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1. Introduction

Kizmaz [3] studied the classical difference sequence spaces c¢(A), co(A)
and o (A). The notion is defined as follows:

2(8) = {2 = (&) €w: (Amy) € 2},

for Z = ¢, ¢y and lo, where Az = (Axy) = (2 — Tiy1)-

Let D denote the set of all closed and bounded intervals X = [a1, a2 on
R, the real line. For X,Y € D define

XSY, if a1§b1 and aggbg,
d(X, Y) = max(]al — bly, ’ag — bz’),

where X = [a1, ag] and Y = [by, bo].

It is known that (D, d) is a complete metric space. Also ”<” is a partial
order in D.

A fuzzy real number X is a fuzzy set on R, i.e. a mapping X : R — [
(= [0, 1]) associating each real number ¢ with its grade of membership X ().

A fuzzy real number X is called conver if X(t) > X(s) AN X(r) =
min (X (s), X(r)), where s <t < r.

* The work of the first author was carried under University Grants Commission of
India project No.- F. No. 30-240/2004(RS).

** This work was done while the second author was availing the
Teacher Fellowship from University Grants Commission of India, vide Grant
No.F.5-56/TF /2003(NERO)/1920.
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If there exists tg € R such that X (t9) = 1, then the fuzzy real number X
is called normal.

The a-cut or a-level set, [X]* of the fuzzy real number X, for 0 < a < 1,
defined by [X]* ={t € R: X(t) > a}.

The strong a-cut of the fuzzy real number X, for 0 < a < 1 is the set
{te R: X(t) > a}.

By 0-cut or 0-level set of the fuzzy real number X, we mean the closure
of the strong 0-cut.

A fuzzy real number X is said to be upper-semi continuous if, for each
>0, X 1([0,a+¢)), for all a € I is open in the usual topology of R.

The set of all upper-semi continuous, normal, convex fuzzy real numbers
is denoted by R(I). Throughout the article, by a fuzzy real number we mean
that the number belongs to R(I).

The set R of all real numbers can be embedded in R(I). For r € R,
7 € R(I) is defined by

_ 1, for t=r,
r(t) =
0, for t#r.

The arithmetic operations for a-level sets are defined as follows:
Let X,Y € R(I) and a-level sets be [X]* = [af, b{], [Y]* = [aF, bT],
a € [0,1]. Then

(X®Y]" = [af +a5, b7 +05],

(X =YI]" = ai — b5, bY — a3],

X®Y]* = | min af'by, max aj'bf
7 7

ije(tey 7 ageqy Y

1 1

and [Y_l]a = |:ba,aa
2 2

} , 0¢Y.
The absolute value, | X| of X € R(I) is defined by (see for instance Kaleva
and Seikkala [2])

oo = e

A fuzzy real number X is called non-negative if X(t) = 0, for all ¢ < 0.
The set of all non-negative fuzzy real numbers is denoted by R*(I).
Let d: R(I) x R(I) — R be defined by

d(X,Y) = Ogggld([X]a7 [Y1]%).



SOME CLASSES OF DIFFERENCE SEQUENCES . .. 107

Then d defines a metric on R(I). For X,Y € R(I) define
X <Y, if [X]* <[Y]?, forany « € [0,1].

A sequence (Xj) of fuzzy real numbers is said to be convergent to the
fuzzy real number X if, for every ¢ > 0, there exists ng € N such that
d(Xy, Xo) < €, for all k > ny.

A fuzzy real number sequence (X}) is said to be bounded if | Xj| < u, for

some p € R*(I); equivalently, (X}) is bounded if sup d (X},0) < oo.
k

2. Definitions and preliminaries

Savas [6] studied the classes of difference sequences c¢f'(A) and ¢£ (A) of
fuzzy real numbers.
A fuzzy real number difference sequence AX = (AXy) is said to be

convergent to a fuzzy real number X, written as klim AXy = X if, for every
—00

€ > 0, there exists a positive integer ng such that

d(AXy, X) <e, forall k> no.

A fuzzy real number difference sequence AX = (AXy) is said to be
bounded if |AXy| < p, for some p € R*(I); equivalently, (AXy) is bounded
if supd (AX%,0) < oo.

k

For r € R and X € R(I) the scalar product X is defined by

PX(8) = { X(r=%), for r#0,

0, for r=0.

A class of sequences ET is said to be normal (or solid) if (Y;) € EF,
whenever Y| < |Xg|, for all k € N and (X}) € EF.

A class of sequences EF is said to be monotone if EF contains the canon-
ical pre-images of all its step sets.

Let K = {k1 <ky<ks<---} C N and EF be a class of sequences. A
K-step set of E¥ is a class of sequences )\kEF = {(Xg,) € vl : (X;,) € EF}.

A canonical pre-image of a sequence (X, ) € )\kEF is a sequence (Y;,) € w’

defined as follows:
Yn:{Xn’ for nekK,

0, otherwise.

A canonical pre-zgnage of a step set /\E is a set of Can;)nlcal pre-images
of all elements in )\kE ,i.e. Y is in canonical pre-image )\E if and only if Y
is canonical pre-image of some X € /\kE .
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From the above definitions we have the following remarks.

Remark 1. A class of sequences E¥ is solid = E¥" is monotone.

A class of sequences E¥ is said to be symmetric if (Xﬂ(n)) € EF | whenever
(X1) € BEY where 7 is a permutation of N.

A class of sequences E' is said to be sequence algebra if (X ®Y3) € EF,
whenever (X}), (Yz) € EF.

A class of sequences EF is said to be convergence free if (V;) € EF,
whenever (X;) € Ef and X3 = 0 implies Y3 = 0.

Throughout the article wf', ¢f, cg and Efo denote the classes of all,
convergent, null and bounded sequences of fuzzy real numbers respectively.
Similarly ¢(A), ¢}’ (A) and ¢ (A) denote the classes of convergent, null
and bounded difference sequences of fuzzy real numbers.

It is clear that c¢'(A), ¢f'(A) and ¢% (A) are closed under addition and
scalar multiplication.

Remark 2. For the crisp set we have (zj) converges to L implies (Axy)
converges to 0. But for the fuzzy real numbers, when (X}) converges to X (a
fuzzy real number) then (AX}) converges to Z (a fuzzy real number), where
area bounded by the curve Z and the real line is double the area of the curve
bounded by X and the real line. Further, the nature of the curve will be
symmetric about the membership line, i.e. the line ¢ = 0. Hence the a-cuts
of Z will be of the type [Z]* = [—a, al, for some crisp a € Ry U {0}, the set
of non-negative real numbers. This is clear from the following example.

Example 1. Consider the sequence (X}) defined by

(t—5+3k7Y), for 5-3k7'<t<6-3k1,
Xp(t) =< B3-34—kY for 6-3k'<t<9-3k71,

0, otherwise.

Then [X;]® = [6+a—3k71), 38 —a—k™")] and [AX,]" = [{4o
—4-3k'+3(k+1)}, {4—4a -3k +3(k+ 1)} ie. Xp — X as
k — oo, where [X]* =[5+ a, 3(3 — )] for all @ € (0,1] and AXy — Z as
k — oo, where [Z]* = [4a — 4,4 — 4a)] for all a € (0, 1].

Here, the width of each a-cut in [Z]* is double the corresponding a-cut
in [X]%. So the area bounded by the curve Z and the real line is double the
area of the curve bounded by X and the real line.

Lemma 1 (Savas [6], Theorem 1). (£ (A) and cF'(A) are complete
metric spaces with the metric

p(X,Y) = d(X1, Y1) +supd(AX;, AYL),
k

where X = (X3,) and Y = (Y3,) are in L5 (A) or cF(A).
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3. Main results

Theorem 1. The classes of sequences ct'(A), cot' (A) and (£ (A)are
neither monotone nor solid.

Proof. The result follows from the following two examples. |
Example 2. Consider the sequence (X3) € cof (A) C ¢f'(A), defined by

Xo(t) = 1—k(t—-1), for 1<t<1+k1
¥ 0, otherwise.

Then for all a € (0,1] we have,
[AX]" = [(a—1)(k+ n~ha- oz)k_l] , ie. AXp—0, as k — oo.

Thus (X}) € o' (A) C cF(A).

Let J={ke€ N:k=2i—1,i€ N} be asubset of N and let (co’(A)),
be the canonical pre-image of the J-step set (COF(A))J of cof'(A), defined
as follows:

(Yx) € (cof'(A));, the canonical pre-image of (X) € co (A) implies

X, for ke J,
i =9 -
0, for k¢.J.

Now for all « € (0, 1] we have,

Y = { L1+ (1—a)k™], for ke
[0,0], for k¢ J.

and

1,1+ (1-a)k™], for ke J,

[AYk]O‘ = { [(a _ 1)(k + 1)—1 . 1,_1] , for &k € J.

Thus (V) ¢ ¢/ (A) (D o (A)). Therefore, o’ (A) and ¢f(A) are not
monotone.
The classes co’ (A) and ¢ (A) are not solid follows from Remark 1.

Example 3. Consider the sequence (X}) € ¢£ (A) defined by
t—(k—1), for k—-1<t<k,
Xi(t) = (k+1—1t), for k<t<k+1

0, otherwise.
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Then for all « € (0,1] we have, [AX]* = [2a — 3,1 — 2q], for all kK € N.
Thus (Xi) € ¢£(A).

Let J={ke N:k=2i—1,i € N} be asubset of N and let (¢, (A));
be the canonical pre-image of the J-step set (ffo(A))J of X (A), defined as
follows:

(Vi) € (¢X(A)), the canonical pre-image of (Xj) € ¢4 (A) implies

Y, =

X, for ke,
0, for k¢ J.

Now for all « € (0, 1] we have,

. [(k—1+4a),(k+1—a)], for kelJ,
] [0,0], for kée.J.

and

[(k—14a),(k+1—a)] for ke,

[AY,]* = {
[—(k+2—0a),—(k+a)] for k¢J

Therefore, (V) ¢ ¢X (A) and thus the class ££ (A) is not monotone. The
class ¢£ (A) is not solid follows from Remark 1.

Theorem 2. The classes of sequences cF'(A), co™ (A) and (5 (A) are
not convergence free.

Proof. The result follows from the following example.

Example 4. Consider the sequence (X3) € cof'(A) € ¢F'(A) c ££(A),
defined as follows:

For k=142, i€ N, X, =0.

Otherwise,

1, for 0<t<k!
Xi(t) = :
0, otherwise.
Then for all « € (0,1] we have,
o 0,0], for k=1i% i€ N,
S |
[0,k7"], otherwise.
and

[—(k+1)710], for k=4 i€N,
[AX]" = ¢ [0,k71], for k=i2—1, i€ N, withi> 1,
[—(k+1)71 k7], otherwise.
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Hence AX), — 0 as k — oo. Thus (X3) € co™(A) C cF(A) C 1L (A).
Let (Y%) be defined as follows:

For k=4* i€ N, Y, =0.

Otherwise,

{ 1, for 0<t<k,

0, otherwise.

{[0,0], for k=42, i€ N,

,k],  otherwise.

and
[_(k+1)70]7 for kZZQ, iEN,
[AY]" = {4 [0,K], for k=1i>—1, i€ N, with i>1,
[—(k+1),k], otherwise.
Thus (Y) ¢ ¢5,(A) (O F'(A) D f(A)).

Therefore, the classes ¢’ (A), cof'(A) and (£ (A) are not convergence
free. |

Theorem 3. The classes of sequences cf'(A), co™ (A) and (£ (A) are
not symmetric.
Proof. The result follows from the following two examples.

Example 5. Defined the unbounded sequence (X},) € co (A) C cf'(A)

as
1, for —1<t<0,
Xa(t) = .
0, otherwise.
and for k > 2,
k=1 ) k=1
1, for — +>§t§— +),
Xult) - SR )
0, otherwise.

For each a € (0, 1] we have [X;]* = [—1,0] and for k > 2,

e[ £

r=1
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Then for all k € N and for all a € (0, 1] we have

AX]Y = [—{k =) Lk (k1)
= [k {@) T + (k+1)7}].

Hence AX), — 0, as k — oo. Thus (Xz) € cof'(A) C ' (A).
Let the sequence (Yy) be a rearrangement of the sequence (X}), defined
as follows:

(Yk) = (Xla XZ) X47 X3a X97 X57 X167 X67 X257 X7 )

ie. (Vi) =X, ps1\2, for all k odd,

()™

=X (n+£); for all k even and n satisfies
nn—1) <% <nn+1), neN.
Then for £ = 1 we have,

[AY1]* = [X3]* — [X2]* = [-0.5,1], for each « € (0,1].

For all k odd with £ > 1 and n € N, satisfying n(n—1) < % < n(n+1),
we have

[AY]" = X(k;)?} ~ [Xwergy]

CoI
— Z — for all a € (0,1].
<n

% (n+ 1), we have

1 1
Z — + , for all a € (0,1].
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Here it is observed that the values of (AY}) increases with

1, f 2759 < t < 0.72
AYN):{ . for 0.2759 < t < 0.7200,

0, otherwise.

for all k¥ > 3 and k even and decreases for k > 3 and k£ odd. Therefore the
sequence can not converge to a point.

Thus (Yz) ¢ c(A) (D o™ (A)) and hence ¢f'(A) and ¢pf'(A) are not
symmetric.

Example 6. Consider the sequence (X3) € ¢£ (A), defined by

Xu(t) = 1, for kE<t<k+27h
g B 0, otherwise.

Then for all « € (0,1] we have

[AX]* = [-1.5,-0.5], forall k€ N.
Thus (Xy) € ¢£(A).

Let the sequence (Yj) be a rearrangement of the sequence (X}) defined
as follows:

(Vi) = (X1, Xo, Xu, X3, Xy, X5, X6, X6, Xos, X7 ...).
=X

(ﬁ)z, for all k odd,
2
(n+5) for all k£ even and n satisfies

nin—1) <% <nmn+1), neN.

Then for all k£ odd and n € N, satisfying n(n — 1) < % <n(n+1), we
have

(1) [AYR]® = [X(k 1

, for all a € (0,1],
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and for all k even and n € N, satisfying n(n — 1) < £ < n(n + 1), we have

(67

@) 1A% = {X<n+§>r‘[X(k;2>2}
{6553
{(n—i—l;) - <k;2>2+;}] , for all o€ (0,1],

From equation (1) and (2) it is clear that ([AYy]®) is unbounded, for all
a € (0,1].
Thus (Y3) & ¢5 (A). Therefore the class ££ (A) is not symmetric. [

Theorem 4. The class of sequences co (A)NIE (A) is sequence algebra.

Proof. Let (Xj), (Yx) € ££ (A) such that (AXy), (AY) € cof'. Then we
have

AXp®Yy) = Yk®AXk+Xk+1®AYk—>(_)7 as k — oo.

Hence the result. [ |

Theorem 5. The classes of sequences cf' (A) and €5, (A) are not sequence
algebra.

Proof. The result follows from the following example.

Example 7. Consider the two sequences (X}), (Y3) € cf'(A) C ¢£(A),
defined by

X(t) = 1, for k—1<t<k+41,
g 0, otherwise.

and

Yi(t) = 1, for k—1<t<k,
F B 0, otherwise.

Then for each o € (0, 1], we have
[Xe]* = [k—1,k+1] and [Yi]* = [k—1,k].

Therefore, for all kK € N we have
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AX; = X, where

1 f —3<t< -1
O
0, otherwise.

and AYp =Y, where

1 f —-2<t<0
Y0 =3 0 e
0, otherwise.

Thus (X}) and (Y3) € cF'(A) C £E(A).
Now for each « € (0, 1] we have

AXE@ Y] = [(k—1%k(k+1)]—[k (k+1)(k+2)] = [~(k+1),k].
e (Xp@Vi) ¢ €5 (A) (D (Q)).
Hence the result. |
Theorem 6. (a) ¢y C cof'(A) and the inclusion is strict.

(b) cf" c cF'(A) and the inclusion is strict.

Proof. (a) Let us consider a sequence (X},) € co®’. Clearly (from Remark
2) we have AXy — 0, as k — oo and hence cof COF(A).

The strictness of the inclusion follows from the following example.

Example 8. Consider the sequence (X}) defined in Example 2. Then
for each a € (0,1] we have

[(Xg]* = [L1+(1-a)k

ie. X —1,as k — oo and AXj, — 0, as k — 0.

Thus (X}) ¢ cof', but (X}) € co' (A). Hence the inclusion is strict.

(b) Consider a sequence (X3) € cf’. Then AX;, — X, as k — oo,
where X is of particular type, defined by [X]|* = [—a,a], for some crisp
a € R+ U{0}, the set of non-negative real numbers and for each o € (0, 1]
(refer to Remark 2).

Hence ¢ c ¢f'(A). The inclusion is strict follows from the following
example.

Example 9. Consider the sequence (X}) defined by

1. for k<t<k-+l,
Xk(t)_{

0, otherwise.
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Then for each « € (0,1] we have [X;]* = [k, k + 1] for all k € N and
AX; = X for all kK € N, where

1 f —2<t<0
X(W) = § T
0, otherwise.

Thus (X) ¢ ¢, but (X,) € ¢f'(A). Therefore the inclusion is proper. B

Theorem 7. The classes of sequences c''(A) and co™ (A) are nowhere
dense subsets of 15 (A).

Proof. From lemma we have c¢/'(A) and ¢o¥'(A) are closed subsets of the
complete metric space ££ (A). Also ¢ (A) and c¢'(A) are proper subsets
of ¢£ (A), which follows from the following example.

Example 10. Consider the sequence (Xj) defined as follows:

For k even,

Xu(t) = 1, for 0<t<1,
g B 0, otherwise.

Xu(t) = 1+ k(t+1), for —(1+k1)<t<—1,
F - 0, otherwise.

Then for each o € (0,1] we have

X" = [0, 1], for k even,
Tl a4k, =1], for k odd.
and

1,2+ (k+1)"'], for k even,

[AXk}a = { [_ (2 + k_l) ’_1} , for k odd.

Thus (AXy) ¢ ¢ (D c”), but (AXy) € ¢4, Hence the result. [ |
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