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1. Introduction

Kizmaz [3] studied the classical difference sequence spaces c(∆), c0(∆)
and `∞(∆). The notion is defined as follows:

Z(∆) = {x = (xk) ∈ w : (∆xk) ∈ Z},

for Z = c, c0 and `∞, where ∆x = (∆xk) = (xk − xk+1).
Let D denote the set of all closed and bounded intervals X = [a1, a2] on

R, the real line. For X,Y ∈ D define
X ≤ Y, if a1 ≤ b1 and a2 ≤ b2,

d(X, Y ) = max (|a1 − b1|, |a2 − b2|),
where X = [a1, a2] and Y = [b1, b2].

It is known that (D, d) is a complete metric space. Also ”≤” is a partial
order in D.

A fuzzy real number X is a fuzzy set on R, i.e. a mapping X : R → I
(= [0, 1]) associating each real number t with its grade of membership X(t).

A fuzzy real number X is called convex if X(t) ≥ X(s) ∧ X(r) =
min (X(s), X(r)), where s < t < r.
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If there exists t0 ∈ R such that X(t0) = 1, then the fuzzy real number X
is called normal.

The α-cut or α-level set, [X]α of the fuzzy real number X, for 0 < α ≤ 1,
defined by [X]α = {t ∈ R : X(t) ≥ α}.

The strong α-cut of the fuzzy real number X, for 0 ≤ α ≤ 1 is the set
{t ∈ R : X(t) > α}.

By 0-cut or 0-level set of the fuzzy real number X, we mean the closure
of the strong 0-cut.

A fuzzy real number X is said to be upper-semi continuous if, for each
ε > 0, X−1([0, a + ε)), for all a ∈ I is open in the usual topology of R.

The set of all upper-semi continuous, normal, convex fuzzy real numbers
is denoted by R(I). Throughout the article, by a fuzzy real number we mean
that the number belongs to R(I).

The set R of all real numbers can be embedded in R(I). For r ∈ R,
r ∈ R(I) is defined by

r̄(t) =

{
1 , for t = r ,

0 , for t 6= r.

The arithmetic operations for α-level sets are defined as follows:
Let X,Y ∈ R(I) and α-level sets be [X]α = [aα

1 , bα
1 ], [Y ]α = [aα

2 , bα
2 ],

α ∈ [0, 1]. Then
[X ⊕ Y ]α = [aα

1 + aα
2 , bα

1 + bα
2 ] ,

[X − Y ]α = [aα
1 − bα

2 , bα
1 − aα

2 ] ,

[X ⊗ Y ]α =
[

min
i,j∈{1,2}

aα
i bα

j , max
i,j∈{1,2}

aα
i bα

j

]

and [Y −1]α =
[

1
bα
2

,
1
aα

2

]
, 0 /∈ Y.

The absolute value, |X| of X ∈ R(I) is defined by (see for instance Kaleva
and Seikkala [2])

|X|(t) =

{
max (X(t), X(−t)) , for t ≥ 0 ,

0 , for t < 0.

A fuzzy real number X is called non-negative if X(t) = 0, for all t < 0.
The set of all non-negative fuzzy real numbers is denoted by R∗(I).

Let d̄ : R(I)×R(I) → R be defined by

d̄(X, Y ) = sup
0≤α≤1

d ([X]α, [Y ]α) .
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Then d̄ defines a metric on R(I). For X, Y ∈ R(I) define

X ≤ Y, if [X]α ≤ [Y ]α, for any α ∈ [0, 1].

A sequence (Xk) of fuzzy real numbers is said to be convergent to the
fuzzy real number X0 if, for every ε > 0, there exists n0 ∈ N such that
d̄(Xk, X0) < ε, for all k ≥ n0.

A fuzzy real number sequence (Xk) is said to be bounded if |Xk| ≤ µ, for
some µ ∈ R∗(I); equivalently, (Xk) is bounded if sup

k
d̄ (Xk, 0̄) < ∞.

2. Definitions and preliminaries

Savas [6] studied the classes of difference sequences cF (∆) and `F∞(∆) of
fuzzy real numbers.

A fuzzy real number difference sequence ∆X = (∆Xk) is said to be
convergent to a fuzzy real number X, written as lim

k→∞
∆Xk = X if, for every

ε > 0, there exists a positive integer n0 such that

d̄ (∆Xk, X) < ε, for all k > n0.

A fuzzy real number difference sequence ∆X = (∆Xk) is said to be
bounded if |∆Xk| ≤ µ, for some µ ∈ R∗(I); equivalently, (∆Xk) is bounded
if sup

k
d̄ (∆Xk, 0̄) < ∞.

For r ∈ R and X ∈ R(I) the scalar product rX is defined by

rX(t) =

{
X(r−1t) , for r 6= 0 ,

0̄ , for r = 0.

A class of sequences EF is said to be normal (or solid) if (Yk) ∈ EF ,
whenever |Yk| ≤ |Xk|, for all k ∈ N and (Xk) ∈ EF .

A class of sequences EF is said to be monotone if EF contains the canon-
ical pre-images of all its step sets.

Let K = {k1 < k2 < k3 < · · · } ⊆ N and EF be a class of sequences. A
K-step set of EF is a class of sequences λEF

k =
{
(Xkn) ∈ wF : (Xn) ∈ EF

}
.

A canonical pre-image of a sequence (Xkn) ∈ λEF

k is a sequence (Yn) ∈ wF

defined as follows:

Yn =

{
Xn , for n ∈ K ,

0̄ , otherwise.

A canonical pre-image of a step set λEF

k is a set of canonical pre-images
of all elements in λEF

k , i.e. Y is in canonical pre-image λEF

k if and only if Y

is canonical pre-image of some X ∈ λEF

k .
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From the above definitions we have the following remarks.
Remark 1. A class of sequences EF is solid ⇒ EF is monotone.

A class of sequences EF is said to be symmetric if (Xπ(n)) ∈ EF , whenever
(Xk) ∈ EF , where π is a permutation of N .

A class of sequences EF is said to be sequence algebra if (Xk⊗Yk) ∈ EF ,
whenever (Xk), (Yk) ∈ EF .

A class of sequences EF is said to be convergence free if (Yk) ∈ EF ,
whenever (Xk) ∈ EF and Xk = 0̄ implies Yk = 0̄.

Throughout the article wF , cF , cF
0 and `F∞ denote the classes of all,

convergent, null and bounded sequences of fuzzy real numbers respectively.
Similarly cF (∆), cF

0 (∆) and `F∞(∆) denote the classes of convergent, null
and bounded difference sequences of fuzzy real numbers.

It is clear that cF (∆), cF
0 (∆) and `F∞(∆) are closed under addition and

scalar multiplication.
Remark 2. For the crisp set we have (xk) converges to L implies (∆xk)

converges to 0. But for the fuzzy real numbers, when (Xk) converges to X (a
fuzzy real number) then (∆Xk) converges to Z (a fuzzy real number), where
area bounded by the curve Z and the real line is double the area of the curve
bounded by X and the real line. Further, the nature of the curve will be
symmetric about the membership line, i.e. the line t = 0. Hence the α-cuts
of Z will be of the type [Z]α = [−a, a], for some crisp a ∈ R+ ∪ {0}, the set
of non-negative real numbers. This is clear from the following example.

Example 1. Consider the sequence (Xk) defined by

Xk(t) =





(t− 5 + 3k−1), for 5− 3k−1 ≤ t ≤ 6− 3k−1,

(3− 3−1t− k−1) for 6− 3k−1 < t ≤ 9− 3k−1,

0 , otherwise.

Then [Xk]
α =

[
(5 + α− 3k−1), 3(3− α− k−1)

]
and [∆Xk]

α = [{4α
−4− 3k−1 + 3(k + 1)−1

}
, {4− 4α− 3k−1 + 3(k + 1)−1}] i.e. Xk → X as

k → ∞, where [X]α = [5 + α, 3(3 − α)] for all α ∈ (0, 1] and ∆Xk → Z as
k →∞, where [Z]α = [4α− 4, 4− 4α)] for all α ∈ (0, 1].

Here, the width of each α-cut in [Z]α is double the corresponding α-cut
in [X]α. So the area bounded by the curve Z and the real line is double the
area of the curve bounded by X and the real line.

Lemma 1 (Savas [6], Theorem 1). `F∞(∆) and cF (∆) are complete
metric spaces with the metric

ρ(X, Y ) = d̄(X1, Y1) + sup
k

d̄(∆Xk,∆Yk),

where X = (Xk) and Y = (Yk) are in `F∞(∆) or cF (∆).
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3. Main results

Theorem 1. The classes of sequences cF (∆), c0
F (∆) and `F∞(∆)are

neither monotone nor solid.

Proof. The result follows from the following two examples. ¥

Example 2. Consider the sequence (Xk) ∈ c0
F (∆) ⊂ cF (∆), defined by

Xk(t) =

{
1− k(t− 1), for 1 ≤ t ≤ 1 + k−1,

0 , otherwise.

Then for all α ∈ (0, 1] we have,

[∆Xk]
α =

[
(α− 1)(k + 1)−1, (1− α)k−1

]
, i.e. ∆Xk → 0̄, as k →∞.

Thus (Xk) ∈ c0
F (∆) ⊂ cF (∆).

Let J = {k ∈ N : k = 2i− 1, i ∈ N} be a subset of N and let (c0
F (∆))J

be the canonical pre-image of the J-step set
(
c0

F (∆)
)
J

of c0
F (∆), defined

as follows:
(Yk) ∈ (c0

F (∆))J , the canonical pre-image of (Xk) ∈ c0
F (∆) implies

Yk =

{
Xk, for k ∈ J,

0̄ , for k /∈ J.

Now for all α ∈ (0, 1] we have,

[Yk]
α =

{ [
1, 1 + (1− α)k−1

]
, for k ∈ J,

[0, 0] , for k /∈ J.

and

[∆Yk]
α =

{ [
1, 1 + (1− α)k−1

]
, for k ∈ J,[

(α− 1)(k + 1)−1 − 1,−1
]
, for k /∈ J.

Thus (Yk) /∈ cF (∆)
(⊃ c0

F (∆)
)
. Therefore, c0

F (∆) and cF (∆) are not
monotone.

The classes c0
F (∆) and cF (∆) are not solid follows from Remark 1.

Example 3. Consider the sequence (Xk) ∈ `F∞(∆) defined by

Xk(t) =





t− (k − 1), for k − 1 ≤ t ≤ k,

(k + 1− t), for k < t ≤ k + 1
0 , otherwise.
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Then for all α ∈ (0, 1] we have, [∆Xk]
α = [2α− 3, 1− 2α], for all k ∈ N .

Thus (Xk) ∈ `F∞(∆).
Let J = {k ∈ N : k = 2i− 1, i ∈ N} be a subset of N and let (`F∞(∆))J

be the canonical pre-image of the J-step set
(
`F∞(∆)

)
J

of `F∞(∆), defined as
follows:

(Yk) ∈ (`F∞(∆))J the canonical pre-image of (Xk) ∈ `F∞(∆) implies

Yk =

{
Xk, for k ∈ J,

0̄ , for k /∈ J.

Now for all α ∈ (0, 1] we have,

[Yk]
α =

{
[(k − 1 + α), (k + 1− α)], for k ∈ J,

[0, 0], for k /∈ J.

and

[∆Yk]
α =

{
[(k − 1 + α), (k + 1− α)] for k ∈ J,

[−(k + 2− α),−(k + α)] for k /∈ J.

Therefore, (Yk) /∈ `F∞(∆) and thus the class `F∞(∆) is not monotone. The
class `F∞(∆) is not solid follows from Remark 1.

Theorem 2. The classes of sequences cF (∆), c0
F (∆) and `F∞(∆) are

not convergence free.

Proof. The result follows from the following example.

Example 4. Consider the sequence (Xk) ∈ c0
F (∆) ⊂ cF (∆) ⊂ `F∞(∆),

defined as follows:
For k = i2, i ∈ N , Xk = 0̄.
Otherwise,

Xk(t) =

{
1 , for 0 ≤ t ≤ k−1,

0 , otherwise.

Then for all α ∈ (0, 1] we have,

[Xk]
α =

{
[0, 0], for k = i2, i ∈ N,

[0, k−1], otherwise.

and

[∆Xk]
α =





[−(k + 1)−1, 0
]
, for k = i2, i ∈ N,[

0, k−1
]
, for k = i2 − 1, i ∈ N, with i > 1,[−(k + 1)−1, k−1

]
, otherwise.
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Hence ∆Xk → 0̄ as k →∞. Thus (Xk) ∈ c0
F (∆) ⊂ cF (∆) ⊂ `F∞(∆).

Let (Yk) be defined as follows:
For k = i2, i ∈ N , Yk = 0̄.
Otherwise,

Yk(t) =

{
1 , for 0 ≤ t ≤ k,

0 , otherwise.

Now for all α ∈ (0, 1] we have,

[Yk]
α =

{
[0, 0], for k = i2, i ∈ N,

[0, k], otherwise.

and

[∆Yk]
α =





[−(k + 1), 0], for k = i2, i ∈ N,

[0, k], for k = i2 − 1, i ∈ N, with i > 1,

[−(k + 1), k], otherwise.

Thus (Yk) /∈ `F∞(∆)
(⊃ cF (∆) ⊃ c0

F (∆)
)
.

Therefore, the classes cF (∆), c0
F (∆) and `F∞(∆) are not convergence

free. ¥

Theorem 3. The classes of sequences cF (∆), c0
F (∆) and `F∞(∆) are

not symmetric.

Proof. The result follows from the following two examples.

Example 5. Defined the unbounded sequence (Xk) ∈ c0
F (∆) ⊂ cF (∆)

as

X1(t) =

{
1 , for − 1 ≤ t ≤ 0,

0 , otherwise.

and for k ≥ 2,

Xk(t) =





1 , for −
(

k−1∑
r=1

(
1
2r

)
+ 1

k

)
≤ t ≤ −

k−1∑
r=1

(
1
2r

)
,

0 , otherwise.

For each α ∈ (0, 1] we have [X1]
α = [−1, 0] and for k ≥ 2,

[Xk]
α =

[
−

(
k−1∑

r=1

(
1
2r

)
+

1
k

)
,−

k−1∑

r=1

(
1
2r

)]
.
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Then for all k ∈ N and for all α ∈ (0, 1] we have

[∆Xk]
α =

[−{
k−1 − (2k)−1

}
,
{
(2k)−1 + (k + 1)−1

}]

=
[−(2k)−1,

{
(2k)−1 + (k + 1)−1

}]
.

Hence ∆Xk → 0̄, as k →∞. Thus (Xk) ∈ c0
F (∆) ⊂ cF (∆).

Let the sequence (Yk) be a rearrangement of the sequence (Xk), defined
as follows:

(Yk) = (X1, X2, X4, X3, X9, X5, X16, X6, X25, X7 . . .) .

i.e. (Yk) = X( k+1
2 )2 , for all k odd,

= X(n+ k
2 )

, for all k even and n satisfies

n(n− 1) < k
2 ≤ n(n + 1), n ∈ N.

Then for k = 1 we have,

[∆Y1]
α = [X1]

α − [X2]
α = [−0.5, 1], for each α ∈ (0, 1].

For all k odd with k > 1 and n ∈ N , satisfying n(n−1) < k+1
2 ≤ n(n+1),

we have

[∆Yk]
α =

[
X( k+1

2 )2

]α

−
[
X(n+ k+1

2 )
]α

=


−





( k+1
2 )2−1∑

r=(n+ k+1
2 )

1
2r

+
1(

k+1
2

)2





,

−





( k+1
2 )2−1∑

r=(n+ k+1
2 )

1
2r





+
1(

n + k+1
2

)


 , for all α ∈ (0, 1].

For all k even and n ∈ N , satisfying n(n− 1) < k
2 ≤ n(n + 1), we have

[∆Yk]
α =

[
X(n+ k

2 )
]α
−

[
X( k+2

2 )2

]α

=








( k+2
2 )2−1∑

r=(n+ k
2 )

1
2r




− 1(

n + k
2

) ,





( k+2
2 )2−1∑

r=(n+ k
2 )

1
2r

+
1(

k+2
2

)2






 , for all α ∈ (0, 1].
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Here it is observed that the values of (∆Yk) increases with

∆Y4(t) =

{
1 , for 0.2759 ≤ t ≤ 0.7200,

0 , otherwise.

for all k > 3 and k even and decreases for k > 3 and k odd. Therefore the
sequence can not converge to a point.

Thus (Yk) /∈ cF (∆)
(⊃ c0

F (∆)
)

and hence cF (∆) and c0
F (∆) are not

symmetric.

Example 6. Consider the sequence (Xk) ∈ `F∞(∆), defined by

Xk(t) =

{
1 , for k ≤ t ≤ k + 2−1,

0 , otherwise.

Then for all α ∈ (0, 1] we have

[∆Xk]
α = [−1.5,−0.5], for all k ∈ N.

Thus (Xk) ∈ `F∞(∆).
Let the sequence (Yk) be a rearrangement of the sequence (Xk) defined

as follows:

(Yk) = (X1, X2, X4, X3, X9, X5, X16, X6, X25, X7 . . .) .

i.e. (Yk) = X( k+1
2 )2 , for all k odd,

= X(n+ k
2 )

, for all k even and n satisfies

n(n− 1) < k
2 ≤ n(n + 1), n ∈ N.

Then for all k odd and n ∈ N , satisfying n(n− 1) < k+1
2 ≤ n(n + 1), we

have

[∆Yk]
α =

[
X( k+1

2 )2

]α

−
[
X(n+ k+1

2 )
]α

(1)

=

[{(
k + 1

2

)2

−
(

3k + 1
2

)
− 1

2

}
,

{(
k + 1

2

)2

−
(

3k + 1
2

)
+

1
2

}]
, for all α ∈ (0, 1],
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and for all k even and n ∈ N , satisfying n(n− 1) < k
2 ≤ n(n + 1), we have

[∆Yk]
α =

[
X(n+ k

2 )
]α
−

[
X( k+2

2 )2

]α

(2)

=

[{(
n +

k

2

)
−

(
k + 2

2

)2

− 1
2

}
,

{(
n +

k

2

)
−

(
k + 2

2

)2

+
1
2

}]
, for all α ∈ (0, 1],

From equation (1) and (2) it is clear that ([∆Yk]
α) is unbounded, for all

α ∈ (0, 1].
Thus (Yk) /∈ `F∞(∆). Therefore the class `F∞(∆) is not symmetric. ¥

Theorem 4. The class of sequences c0
F (∆)∩`F∞(∆) is sequence algebra.

Proof. Let (Xk), (Yk) ∈ `F∞(∆) such that (∆Xk), (∆Yk) ∈ c0
F . Then we

have

∆(Xk ⊗ Yk) = Yk ⊗∆Xk + Xk+1 ⊗∆Yk → 0̄, as k →∞.

Hence the result. ¥

Theorem 5. The classes of sequences cF (∆) and `F∞(∆) are not sequence
algebra.

Proof. The result follows from the following example.

Example 7. Consider the two sequences (Xk), (Yk) ∈ cF (∆) ⊂ `F∞(∆),
defined by

Xk(t) =

{
1 , for k − 1 ≤ t ≤ k + 1,

0 , otherwise.

and

Yk(t) =

{
1 , for k − 1 ≤ t ≤ k,

0 , otherwise.

Then for each α ∈ (0, 1], we have

[Xk]
α = [k − 1, k + 1] and [Yk]

α = [k − 1, k].

Therefore, for all k ∈ N we have
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∆Xk = X, where

X(t) =

{
1 , for − 3 ≤ t ≤ −1,

0 , otherwise.

and ∆Yk = Y, where

Y (t) =

{
1 , for − 2 ≤ t ≤ 0,

0 , otherwise.

Thus (Xk) and (Yk) ∈ cF (∆) ⊂ `F∞(∆).
Now for each α ∈ (0, 1] we have

[∆(Xk ⊗ Yk)]
α =

[
(k − 1)2, k(k + 1)

]−[
k2, (k + 1)(k + 2)

]
= [−(k+1), k].

i.e. (Xk ⊗ Yk) /∈ `F∞(∆)
(⊃ cF (∆)

)
.

Hence the result. ¥

Theorem 6. (a) c0
F ⊂ c0

F (∆) and the inclusion is strict.
(b) cF ⊂ cF (∆) and the inclusion is strict.

Proof. (a) Let us consider a sequence (Xk) ∈ c0
F . Clearly (from Remark

2) we have ∆Xk → 0̄, as k →∞ and hence c0
F ⊂ c0

F (∆).

The strictness of the inclusion follows from the following example.

Example 8. Consider the sequence (Xk) defined in Example 2. Then
for each α ∈ (0, 1] we have

[Xk]
α =

[
1, 1 + (1− α)k−1

]

i.e. Xk → 1̄, as k →∞ and ∆Xk → 0̄, as k →∞.

Thus (Xk) /∈ c0
F , but (Xk) ∈ c0

F (∆). Hence the inclusion is strict.

(b) Consider a sequence (Xk) ∈ cF . Then ∆Xk → X, as k → ∞,
where X is of particular type, defined by [X]α = [−a, a], for some crisp
a ∈ R + ∪{0}, the set of non-negative real numbers and for each α ∈ (0, 1]
(refer to Remark 2).

Hence cF ⊂ cF (∆). The inclusion is strict follows from the following
example.

Example 9. Consider the sequence (Xk) defined by

Xk(t) =

{
1 , for k ≤ t ≤ k + 1,

0 , otherwise.
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Then for each α ∈ (0, 1] we have [Xk]
α = [k, k + 1] for all k ∈ N and

∆Xk = X for all k ∈ N , where

X(t) =

{
1 , for − 2 ≤ t ≤ 0,

0 , otherwise.

Thus (Xk) /∈ cF , but (Xk) ∈ cF (∆). Therefore the inclusion is proper. ¥

Theorem 7. The classes of sequences cF (∆) and c0
F (∆) are nowhere

dense subsets of `F∞(∆).

Proof. From lemma we have cF (∆) and c0
F (∆) are closed subsets of the

complete metric space `F∞(∆). Also c0
F (∆) and cF (∆) are proper subsets

of `F∞(∆), which follows from the following example.

Example 10. Consider the sequence (Xk) defined as follows:

For k even,

Xk(t) =

{
1 , for 0 ≤ t ≤ 1,

0 , otherwise.

and for k odd,

Xk(t) =

{
1 + k(t + 1), for − (1 + k−1) ≤ t ≤ −1,

0 , otherwise.

Then for each α ∈ (0, 1] we have

[Xk]
α =

{
[0, 1], for k even,[− (

1 + k−1
)
,−1

]
, for k odd.

and

[∆Xk]
α =

{ [
1, 2 + (k + 1)−1

]
, for k even,[− (

2 + k−1
)
,−1

]
, for k odd.

Thus (∆Xk) /∈ cF
(⊃ c0

F
)
, but (∆Xk) ∈ `F∞. Hence the result. ¥
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