout.close();
fout1.close();
getch();
}
```

SAMPLE INPUT/OUTPUT

enter the value of m : 3

(1)	0	0)
1	0	0	
0	1	0	
0	1	0	
0	1	0	
0	1	0	
0	0	1	
0	0	1	
0	0	1	
0	0	1	
0	0	1	
0	0	1	
0	0	1	
0	0	1	
(:)

 $Y_{1,1}, Y_{1,2}, ..., Y_{1,n} = X_{1,1}, X_{1,2}, ..., X_{1,n}$

 $X_{2,1}, X_{2,2}, ..., X_{2,n} = X_{1,1}, X_{1,2}, ..., X_{1,n}$

 $Y_{3,1}, Y_{3,2}, ..., Y_{3,n} = X_{2,1}, X_{2,2}, ..., X_{2,n}$

 $Y_{4,1}, Y_{4,2}, \dots, Y_{4,n} = X_{2,1}, X_{2,2}, \dots, X_{2,n}$ $Y_{5,1}, Y_{5,2}, \dots, Y_{5,n} = X_{2,1}, X_{2,2}, \dots, X_{2,n}$ $Y_{6,1}, Y_{6,2}, \dots, Y_{6,n} = X_{2,1}, X_{2,2}, \dots, X_{2,n}$ $Y_{7,1}, Y_{7,2}, \dots, Y_{7,n} = X_{3,1}, X_{3,2}, \dots, X_{3,n}$ $Y_{8,1}, Y_{8,2}, \dots, Y_{8,n} = X_{3,1}, X_{3,2}, \dots, X_{3,n}$ $Y_{9,1}, Y_{9,2}, \dots, Y_{9,n} = X_{3,1}, X_{3,2}, \dots, X_{3,n}$ $Y_{10,1}, Y_{10,2}, \dots, Y_{10,n} = X_{3,1}, X_{3,2}, \dots, X_{3,n}$ $Y_{11,1}, Y_{11,2}, \dots, Y_{11,n} = X_{3,1}, X_{3,2}, \dots, X_{3,n}$ $Y_{12,1}, Y_{12,2}, \dots, Y_{12,n} = X_{3,1}, X_{3,2}, \dots, X_{3,n}$ $Y_{13,1}, Y_{13,2}, \dots, Y_{13,n} = X_{3,1}, X_{3,2}, \dots, X_{3,n}$ $Y_{14,1}, Y_{14,2}, \dots, Y_{14,n} = X_{3,1}, X_{3,2}, \dots, X_{3,n}$

References

- BASARIR M., SONALCAN O., On Some Double Sequence Spaces, J. Indian Acad. Math., 21(2)(1999), 193-200.
- [2] BROMWICH T.J.I., An Introduction to the Theory of Infinite Series, MacMillan and Co. Ltd., New York 1965.
- [3] HARDY G.H., On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19(1917), 86-95.
- [4] MORICZ F., Extension of the spaces c and c_0 from single to double sequences, Acta Math. Hungerica, 57(1-2)(1991), 129-136.
- [5] MORICZ F., RHOADES B.E., Almost convergence of double sequences and strong regularity of summability matrices, *Math. Proc. Camb. Phil. Soc.*, 104(1988), 283-294.
- [6] TRIPATHY B.C., On statistically convergent double sequences, Tamkang J. Math., 34(3)(2003), 231-237.
- [7] COLAK R., TURKMENOGLU A., The double sequence spaces $\ell_{\infty}^2(p), c_0^2(p)$ and $c^2(p)$, (to appear).
- [8] TURKMENOGLU A., Matrix transformation between some classes of double sequences, Jour. Ins. of Math. Comp. Sci. (Math.Ser.), 12(1)(1999), 23-31.
- [9] APOSTOL T., Mathematical Analysis, Addison-Wesley, London 1978.

N. SUBRAMANIAN DEPARTMENT OF MATHEMATICS SASTRA UNIVERSITY, TANJORE-613 402, INDIA *e-mail:* nsmaths@yahoo.com

BINOD CHANDRA TRIPATHY INSTITUTE OF ADVANCED STUDY IN SCIENCE AND TECHNOLOGY PACHIM BORAGAON, GARCHUK, GUWAHATI-781 035, INDIA *e-mail:* tripathybc@yahoo.com *or* tripathybc@rediffmail.com

> C. MURUGESAN DEPARTMENT OF MATHEMATICS SATHYABAMA UNIVERSITY CHENNAI-600 119, INDIA *e-mail:* murugaa23@sify.com

Received on 20.08.2007 and, in revised form, on 25.02.2008.