| F A S C I C U L I | M A | T | H | E | M A | T | I C I | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Nr 40 | | | | | | | | | | | | 2008 |

Binod C. Tripathy* and Paritosh C. Das**

SOME CLASSES OF DIFFERENCE SEQUENCES OF FUZZY REAL NUMBERS

Abstract

In this article we disscuss some properties of the classes of difference sequences $c^{F}(\Delta), c_{0}^{F}(\Delta)$ and $\ell_{\infty}^{F}(\Delta)$ of fuzzy real numbers, like solidness, symmetricity, sequence algebra, convergence free, nowhere denseness and prove some inclusion results. Key words: fuzzy real number, difference sequence, solid, symmetric, convergence free, sequence algebra.

AMS Mathematics Subject Classification: 40A05, 40D25.

1. Introduction

Kizmaz [3] studied the classical difference sequence spaces $c(\Delta), c_{0}(\Delta)$ and $\ell_{\infty}(\Delta)$. The notion is defined as follows:

$$
Z(\Delta)=\left\{x=\left(x_{k}\right) \in w:\left(\Delta x_{k}\right) \in Z\right\},
$$

for $Z=c, c_{0}$ and ℓ_{∞}, where $\Delta x=\left(\Delta x_{k}\right)=\left(x_{k}-x_{k+1}\right)$.
Let D denote the set of all closed and bounded intervals $X=\left[a_{1}, a_{2}\right]$ on R, the real line. For $X, Y \in D$ define

$$
\begin{aligned}
& X \leq Y, \text { if } a_{1} \leq b_{1} \text { and } a_{2} \leq b_{2}, \\
& d(X, Y)=\max \left(\left|a_{1}-b_{1}\right|,\left|a_{2}-b_{2}\right|\right),
\end{aligned}
$$

where $X=\left[a_{1}, a_{2}\right]$ and $Y=\left[b_{1}, b_{2}\right]$.
It is known that (D, d) is a complete metric space. Also " \leq " is a partial order in D.

A fuzzy real number X is a fuzzy set on R, i.e. a mapping $X: R \rightarrow I$ $(=[0,1])$ associating each real number t with its grade of membership $X(t)$.

A fuzzy real number X is called convex if $X(t) \geq X(s) \wedge X(r)=$ $\min (X(s), X(r))$, where $s<t<r$.

[^0]If there exists $t_{0} \in R$ such that $X\left(t_{0}\right)=1$, then the fuzzy real number X is called normal.

The α-cut or α-level set, $[X]^{\alpha}$ of the fuzzy real number X, for $0<\alpha \leq 1$, defined by $[X]^{\alpha}=\{t \in R: X(t) \geq \alpha\}$.

The strong α-cut of the fuzzy real number X, for $0 \leq \alpha \leq 1$ is the set $\{t \in R: X(t)>\alpha\}$.

By 0-cut or 0-level set of the fuzzy real number X, we mean the closure of the strong 0 -cut.

A fuzzy real number X is said to be upper-semi continuous if, for each $\varepsilon>0, X^{-1}([0, a+\varepsilon))$, for all $a \in I$ is open in the usual topology of R.

The set of all upper-semi continuous, normal, convex fuzzy real numbers is denoted by $R(I)$. Throughout the article, by a fuzzy real number we mean that the number belongs to $R(I)$.

The set R of all real numbers can be embedded in $R(I)$. For $r \in R$, $\bar{r} \in R(I)$ is defined by

$$
\bar{r}(t)= \begin{cases}1, & \text { for } \quad t=r \\ 0, & \text { for } \quad t \neq r\end{cases}
$$

The arithmetic operations for α-level sets are defined as follows:
Let $X, Y \in R(I)$ and α-level sets be $[X]^{\alpha}=\left[a_{1}^{\alpha}, b_{1}^{\alpha}\right],[Y]^{\alpha}=\left[a_{2}^{\alpha}, b_{2}^{\alpha}\right]$, $\alpha \in[0,1]$. Then

$$
\begin{gathered}
{[X \oplus Y]^{\alpha}=\left[a_{1}^{\alpha}+a_{2}^{\alpha}, b_{1}^{\alpha}+b_{2}^{\alpha}\right]} \\
{[X-Y]^{\alpha}=\left[a_{1}^{\alpha}-b_{2}^{\alpha}, b_{1}^{\alpha}-a_{2}^{\alpha}\right]} \\
{[X \otimes Y]^{\alpha}=\left[\min _{i, j \in\{1,2\}} a_{i}^{\alpha} b_{j}^{\alpha}, \max _{i, j \in\{1,2\}} a_{i}^{\alpha} b_{j}^{\alpha}\right]} \\
\text { and }\left[Y^{-1}\right]^{\alpha}=\left[\frac{1}{b_{2}^{\alpha}}, \frac{1}{a_{2}^{\alpha}}\right], \quad 0 \notin Y .
\end{gathered}
$$

The absolute value, $|X|$ of $X \in R(I)$ is defined by (see for instance Kaleva and Seikkala [2])

$$
|X|(t)= \begin{cases}\max (X(t), X(-t)), & \text { for } \quad t \geq 0 \\ 0, & \text { for } \quad t<0\end{cases}
$$

A fuzzy real number X is called non-negative if $X(t)=0$, for all $t<0$. The set of all non-negative fuzzy real numbers is denoted by $R^{*}(I)$.

Let $\bar{d}: R(I) \times R(I) \rightarrow R$ be defined by

$$
\bar{d}(X, Y)=\sup _{0 \leq \alpha \leq 1} d\left([X]^{\alpha},[Y]^{\alpha}\right)
$$

Then \bar{d} defines a metric on $R(I)$. For $X, Y \in R(I)$ define

$$
X \leq Y, \text { if }[X]^{\alpha} \leq[Y]^{\alpha}, \text { for any } \alpha \in[0,1]
$$

A sequence $\left(X_{k}\right)$ of fuzzy real numbers is said to be convergent to the fuzzy real number X_{0} if, for every $\varepsilon>0$, there exists $n_{0} \in N$ such that $\bar{d}\left(X_{k}, X_{0}\right)<\varepsilon$, for all $k \geq n_{0}$.

A fuzzy real number sequence $\left(X_{k}\right)$ is said to be bounded if $\left|X_{k}\right| \leq \mu$, for some $\mu \in R^{*}(I)$; equivalently, $\left(X_{k}\right)$ is bounded if $\sup _{k} \bar{d}\left(X_{k}, \overline{0}\right)<\infty$.

2. Definitions and preliminaries

Savas [6] studied the classes of difference sequences $c^{F}(\Delta)$ and $\ell_{\infty}^{F}(\Delta)$ of fuzzy real numbers.

A fuzzy real number difference sequence $\Delta X=\left(\Delta X_{k}\right)$ is said to be convergent to a fuzzy real number X, written as $\lim _{k \rightarrow \infty} \Delta X_{k}=X$ if, for every $\varepsilon>0$, there exists a positive integer n_{0} such that

$$
\bar{d}\left(\Delta X_{k}, X\right)<\varepsilon, \text { for all } k>n_{0}
$$

A fuzzy real number difference sequence $\Delta X=\left(\Delta X_{k}\right)$ is said to be bounded if $\left|\Delta X_{k}\right| \leq \mu$, for some $\mu \in R^{*}(I)$; equivalently, $\left(\Delta X_{k}\right)$ is bounded if $\sup \bar{d}\left(\Delta X_{k}, \overline{0}\right)<\infty$.

For $r \in R$ and $X \in R(I)$ the scalar product $r X$ is defined by

$$
r X(t)=\left\{\begin{array}{lr}
X\left(r^{-1} t\right), & \text { for } \quad r \neq 0 \\
\overline{0}, & \text { for } \quad r=0
\end{array}\right.
$$

A class of sequences E^{F} is said to be normal (or solid) if $\left(Y_{k}\right) \in E^{F}$, whenever $\left|Y_{k}\right| \leq\left|X_{k}\right|$, for all $k \in N$ and $\left(X_{k}\right) \in E^{F}$.

A class of sequences E^{F} is said to be monotone if E^{F} contains the canonical pre-images of all its step sets.

Let $K=\left\{k_{1}<k_{2}<k_{3}<\cdots\right\} \subseteq N$ and E^{F} be a class of sequences. A K-step set of E^{F} is a class of sequences $\lambda_{k}^{E^{F}}=\left\{\left(X_{k_{n}}\right) \in w^{F}:\left(X_{n}\right) \in E^{F}\right\}$.

A canonical pre-image of a sequence $\left(X_{k_{n}}\right) \in \lambda_{k}^{E^{F}}$ is a sequence $\left(Y_{n}\right) \in w^{F}$ defined as follows:

$$
Y_{n}= \begin{cases}X_{n}, & \text { for } n \in K \\ \overline{0}, & \text { otherwise }\end{cases}
$$

A canonical pre-image of a step set $\lambda_{k}^{E^{F}}$ is a set of canonical pre-images of all elements in $\lambda_{k}^{E^{F}}$, i.e. Y is in canonical pre-image $\lambda_{k}^{E^{F}}$ if and only if Y is canonical pre-image of some $X \in \lambda_{k}^{E^{F}}$.

From the above definitions we have the following remarks.
Remark 1. A class of sequences E^{F} is solid $\Rightarrow E^{F}$ is monotone.
A class of sequences E^{F} is said to be symmetric if $\left(X_{\pi(n)}\right) \in E^{F}$, whenever $\left(X_{k}\right) \in E^{F}$, where π is a permutation of N.

A class of sequences E^{F} is said to be sequence algebra if $\left(X_{k} \otimes Y_{k}\right) \in E^{F}$, whenever $\left(X_{k}\right),\left(Y_{k}\right) \in E^{F}$.

A class of sequences E^{F} is said to be convergence free if $\left(Y_{k}\right) \in E^{F}$, whenever $\left(X_{k}\right) \in E^{F}$ and $X_{k}=\overline{0}$ implies $Y_{k}=\overline{0}$.

Throughout the article w^{F}, c^{F}, c_{0}^{F} and ℓ_{∞}^{F} denote the classes of all, convergent, null and bounded sequences of fuzzy real numbers respectively. Similarly $c^{F}(\Delta), c_{0}^{F}(\Delta)$ and $\ell_{\infty}^{F}(\Delta)$ denote the classes of convergent, null and bounded difference sequences of fuzzy real numbers.

It is clear that $c^{F}(\Delta), c_{0}^{F}(\Delta)$ and $\ell_{\infty}^{F}(\Delta)$ are closed under addition and scalar multiplication.

Remark 2. For the crisp set we have $\left(x_{k}\right)$ converges to L implies (Δx_{k}) converges to 0 . But for the fuzzy real numbers, when $\left(X_{k}\right)$ converges to X (a fuzzy real number) then $\left(\Delta X_{k}\right)$ converges to Z (a fuzzy real number), where area bounded by the curve Z and the real line is double the area of the curve bounded by X and the real line. Further, the nature of the curve will be symmetric about the membership line, i.e. the line $t=0$. Hence the α-cuts of Z will be of the type $[Z]^{\alpha}=[-a, a]$, for some crisp $a \in R_{+} \cup\{0\}$, the set of non-negative real numbers. This is clear from the following example.

Example 1. Consider the sequence (X_{k}) defined by

$$
X_{k}(t)= \begin{cases}\left(t-5+3 k^{-1}\right), & \text { for } \quad 5-3 k^{-1} \leq t \leq 6-3 k^{-1} \\ \left(3-3^{-1} t-k^{-1}\right) & \text { for } 6-3 k^{-1}<t \leq 9-3 k^{-1} \\ 0, & \text { otherwise }\end{cases}
$$

Then $\left[X_{k}\right]^{\alpha}=\left[\left(5+\alpha-3 k^{-1}\right), 3\left(3-\alpha-k^{-1}\right)\right]$ and $\left[\Delta X_{k}\right]^{\alpha}=[\{4 \alpha$ $\left.\left.-4-3 k^{-1}+3(k+1)^{-1}\right\},\left\{4-4 \alpha-3 k^{-1}+3(k+1)^{-1}\right\}\right]$ i.e. $X_{k} \rightarrow X$ as $k \rightarrow \infty$, where $[X]^{\alpha}=[5+\alpha, 3(3-\alpha)]$ for all $\alpha \in(0,1]$ and $\Delta X_{k} \rightarrow Z$ as $k \rightarrow \infty$, where $\left.[Z]^{\alpha}=[4 \alpha-4,4-4 \alpha)\right]$ for all $\alpha \in(0,1]$.

Here, the width of each α-cut in $[Z]^{\alpha}$ is double the corresponding α-cut in $[X]^{\alpha}$. So the area bounded by the curve Z and the real line is double the area of the curve bounded by X and the real line.

Lemma 1 (Savas [6], Theorem 1). $\ell_{\infty}^{F}(\Delta)$ and $c^{F}(\Delta)$ are complete metric spaces with the metric

$$
\rho(X, Y)=\bar{d}\left(X_{1}, Y_{1}\right)+\sup _{k} \bar{d}\left(\Delta X_{k}, \Delta Y_{k}\right),
$$

where $X=\left(X_{k}\right)$ and $Y=\left(Y_{k}\right)$ are in $\ell_{\infty}^{F}(\Delta)$ or $c^{F}(\Delta)$.

3. Main results

Theorem 1. The classes of sequences $c^{F}(\Delta), c_{0}{ }^{F}(\Delta)$ and $\ell_{\infty}^{F}(\Delta)$ are neither monotone nor solid.

Proof. The result follows from the following two examples.
Example 2. Consider the sequence $\left(X_{k}\right) \in c_{0}{ }^{F}(\Delta) \subset c^{F}(\Delta)$, defined by

$$
X_{k}(t)= \begin{cases}1-k(t-1), & \text { for } \quad 1 \leq t \leq 1+k^{-1} \\ 0, & \text { otherwise }\end{cases}
$$

Then for all $\alpha \in(0,1]$ we have,
$\left[\Delta X_{k}\right]^{\alpha}=\left[(\alpha-1)(k+1)^{-1},(1-\alpha) k^{-1}\right]$, i.e. $\Delta X_{k} \rightarrow \overline{0}$, as $k \rightarrow \infty$.
Thus $\left(X_{k}\right) \in c_{0}{ }^{F}(\Delta) \subset c^{F}(\Delta)$.
Let $J=\{k \in N: k=2 i-1, i \in N\}$ be a subset of N and let ${\left.\overline{\left(c_{0} F\right.}(\Delta)\right)_{J}}$ be the canonical pre-image of the J-step set $\left(c_{0}{ }^{F}(\Delta)\right)_{J}$ of $c_{0}{ }^{F}(\Delta)$, defined as follows:
$\left(Y_{k}\right) \in{\left.\overline{\left(c_{0} F\right.}(\Delta)\right)_{J}}_{J}$, the canonical pre-image of $\left(X_{k}\right) \in c_{0}{ }^{F}(\Delta)$ implies

$$
Y_{k}=\left\{\begin{array}{lll}
X_{k}, & \text { for } & k \in J, \\
\overline{0}, & \text { for } & k \notin J .
\end{array}\right.
$$

Now for all $\alpha \in(0,1]$ we have,

$$
\left[Y_{k}\right]^{\alpha}= \begin{cases}{\left[1,1+(1-\alpha) k^{-1}\right],} & \text { for } \quad k \in J, \\ {[0,0],} & \text { for } \quad k \notin J .\end{cases}
$$

and

$$
\left[\Delta Y_{k}\right]^{\alpha}=\left\{\begin{array}{lll}
{\left[1,1+(1-\alpha) k^{-1}\right],} & \text { for } & k \in J, \\
{\left[(\alpha-1)(k+1)^{-1}-1,-1\right],} & \text { for } & k \notin J .
\end{array}\right.
$$

Thus $\left(Y_{k}\right) \notin c^{F}(\Delta)\left(\supset c_{0}{ }^{F}(\Delta)\right)$. Therefore, $c_{0}{ }^{F}(\Delta)$ and $c^{F}(\Delta)$ are not monotone.

The classes $c_{0}{ }^{F}(\Delta)$ and $c^{F}(\Delta)$ are not solid follows from Remark 1.
Example 3. Consider the sequence $\left(X_{k}\right) \in \ell_{\infty}^{F}(\Delta)$ defined by

$$
X_{k}(t)= \begin{cases}t-(k-1), & \text { for } \quad k-1 \leq t \leq k, \\ (k+1-t), & \text { for } \quad k<t \leq k+1 \\ 0, & \text { otherwise }\end{cases}
$$

Then for all $\alpha \in(0,1]$ we have, $\left[\Delta X_{k}\right]^{\alpha}=[2 \alpha-3,1-2 \alpha]$, for all $k \in N$. Thus $\left(X_{k}\right) \in \ell_{\infty}^{F}(\Delta)$.

Let $J=\{k \in N: k=2 i-1, i \in N\}$ be a subset of N and let ${\left.\overline{\left(\ell_{\infty}^{F}(\Delta)\right.}\right)_{J}}^{\infty}$ be the canonical pre-image of the J-step set $\left(\ell_{\infty}^{F}(\Delta)\right)_{J}$ of $\ell_{\infty}^{F}(\Delta)$, defined as follows:
$\left(Y_{k}\right) \in{\overline{\left(\ell_{\infty}^{F}(\Delta)\right)}}_{J}$ the canonical pre-image of $\left(X_{k}\right) \in \ell_{\infty}^{F}(\Delta)$ implies

$$
Y_{k}=\left\{\begin{array}{lll}
X_{k}, & \text { for } & k \in J \\
\overline{0}, & \text { for } & k \notin J
\end{array}\right.
$$

Now for all $\alpha \in(0,1]$ we have,

$$
\left[Y_{k}\right]^{\alpha}=\left\{\begin{array}{lll}
{[(k-1+\alpha),(k+1-\alpha)],} & \text { for } \quad k \in J, \\
{[0,0],} & \text { for } \quad k \notin J .
\end{array}\right.
$$

and

$$
\left[\Delta Y_{k}\right]^{\alpha}=\left\{\begin{array}{lll}
{[(k-1+\alpha),(k+1-\alpha)]} & \text { for } & k \in J \\
{[-(k+2-\alpha),-(k+\alpha)]} & \text { for } & k \notin J
\end{array}\right.
$$

Therefore, $\left(Y_{k}\right) \notin \ell_{\infty}^{F}(\Delta)$ and thus the class $\ell_{\infty}^{F}(\Delta)$ is not monotone. The class $\ell_{\infty}^{F}(\Delta)$ is not solid follows from Remark 1 .

Theorem 2. The classes of sequences $c^{F}(\Delta), c_{0}{ }^{F}(\Delta)$ and $\ell_{\infty}^{F}(\Delta)$ are not convergence free.

Proof. The result follows from the following example.
Example 4. Consider the sequence $\left(X_{k}\right) \in c_{0}{ }^{F}(\Delta) \subset c^{F}(\Delta) \subset \ell_{\infty}^{F}(\Delta)$, defined as follows:

For $k=i^{2}, i \in N, \quad X_{k}=\overline{0}$.
Otherwise,

$$
X_{k}(t)= \begin{cases}1, & \text { for } 0 \leq t \leq k^{-1} \\ 0, & \text { otherwise }\end{cases}
$$

Then for all $\alpha \in(0,1]$ we have,

$$
\left[X_{k}\right]^{\alpha}= \begin{cases}{[0,0],} & \text { for } k=i^{2}, \quad i \in N, \\ {\left[0, k^{-1}\right],} & \text { otherwise } .\end{cases}
$$

and
$\left[\Delta X_{k}\right]^{\alpha}= \begin{cases}{\left[-(k+1)^{-1}, 0\right],} & \text { for } k=i^{2}, \quad i \in N, \\ {\left[0, k^{-1}\right],} & \text { for } k=i^{2}-1, i \in N, \text { with } i>1, \\ {\left[-(k+1)^{-1}, k^{-1}\right],} & \text { otherwise. }\end{cases}$

Hence $\Delta X_{k} \rightarrow \overline{0}$ as $k \rightarrow \infty$. Thus $\left(X_{k}\right) \in c_{0}^{F}(\Delta) \subset c^{F}(\Delta) \subset \ell_{\infty}^{F}(\Delta)$.
Let $\left(Y_{k}\right)$ be defined as follows:
For $k=i^{2}, i \in N, \quad Y_{k}=\overline{0}$.
Otherwise,

$$
Y_{k}(t)= \begin{cases}1, & \text { for } \quad 0 \leq t \leq k \\ 0, & \text { otherwise }\end{cases}
$$

Now for all $\alpha \in(0,1]$ we have,

$$
\left[Y_{k}\right]^{\alpha}= \begin{cases}{[0,0],} & \text { for } k=i^{2}, \quad i \in N \\ {[0, k],} & \text { otherwise }\end{cases}
$$

and

$$
\left[\Delta Y_{k}\right]^{\alpha}= \begin{cases}{[-(k+1), 0],} & \text { for } \quad k=i^{2}, \quad i \in N, \\ {[0, k],} & \text { for } k=i^{2}-1, \quad i \in N, \text { with } i>1, \\ {[-(k+1), k],} & \text { otherwise. }\end{cases}
$$

Thus $\left(Y_{k}\right) \notin \ell_{\infty}^{F}(\Delta)\left(\supset c^{F}(\Delta) \supset c_{0}{ }^{F}(\Delta)\right)$.
Therefore, the classes $c^{F}(\Delta), c_{0}{ }^{F}(\Delta)$ and $\ell_{\infty}^{F}(\Delta)$ are not convergence free.

Theorem 3. The classes of sequences $c^{F}(\Delta), c_{0}{ }^{F}(\Delta)$ and $\ell_{\infty}^{F}(\Delta)$ are not symmetric.

Proof. The result follows from the following two examples.
Example 5. Defined the unbounded sequence $\left(X_{k}\right) \in c_{0}{ }^{F}(\Delta) \subset c^{F}(\Delta)$ as

$$
X_{1}(t)= \begin{cases}1, & \text { for } \quad-1 \leq t \leq 0 \\ 0, & \text { otherwise }\end{cases}
$$

and for $k \geq 2$,

$$
X_{k}(t)= \begin{cases}1, & \text { for } \quad-\left(\sum_{r=1}^{k-1}\left(\frac{1}{2 r}\right)+\frac{1}{k}\right) \leq t \leq-\sum_{r=1}^{k-1}\left(\frac{1}{2 r}\right), \\ 0, & \text { otherwise. }\end{cases}
$$

For each $\alpha \in(0,1]$ we have $\left[X_{1}\right]^{\alpha}=[-1,0]$ and for $k \geq 2$,

$$
\left[X_{k}\right]^{\alpha}=\left[-\left(\sum_{r=1}^{k-1}\left(\frac{1}{2 r}\right)+\frac{1}{k}\right),-\sum_{r=1}^{k-1}\left(\frac{1}{2 r}\right)\right] .
$$

Then for all $k \in N$ and for all $\alpha \in(0,1]$ we have

$$
\begin{aligned}
{\left[\Delta X_{k}\right]^{\alpha} } & =\left[-\left\{k^{-1}-(2 k)^{-1}\right\},\left\{(2 k)^{-1}+(k+1)^{-1}\right\}\right] \\
& =\left[-(2 k)^{-1},\left\{(2 k)^{-1}+(k+1)^{-1}\right\}\right] .
\end{aligned}
$$

Hence $\Delta X_{k} \rightarrow \overline{0}$, as $k \rightarrow \infty$. Thus $\left(X_{k}\right) \in c_{0}{ }^{F}(\Delta) \subset c^{F}(\Delta)$.
Let the sequence $\left(Y_{k}\right)$ be a rearrangement of the sequence $\left(X_{k}\right)$, defined as follows:

$$
\left(Y_{k}\right)=\left(X_{1}, X_{2}, X_{4}, X_{3}, X_{9}, X_{5}, X_{16}, X_{6}, X_{25}, X_{7} \ldots\right)
$$

i.e. $\quad\left(Y_{k}\right)=X_{\left(\frac{k+1}{2}\right)^{2}}$, for all k odd,

$$
\begin{aligned}
& =X_{\left(n+\frac{k}{2}\right)} \text {, for all } k \text { even and } n \text { satisfies } \\
& \qquad n(n-1)<\frac{k}{2} \leq n(n+1), n \in N .
\end{aligned}
$$

Then for $k=1$ we have,

$$
\left[\Delta Y_{1}\right]^{\alpha}=\left[X_{1}\right]^{\alpha}-\left[X_{2}\right]^{\alpha}=[-0.5,1], \text { for each } \alpha \in(0,1] .
$$

For all k odd with $k>1$ and $n \in N$, satisfying $n(n-1)<\frac{k+1}{2} \leq n(n+1)$, we have

$$
\begin{aligned}
{\left[\Delta Y_{k}\right]^{\alpha}=} & {\left[X_{\left(\frac{k+1}{2}\right)^{2}}\right]^{\alpha}-\left[X_{\left(n+\frac{k+1}{2}\right)}\right]^{\alpha} } \\
= & {\left[-\left\{\sum_{r=\left(n+\frac{k+1}{2}\right)}^{\left(\frac{k+1}{2}\right)^{2}-1} \frac{1}{2 r}+\frac{1}{\left(\frac{k+1}{2}\right)^{2}}\right\},\right.} \\
& \left.-\left\{\sum_{r=\left(n+\frac{k+1}{2}\right)}^{\left(\frac{k+1}{2}\right)^{2}-1} \frac{1}{2 r}\right\}+\frac{1}{\left(n+\frac{k+1}{2}\right)}\right], \text { for all } \alpha \in(0,1] .
\end{aligned}
$$

For all k even and $n \in N$, satisfying $n(n-1)<\frac{k}{2} \leq n(n+1)$, we have

$$
\begin{aligned}
{\left[\Delta Y_{k}\right]^{\alpha}=} & {\left[X_{\left(n+\frac{k}{2}\right)}\right]^{\alpha}-\left[X_{\left(\frac{k+2}{2}\right)^{2}}\right]^{\alpha} } \\
= & {\left[\left\{\sum_{r=\left(n+\frac{k}{2}\right)}^{\left(\frac{k+2}{2}\right)^{2}-1} \frac{1}{2 r}\right\}-\frac{1}{\left(n+\frac{k}{2}\right)},\right.} \\
& \left.\left\{\sum_{r=\left(n+\frac{k}{2}\right)}^{\left(\frac{k+2}{2}\right)^{2}-1} \frac{1}{2 r}+\frac{1}{\left(\frac{k+2}{2}\right)^{2}}\right\}\right], \text { for all } \alpha \in(0,1] .
\end{aligned}
$$

Here it is observed that the values of $\left(\Delta Y_{k}\right)$ increases with

$$
\Delta Y_{4}(t)= \begin{cases}1, & \text { for } \quad 0.2759 \leq t \leq 0.7200 \\ 0, & \text { otherwise }\end{cases}
$$

for all $k>3$ and k even and decreases for $k>3$ and k odd. Therefore the sequence can not converge to a point.

Thus $\left(Y_{k}\right) \notin c^{F}(\Delta)\left(\supset c_{0}{ }^{F}(\Delta)\right)$ and hence $c^{F}(\Delta)$ and $c_{0}{ }^{F}(\Delta)$ are not symmetric.

Example 6. Consider the sequence $\left(X_{k}\right) \in \ell_{\infty}^{F}(\Delta)$, defined by

$$
X_{k}(t)= \begin{cases}1, & \text { for } \quad k \leq t \leq k+2^{-1} \\ 0, & \text { otherwise }\end{cases}
$$

Then for all $\alpha \in(0,1]$ we have

$$
\left[\Delta X_{k}\right]^{\alpha}=[-1.5,-0.5], \text { for all } k \in N
$$

Thus $\left(X_{k}\right) \in \ell_{\infty}^{F}(\Delta)$.
Let the sequence $\left(Y_{k}\right)$ be a rearrangement of the sequence $\left(X_{k}\right)$ defined as follows:

$$
\left(Y_{k}\right)=\left(X_{1}, X_{2}, X_{4}, X_{3}, X_{9}, X_{5}, X_{16}, X_{6}, X_{25}, X_{7} \ldots\right)
$$

i.e. $\quad\left(Y_{k}\right)=X_{\left(\frac{k+1}{2}\right)^{2}}$, for all k odd,
$=X_{\left(n+\frac{k}{2}\right)}$, for all k even and n satisfies

$$
n(n-1)<\frac{k}{2} \leq n(n+1), \quad n \in N
$$

Then for all k odd and $n \in N$, satisfying $n(n-1)<\frac{k+1}{2} \leq n(n+1)$, we have
(1) $\left[\Delta Y_{k}\right]^{\alpha}=\left[X_{\left(\frac{k+1}{2}\right)^{2}}\right]^{\alpha}-\left[X_{\left(n+\frac{k+1}{2}\right)}\right]^{\alpha}$

$$
\begin{aligned}
= & {\left[\left\{\left(\frac{k+1}{2}\right)^{2}-\left(\frac{3 k+1}{2}\right)-\frac{1}{2}\right\},\right.} \\
& \left.\left\{\left(\frac{k+1}{2}\right)^{2}-\left(\frac{3 k+1}{2}\right)+\frac{1}{2}\right\}\right], \text { for all } \alpha \in(0,1]
\end{aligned}
$$

and for all k even and $n \in N$, satisfying $n(n-1)<\frac{k}{2} \leq n(n+1)$, we have
(2) $\left[\Delta Y_{k}\right]^{\alpha}=\left[X_{\left(n+\frac{k}{2}\right)}\right]^{\alpha}-\left[X_{\left(\frac{k+2}{2}\right)^{2}}\right]^{\alpha}$
$=\left[\left\{\left(n+\frac{k}{2}\right)-\left(\frac{k+2}{2}\right)^{2}-\frac{1}{2}\right\}\right.$,

$$
\left.\left\{\left(n+\frac{k}{2}\right)-\left(\frac{k+2}{2}\right)^{2}+\frac{1}{2}\right\}\right], \text { for all } \alpha \in(0,1]
$$

From equation (1) and (2) it is clear that $\left(\left[\Delta Y_{k}\right]^{\alpha}\right)$ is unbounded, for all $\alpha \in(0,1]$.

Thus $\left(Y_{k}\right) \notin \ell_{\infty}^{F}(\Delta)$. Therefore the class $\ell_{\infty}^{F}(\Delta)$ is not symmetric.
Theorem 4. The class of sequences $c_{0}{ }^{F}(\Delta) \cap \ell_{\infty}^{F}(\Delta)$ is sequence algebra.
Proof. Let $\left(X_{k}\right),\left(Y_{k}\right) \in \ell_{\infty}^{F}(\Delta)$ such that $\left(\Delta X_{k}\right),\left(\Delta Y_{k}\right) \in c_{0}{ }^{F}$. Then we have

$$
\Delta\left(X_{k} \otimes Y_{k}\right)=Y_{k} \otimes \Delta X_{k}+X_{k+1} \otimes \Delta Y_{k} \rightarrow \overline{0}, \quad \text { as } k \rightarrow \infty .
$$

Hence the result.
Theorem 5. The classes of sequences $c^{F}(\Delta)$ and $\ell_{\infty}^{F}(\Delta)$ are not sequence algebra.

Proof. The result follows from the following example.
Example 7. Consider the two sequences $\left(X_{k}\right),\left(Y_{k}\right) \in c^{F}(\Delta) \subset \ell_{\infty}^{F}(\Delta)$, defined by

$$
X_{k}(t)= \begin{cases}1, & \text { for } \quad k-1 \leq t \leq k+1 \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
Y_{k}(t)= \begin{cases}1, & \text { for } \quad k-1 \leq t \leq k \\ 0, & \text { otherwise }\end{cases}
$$

Then for each $\alpha \in(0,1]$, we have

$$
\left[X_{k}\right]^{\alpha}=[k-1, k+1] \text { and }\left[Y_{k}\right]^{\alpha}=[k-1, k] .
$$

Therefore, for all $k \in N$ we have
$\Delta X_{k}=X$, where

$$
X(t)= \begin{cases}1, & \text { for } \quad-3 \leq t \leq-1 \\ 0, & \text { otherwise }\end{cases}
$$

and $\quad \Delta Y_{k}=Y, \quad$ where

$$
Y(t)= \begin{cases}1, & \text { for } \quad-2 \leq t \leq 0 \\ 0, & \text { otherwise }\end{cases}
$$

Thus $\left(X_{k}\right)$ and $\left(Y_{k}\right) \in c^{F}(\Delta) \subset \ell_{\infty}^{F}(\Delta)$.
Now for each $\alpha \in(0,1]$ we have
$\left[\Delta\left(X_{k} \otimes Y_{k}\right)\right]^{\alpha}=\left[(k-1)^{2}, k(k+1)\right]-\left[k^{2},(k+1)(k+2)\right]=[-(k+1), k]$.
i.e. $\left(X_{k} \otimes Y_{k}\right) \notin \ell_{\infty}^{F}(\Delta)\left(\supset c^{F}(\Delta)\right)$.

Hence the result.
Theorem 6. (a) $c_{0}{ }^{F} \subset c_{0}{ }^{F}(\Delta)$ and the inclusion is strict.
(b) $c^{F} \subset c^{F}(\Delta)$ and the inclusion is strict.

Proof. (a) Let us consider a sequence $\left(X_{k}\right) \in c_{0}{ }^{F}$. Clearly (from Remark 2) we have $\Delta X_{k} \rightarrow \overline{0}$, as $k \rightarrow \infty$ and hence $c_{0}{ }^{F} \subset c_{0}{ }^{F}(\Delta)$.

The strictness of the inclusion follows from the following example.
Example 8. Consider the sequence $\left(X_{k}\right)$ defined in Example 2. Then for each $\alpha \in(0,1]$ we have

$$
\left[X_{k}\right]^{\alpha}=\left[1,1+(1-\alpha) k^{-1}\right]
$$

i.e. $X_{k} \rightarrow \overline{1}$, as $k \rightarrow \infty$ and $\Delta X_{k} \rightarrow \overline{0}$, as $k \rightarrow \infty$.

Thus $\left(X_{k}\right) \notin c_{0}{ }^{F}$, but $\left(X_{k}\right) \in c_{0}{ }^{F}(\Delta)$. Hence the inclusion is strict.
(b) Consider a sequence $\left(X_{k}\right) \in c^{F}$. Then $\Delta X_{k} \rightarrow X$, as $k \rightarrow \infty$, where X is of particular type, defined by $[X]^{\alpha}=[-a, a]$, for some crisp $a \in R+\cup\{0\}$, the set of non-negative real numbers and for each $\alpha \in(0,1]$ (refer to Remark 2).

Hence $c^{F} \subset c^{F}(\Delta)$. The inclusion is strict follows from the following example.

Example 9. Consider the sequence $\left(X_{k}\right)$ defined by

$$
X_{k}(t)= \begin{cases}1, & \text { for } \quad k \leq t \leq k+1 \\ 0, & \text { otherwise }\end{cases}
$$

Then for each $\alpha \in(0,1]$ we have $\left[X_{k}\right]^{\alpha}=[k, k+1]$ for all $k \in N$ and $\Delta X_{k}=X$ for all $k \in N$, where

$$
X(t)= \begin{cases}1, & \text { for } \quad-2 \leq t \leq 0 \\ 0, & \text { otherwise }\end{cases}
$$

Thus $\left(X_{k}\right) \notin c^{F}$, but $\left(X_{k}\right) \in c^{F}(\Delta)$. Therefore the inclusion is proper.

Theorem 7. The classes of sequences $c^{F}(\Delta)$ and $c_{0}{ }^{F}(\Delta)$ are nowhere dense subsets of $\ell_{\infty}^{F}(\Delta)$.

Proof. From lemma we have $c^{F}(\Delta)$ and $c_{0}{ }^{F}(\Delta)$ are closed subsets of the complete metric space $\ell_{\infty}^{F}(\Delta)$. Also $c_{0}{ }^{F}(\Delta)$ and $c^{F}(\Delta)$ are proper subsets of $\ell_{\infty}^{F}(\Delta)$, which follows from the following example.

Example 10. Consider the sequence $\left(X_{k}\right)$ defined as follows:

For k even,

$$
X_{k}(t)= \begin{cases}1, & \text { for } 0 \leq t \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

and for k odd,

$$
X_{k}(t)= \begin{cases}1+k(t+1), & \text { for }-\left(1+k^{-1}\right) \leq t \leq-1 \\ 0, & \text { otherwise }\end{cases}
$$

Then for each $\alpha \in(0,1]$ we have

$$
\left[X_{k}\right]^{\alpha}= \begin{cases}{[0,1],} & \text { for } k \text { even } \\ {\left[-\left(1+k^{-1}\right),-1\right],} & \text { for } k \text { odd }\end{cases}
$$

and

$$
\left[\Delta X_{k}\right]^{\alpha}= \begin{cases}{\left[1,2+(k+1)^{-1}\right],} & \text { for } k \text { even } \\ {\left[-\left(2+k^{-1}\right),-1\right],} & \text { for } k \text { odd }\end{cases}
$$

Thus $\left(\Delta X_{k}\right) \notin c^{F} \quad\left(\supset c_{0}^{F}\right)$, but $\left(\Delta X_{k}\right) \in \ell_{\infty}^{F}$. Hence the result.

References

[1] Das N.R., Das P., Choudhury A., Absolute value like fuzzy real number and fuzzy real-valued sequence spaces, Jour. Fuzzy Math., 4(2)(1996), 421-433.
[2] Kelava O., Seikkala S., On fuzzy metric spaces, Fuzzy Sets and Systems, 12(1984), 215-229.
[3] Kizmaz H., On certain sequence spaces, Canad. Math. Bull., 24(2)(1981), 168-176.
[4] Matloka M., Sequences of fuzzy numbers, BUSEFAL, 28(1986), 28-37.
[5] Nanda S., On sequences of fuzzy numbers, Fuzzy Sets and Systems, 33(1989), 123-126.
[6] Savas E., A note on sequence of fuzzy numbers, Information Sciences, 124(2000), 297-300.
[7] Subrahmanyam P.V., Cesàro Summability for fuzzy real numbers, J. Analysis, 7(1999), 159-168.
[8] Tripathy B.K., Nanda S., Absolute value of fuzzy real numbers and fuzzy sequence spaces, Jour. Fuzzy Math., 8(4)(2000), 883-892.
[9] Zadeh L.A., Fuzzy Sets, Information and Control, 8(3)(1965), 338-353.

Binod Chandra Tripathy
Mathematical Sciences Division
Institute of Advanced Study in Science and Technology
Paschim Boragaon, Garchuk, Guwahati-781035; Assam, India
e-mail: tripathybc@yahoo.com or tripathybc@rediffmail.com

Paritosh Chandra Das
Department of Mathematics, Rangia College
Rangia-781354, Kamrup, Assam, India
e-mail: daspc_rangia@yahoo.com
Received on 18.05.2007 and, in revised form, on 24.11.2008.

[^0]: * The work of the first author was carried under University Grants Commission of India project No.- F. No. 30-240/2004(RS).
 ${ }^{* *}$ This work was done while the second author was availing the Teacher Fellowship from University Grants Commission of India, vide Grant No.F.5-56/TF/2003(NERO)/1920.

