
F A S C I C U L I M A T H E M A T I C I

Nr 40 2008

N. Subramanian, B.C. Tripathy and C. Murugesan

THE DOUBLE SEQUENCE SPACE Γ2

Abstract. Let Γ2 denote the space of all prime sense double en-
tire sequences and Λ2 the space of all prime sense double analytic
sequences. This paper is devoted to the general properties of Γ2.
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1. Introduction

Throughout w, Γ and Λ denote the classes of all, entire and analytic
scalar valued single sequences respectively.

We write w2 for the set of all complex sequences (xmn), where m,n ∈ N ,
the set of positive integers. Then w2 is a linear space under the coordinate-
wise addition and scalar multiplication.

Some initial works on double sequence space is found in Bromwich[2].
Later on it was investigated by Hardy [3], Moricz [4], Moricz and Rhoades
[5], Basarir and Solancan [1], Tripathy [6], Colak and Turkmenoglu [7] and
many others.

We need the following inequality in the sequel of the paper.
For a, b ≥ 0 and 0 < p < 1, we have

(1) (a + b)p ≤ ap + bp.

The double series
∞∑

m,n=1
xmn is convergent if and only if the double se-

quence (Smn) is convergent, where Smn =
m,n∑
i,j=1

xij (m, n = 1, 2, 3, . . .)(see

[9]).
A sequence x = (xmn) is said to be double analytic if sup

m,n
|xmn|1/m+n < ∞.

The vector space of all double analytic sequences will be denoted by Λ2.
A sequence x = (xmn) is called double entire sequence if |xmn|

1
m+n → 0,

as m,n → ∞. The double entire sequences will be denoted by Γ2. Let
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φ = {all finite sequences}. Consider a double sequence x = (xij). The

(m, n)th section x[m,n] of the sequence is defined by x[m,n] =
∞∑

i,j=0
xijδij , for

all m,n ∈ N .

δmn =




0, 0, ...0, 0, ...
0, 0, ...0, 0, ...
...
0, 0, ...1, 0, ...
0, 0, ...0, 0, ...




with 1 in the (m,n)th position and zero otherwise. An FK-space (or a
metric space) X is said to have AK property if (δmn) is a Schauder basis for
X. Or equivalently x[m,n] → x. An FDK-space is a double sequence space
endowed with a complete metrizable; locally convex topology under which
the coordinate mappings x = (xk) → (xmn) (m,n ∈ N) are also continuous.
If X is a sequence space, we give the following definitions:

(i) X ′ = the continuous dual of X;

(ii) Xα = {a = (amn) :
∞∑

m,n=1
|amnxmn| < ∞, for each x ∈ X;

(iii) Xβ = {a = (amn) :
∞∑

m,n=1
amnxmn, is convergent, for each x ∈ X;

(iv) Xγ = {a = (amn) : supm,n≥1|
∞∑

m,n=1
amnxmn| < ∞, for each x ∈ X;

(v) let X be an FK-space ⊃ φ, then Xf = {f(δmn) : f ∈ X};
(vi) X∧ = {a = (amn); supm,n |amnxmn|1/m+n < ∞, for each x ∈ X};
Xα, Xβ, Xγ are called α−(or Kothe-Toeplitz) dual of X,
β-(generalized- Kothe-Toeplitz) dual of X, γ-dual of X and ∧-dual of X

respectively.

2. Definitions and preliminaries

Let w2 denote the set of all complex double sequences. A sequence x =
(xmn) is said to be analytic if sup

(m,n) |xmn|1/m+n < ∞. The vector space of all
prime sense double analytic sequences will be denoted by Λ2. A sequence
x = (xmn) is called prime sense double entire sequence if |xmn|1/m+n → 0 as
m,n → ∞.The double entire sequences will be denoted by Γ2. The spaces
∧2 and Γ2 are metric spaces with the metric

(2) d(x, y) = sup
m,n

{|xmn − ymn|1/m+n : m,n = 1, 2, 3...}

for all x = {xmn} and y = {ymn} in Γ2.
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Proposition 1. Γ2 has monotone metric.

Proof. We know that

d(x, y) = sup
m,n

{
|xmn − ymn|1/m+n : m,n = 1, 2, 3, ...

}

d(xn, yn) = sup
n,n

{
|xnn − ynn|1/2n

}
and

d(xm, ym) = sup
m,m

{
|xmm − ymm|1/2m

}
.

Let m > n. Then sup
m,m

{
|xmm − ymm|1/2m

}
≥ sup

n,n

{
|xnn − ynn|1/2n

}

(3) d(xm, ym) ≥ d(xn, yn), m > n

Also {d(xn, xn) : n = 1, 2, 3, . . .} is monotonically increasing bounded by
d(x, y).

For such a sequence

(4) sup
n,n

{
|xnn − ynn|1/2n

}
= lim

n→∞ d(xn, yn) = d(x, y)

From(3) and (4) it follows that d(x, y) = sup
m,n

{
|xmn − ymn|1/m+n

}
is a

monotone metric for Γ2. This completes the proof. ¥

Proposition 2. The dual space of Γ2 is Λ2. In other words (Γ2)∗ = Λ2.

Proof. The proof is easy, so omitted. ¥

Proposition 3. Γ2 is separable.

Proof. The proof is easy, so omitted. ¥

Proposition 4. Λ2 is not separable.

Proof. Since |xmn|1/m+n → 0 as m,n → ∞, so it may so happen that
first row or column may not be convergent, even may not be bounded. Let
S be the set that has double sequences such that the first row is built up
of sequences of zeros and ones. Then S will be uncountable. Consider open
balls of radius 3−1 units. Then these open balls will not cover Λ2.

Hence Λ2 is not separable. This completes the proof. ¥

Proposition 5. Γ2 is not reflexive.
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Proof. Γ2 is separable by Proposition 3. But (Γ2)∗ = Λ2, by Propo-
sition 2. Since Λ2 is not separable, by Proposition 4. Therefore Γ2 is not
reflexive. This completes the proof. ¥

Proposition 6. Γ2 is not an inner product space and hence not a Hilbert
space.

Proof. Let us take

x = (xmn) =




1 1/2 0 0 . . .
0 0 0 0 . . .
...


 and y = (ymn) =




1 −1/2 0 0 . . .
0 0 0 0 . . .
...




d(x, θ) = sup



|x11 − 0|1/2, |x12 − 0|1/3, . . .

|x21 − 0|1/2, |x22 − 0|1/4, . . .
...




= sup



|1− 0|1/2, |1/2− 0|1/3, . . .

0, 0, . . .
...




= sup



|1|1/2, |1/2|1/3, 0, . . .

0, 0, 0, . . .
...




Here and later on in the paper sup will represent the supremum of the
elements inside the matrix. We get d(x, θ) = 1.

Similarly d(y, θ) = 1. Hence d(x, θ) = d(y, θ) = 1

x + y =




1 1/2 0 0 . . .
0 0 0 0 . . .
...
0 0 0 0 . . .


 +




1 −1/2 0 0 . . .
0 0 0 0 . . .
...
0 0 0 0 . . .




=




2 0 0 0 . . .
0 0 0 0 . . .
...
0 0 0 0 . . .




d(x+y, x−y) = sup{(|xmn +ymn|− |xmn−ymn|)1/m+n : m,n = 1, 2, 3, . . .}.
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d(xmn + ymn, θ) = sup

(
|x11 + y11|1/2, |x12 + y12|1/3, . . .

...

)

= sup

(
|1 + 1|1/2, |1/2− 1/2|1/3, . . .

...

)

= sup



|2|1/2, 0, . . .

0, 0, . . .
...


 = sup




1.414, 0, . . .
0, 0, . . .
...


 = 1.414

Therefore d(x + y, θ) = 1.414. Similarly d(x− y, θ) = 1.
By parallelogram law, [d(x + y, θ)]2 + [d(x − y, θ)]2 = 2[(d(x, θ))2 +

(d(θ, y))2].
=⇒ (1.414)2 + 12 = 2[12 + 12] =⇒ 2.999396 = 4.
Hence the parallelogram law is not satisfied. Therefore Γ2 is not an inner

product space. Assume that Γ2 is a Hilbert space. But then Γ2 would satisfy
reflexivity condition. [Theorem 4.6.6 [10]]. Proposition 5, Γ2 is not reflexive.
Thus Γ2 is not a Hilbert space. This completes the proof. ¥

Proposition 7. Γ2 is not rotund.

Proof. Let us take x = (xmn) and y = (ymn) defined by

xmn =




1 0 0 0 . . .
0 0 0 0 . . .
...


 and ymn =




1 0 0 0 . . .
0 0 0 0 . . .
. . .




Then x = (xmn) and y = (ymn) are in Γ2.
Also

d(x, y)

= sup




|x11 − y11| 12 , |x12 − y12| 13 , ..., |x1n − y1n|
1

1+n , 0, ...
...

|xm1 − ym1|
1

m+1 , |xm2 − ym2|
1

m+2 , ..., |xmn − ymn|
1

m+1 , 0, ...
0, ..., ..., 0, ...




Therefore

d(x, θ) = sup




1, 0, 0, 0, . . .
0, 0, 0, 0, . . .
...
0, 0, 0, 0, . . .




d(θ, y) = 1. Obviously x = (xmn) 6= y = (ymn).
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But

(xmn) + (ymn) =




1 0 0 0 . . .
0 0 0 0 . . .
...


 +




1 0 0 0 . . .
0 0 0 0 . . .
...




=




2 0 0 0 . . .
0 0 0 0 . . .

. . .




d

(
xmn + ymn

2
, θ

)

= sup




( |x11+y11|
2

) 1
2
,

( |x12+y12|
2

) 1
3
, ...,

( |x1n+y1n|
2

) 1
n+1

, 0, 0, ...

...( |xm1+ym1|
2

) 1
m+1

,
( |xm2+ym2|

2

) 1
m+2

, ...,
( |xmn+ymn|

2

) 1
m+1

, 0, 0, ...

..., ..., ..., ..., ..., ..., ...




d(
xmn + ymn

2
, θ) = sup




1, 0, 0, 0, . . .
0, 0, 0, 0, . . .
...


 = 1.

Therefore Γ2 is not rotund. This completes the proof. ¥

Proposition 8. Weak convergence and strong convergence are equivalent
in Γ2.

Proof. Step 1. Always strong convergence implies weak convergence.

Step 2. So it is enough to show that weakly convergence implies strongly
convergence in Γ2.

y(η) tends to y weakly in Γ2, where (y(η)
mn) = y(η) and y = (ymn). Take

any x = (xmn) ∈ Γ2 and

(5) f(z) =
∞∑

m,n=1

|zmnxmn|1/m+n, for each z = (zmn) ∈ Γ2.

Then f ∈ (Γ2)∗ by Proposition 2. By hypothesis f(y(η)) → f(y) as
η →∞.

(6) f(y(η) − y) → 0, as η →∞.
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⇒
∞∑

m,n=1
(|y(η)

mn − ymn|1/m+n|xmn|1/m+n) → 0, as η → ∞. By using (5)

and (6) we get

Since x = (xmn) ∈ Λ2 we have
∞∑

m,n=1
|xmn|1/m+n < ∞, for all x ∈ Λ2.

⇒
∞∑

m,n=1
(|y(η)

mn − ymn|1/m+n) → 0 as η →∞.

⇒ sup
mn

(|(y(η)
mn − ymn), 0|1/m+n) → 0 as η →∞.

⇒ sup
mn

(|(y(η)
mn − ymn)|1/m+n) → 0, as η →∞.

⇒ d((y(η) − y), 0) → 0, as η →∞.
⇒ d((y(η) − y) → 0, as η →∞.
This completes the proof. ¥

Proposition 9. We shall construct an infinite matrix A for which
Γ2

A = Γ2.

Example. Consider the matrix



y11 y12 . . . y1n 0 0 . . .
y21 y22 ... y2n 0 0 . . .
...

ym1 ym2 ... ymn 0 0 . . .
0 0 ... 0 0 0 . . .
...




=




1 0 0 ...
1 0 0 ...
0 1 0 ...
0 1 0 ...
0 1 0 ...
0 1 0 ...
0 0 1 ...
0 0 1 ...
0 0 1 ...
0 0 1 ...
0 0 1 ...
0 0 1 ...
0 0 1 ...
0 0 1 ...
...







x11 x12 ... x1n 0 0 ...
x21 x22 ... x2n 0 0 ...
...

xm1 xm2 ... xmn 0 0 ...
0 0 ... 0 0 0 ...
...
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y11 y12 ... y1n 0 0 ...
y21 y22 ... y2n 0 0 ...
...

ym1 ym2 ... ymn 0 0 ...
0 0 ... 0 0 0 ...
...




=




x11 x12 ... x1n 0 0 ...
x11 x12 ... x1n 0 0 ...
x21 x22 ... x2n 0 0 ...
x21 x22 ... x2n 0 0 ...
x21 x22 ... x2n 0 0 ...
x21 x22 ... x2n 0 0 ...
x31 x32 ... x3n 0 0 ...
x31 x32 ... x3n 0 0 ...
x31 x32 ... x3n 0 0 ...
x31 x32 ... x3n 0 0 ...
x31 x32 ... x3n 0 0 ...
x31 x32 ... x3n 0 0 ...
x31 x32 ... x3n 0 0 ...
x31 x32 ... x3n 0 0 ...
...




y11, y12, ..., y1n = x11, x12, ..., x1n

y21, y22, ..., y2n = x11, x12, ..., x1n

y31, y32, ..., y3n = x21, x22, ..., x2n

y41, y42, ..., y4n = x21, x22, ..., x2n

y51, y52, ..., y5n = x21, x22, ..., x2n

y61, y62, ..., y6n = x21, x22, ..., x2n
...

and so on. For any x = (xmn) ∈ Γ2. |(Ax)mn| = lim
m,n→∞ |

∑
xmn|1/m+n ≤

d(x, 0), where metric defined on Γ2 is given by

(7) [d(x, θ)]Γ2
A
≤ [d(x, θ)]Γ2

Conversely. Given x ∈ [d(x, θ)]Γ2
A

fix any m,n then, lim
m,n→∞ |xmn|1/m+n ≤

(Ax)mn ⇒ lim
m,n→∞|xmn|1/m+n ≤ [d(x, θ)]Γ2

A
⇒

(8) [d(x, θ)]Γ2 ≤ [d(x, θ)]Γ2
A

Therefore the matrix A = (xmnlk) for which the summability field [d(x, θ)]Γ2 =
[d(x, θ)]Γ2

A
is given by
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A =




1 0 0 ...
1 0 0 ...
0 1 0 ...
0 1 0 ...
0 1 0 ...
0 1 0 ...
0 0 1 ...
0 0 1 ...
0 0 1 ...
0 0 1 ...
0 0 1 ...
0 0 1 ...
0 0 1 ...
0 0 1 ...
...




//Program for generalization:

#include 〈iostream.h〉
#include 〈conio.h〉
#include 〈math.h〉
#include 〈fstream.h〉

void main()
{
clrscr() ;
int m,n,i,nn=0,j,count=1,k,1pp,abc;
ofstream fout,fout 1;
fout.open(”aa1.txt”);
fout1.open(”aa2.txt”);
cout << ”enter the value of m:”;
cin>> m;
for(i=1;i<=m;i++)
{
nn=nn+pow(2,i);
}
while(count<=nn)
{
cout<< ”− ”;
fout<< ”− ”;
for(abc=1;abc<=m+3;abc++)
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{
cout<< ” ”;
fout<< ” ”;
}
cout<< ”− \n”;
fout<< ”− ”\n;
for(j = 1; j <= m; j + +)
{
for(k=1;k<=pow(2,j);k++)
{
for(pp=1;pp<=2;pp++)
{
fout1<< ”Y ” << count << ”, ” << pp << ” ”;
}
fout1<< ”.....Y ” << count << ”, n = ”;
cout<< ” | ”;
fout<< ” | ”;
for(int q=1;q<=m+1;q++)
{
if(q==j)
{
cout<< ”1”;
fout<< ”1”;
}
else
{
cout<< ”0”;
fout<< ”0”;
}
}
for(l=1;l<=2;l++)
{
foutl<< ”X” << ”j” << ”, ” <<l<< ””;
}
fout1<< ”.....X” << j << ”n”;
cout<< ”... | \n”;
fout<< ”... | \n”;
fout1<< ”... | \n”;
count++;
}
}
}
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cout<< ” · \n · \n · \n”;
fout<< ” · \n · \n · \n”;
cout<< ” | −”;
fout<< ” | −”;
for(abc=1;abc<<=m+1;abc++)
{
cout<< ” ”;
fout<< ” ”;
}
cout<< ”− | ”;
fout<< ”− | ”;
fout1<< ”.\n.\n”;
fout.close();
fout1.close();
getch();
}

SAMPLE INPUT/OUTPUT

enter the value of m : 3




1 0 0 ...
1 0 0 ...
0 1 0 ...
0 1 0 ...
0 1 0 ...
0 1 0 ...
0 0 1 ...
0 0 1 ...
0 0 1 ...
0 0 1 ...
0 0 1 ...
0 0 1 ...
0 0 1 ...
0 0 1 ...
...




Y1,1, Y1,2, ..., Y1,n = X1,1, X1,2, ..., X1,n

X2,1, X2,2, ..., X2,n = X1,1, X1,2, ..., X1,n

Y3,1, Y3,2, ..., Y3,n = X2,1, X2,2, ..., X2,n
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Y4,1, Y4,2, ..., Y4,n = X2,1, X2,2, ..., X2,n

Y5,1, Y5,2, ..., Y5,n = X2,1, X2,2, ..., X2,n

Y6,1, Y6,2, ..., Y6,n = X2,1, X2,2, ..., X2,n

Y7,1, Y7,2, ..., Y7,n = X3,1, X3,2, ..., X3,n

Y8,1, Y8,2, ..., Y8,n = X3,1, X3,2, ..., X3,n

Y9,1, Y9,2, ..., Y9,n = X3,1, X3,2, ..., X3,n

Y10,1, Y10,2, ..., Y10,n = X3,1, X3,2, ..., X3,n

Y11,1, Y11,2, ..., Y11,n = X3,1, X3,2, ..., X3,n

Y12,1, Y12,2, ..., Y12,n = X3,1, X3,2, ..., X3,n

Y13,1, Y13,2, ..., Y13,n = X3,1, X3,2, ..., X3,n

Y14,1, Y14,2, ..., Y14,n = X3,1, X3,2, ..., X3,n
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