```
F A S C I C U L I M A T H E M A T I C I

\author{
Binod C. Tripathy and Bipul Sarma
}

\section*{GENERALIZED KÖTHE-TOEPLITZ DUAL OF SOME DOUBLE SEQUENCE SPACES}

\begin{abstract}
In this article we introduce the notion of \(\eta\)-dual of double sequence spaces. We find the \(\eta\) - dual of some double sequence spaces. We verify the perfectness of different double sequence spaces relative to \(\eta\) - dual.
KEY WORDS: dual space, perfect space, \(\ell_{r}\)-space, bounded variation, regular convergence.
\end{abstract}

AMS Mathematics Subject Classification: 40A05, 40B05, 46A45.

\section*{1. Introduction}

The notion for duals for sequence spaces introduced by Köthe and Toeplitz [8]. Later on it was studied by Maddox [10], Lascarides [9], Okutoyi [13], Chandra and Tripathy [3] and many others.It is also found in the monographs of Köthe [7], Maddox [11], Cook [4] and Kamthan and Gupta [6].

The notion of \(\alpha\) - duals is generalized by Chandra and Tripathy [3] on introducing the notion of \(\eta\) - duals for sequence spaces.

The notion of double sequences is found in Browmich [2]. Hardy [5] introduced the notion of bounded variation double sequences. Later on it was investigated by Moricz [12], Tripathy [15], Patterson [14], Basarir and Sonalcan [1] and Tripathy, Choudhary and Sarma [16] and many others.

Throughout the article \({ }_{2} w,{ }_{2} \ell_{\infty},{ }_{2} c,{ }_{2} c^{R},{ }_{2} c_{0},{ }_{2} c_{0}^{R},{ }_{2} \ell_{1},{ }_{2} \ell_{p},{ }_{2} \phi,{ }_{2} b v,{ }_{2} \sigma,{ }_{2} w_{p}\) denote the spaces of all, bounded, convergent in Pringsheim's sense, regularly convergent, null in Pringsheim's sense, regularly null, absolutely summable, p-absolutely summable, finite, bounded variation, eventually alternating and strongly \(p\)-Cesàro summable double sequence spaces respectively. Throughout the paper a double sequences will be denoted by \(\left\langle a_{m n}\right\rangle\) and sums without limit means that the summation is from \(m=1\) to \(\infty\) and \(n=1\) to \(\infty\).

The \(\alpha\)-dual of a subset \(E\) of \({ }_{2} w\) is defined as
\[
\left.E^{\alpha}=\left\{\left\langle y_{m n}\right\rangle \in{ }_{2} w:<x_{m n} y_{m n}>\in{ }_{2} \ell_{1} \text { for all }<x_{m n}\right\rangle \in E\right\} .
\]

\section*{2. Definitions and preliminaries}

We list some of the double sequences, whose \(\eta\) - dual will be obtained in this article.
\[
\begin{aligned}
& { }_{2} \ell_{\infty}=\left\{\left\langle a_{m n}>\in{ }_{2} w: \sup _{m, n}\right| a_{m n} \mid<\infty\right\} . \\
& { }_{2} c=\left\{\left\langle a_{m n}>\in{ }_{2} w: a_{m n} \rightarrow L \text { as } \min (m, n) \rightarrow \infty \text { for some } L \in C\right\} .\right. \\
& { }_{2} c^{R}=\left\{\left\langlea_{m n}>\in{ }_{2} c:(a) \lim _{n \rightarrow \infty} a_{m n}=L_{m} \in C, \text { for some } L_{m} \in C\right.\right. \\
& \text { for each } m \in N,
\end{aligned}
\]
(b) \(\lim _{m \rightarrow \infty} a_{m n}=J_{n} \in C\), for some \(J_{n} \in C\) for each \(\left.n \in N\right\}\).
\({ }_{2} c_{0}=\left\{\left\langle a_{m n}\right\rangle \in{ }_{2} w: a_{m n} \rightarrow 0\right.\) as \(\left.\min (m, n) \rightarrow \infty\right\}\).
\({ }_{2} c_{0}^{R}=\left\{<a_{m n}>\in{ }_{2} w: a_{m n} \rightarrow 0\right.\) as \(\left.\max (m, n) \rightarrow \infty\right\}\).
\({ }_{2} b v=\left\{<a_{m n}>\in{ }_{2} w: \sum\left|\Delta_{m} a_{m, n}\right|<\infty, \sum\left|\Delta_{n} a_{m, n}\right|<\infty\right.\) and
\(\left.\sum \sum\left|\Delta_{m, n} a_{m, n}\right|<\infty\right\}\), where
\[
\begin{gathered}
\Delta_{m} a_{m, n}=a_{m, n}-a_{m+1, n}, \quad \Delta_{n} a_{m, n}=a_{m, n}-a_{m, n+1}, \\
\Delta_{m, n} a_{m, n}=\Delta_{n} a_{m, n}-\Delta_{n} a_{m+1, n} .
\end{gathered}
\]

We define \({ }_{2} b v_{0}={ }_{2} b v \cap{ }_{2} c_{0}\).
\[
{ }_{2} w_{p}=\left\{\left\langle a_{i j}>\in{ }_{2} w: \lim _{\substack{m \rightarrow \infty \\ n \rightarrow \infty}} \frac{1}{m n} \sum_{i=1}^{m} \sum_{j=1}^{n}\right| a_{i j}-\left.L\right|^{p}=0\right\}
\]

The sequence spaces convergent in Pringsheim's sense and null in Pringsheim's sense contain some unbounded sequences.

The spaces \({ }_{2} c^{R},{ }_{2} c_{0}^{R},{ }_{2} c^{R},{ }_{2} c \cap{ }_{2} \ell_{\infty},{ }_{2} c_{0} \cap{ }_{2} \ell_{\infty}\) and \({ }_{2} \ell_{\infty}\) are normed linear spaces normed by
\[
\|A\|=\left\|<a_{n k}>\right\|=\sup _{m, n}\left|a_{m n}\right|
\]

From the above definition it is clear that
\[
{ }_{2} c^{R} \subset{ }_{2} c \cap{ }_{2} \ell_{\infty} \subset{ }_{2} \ell_{\infty}\left({ }_{2} c\right)
\]
and
\[
{ }_{2} c_{0}^{R} \subset{ }_{2} c_{0} \cap{ }_{2} \ell_{\infty} \subset{ }_{2} \ell_{\infty}\left({ }_{2} c_{0}\right) .
\]

Definition 1. The space of all eventually alternating double sequences is defined by
\[
\begin{aligned}
{ }_{2} \sigma=\left\{<a_{m n}>\in{ }_{2} w: a_{m n}\right. & =-a_{m, n+1} \text { for all } n \geq n_{0} \\
\text { and } a_{m n} & \left.=-a_{m+1, n} \text { for all } m \geq m_{0}\right\}
\end{aligned}
\]

Definition 2. Let \(E\) be a nonempty subset of \({ }_{2} w\) and \(r \geq 1\), then \(\eta\) dual of \(E\) is defined by
\[
E^{\eta}=\left\{<a_{n k}>\in{ }_{2} w: \sum_{m} \sum_{n}\left|a_{m n} b_{m n}\right|^{r}<\infty \text { for all }<b_{m n}>\in E\right\}
\]

The space \(E\) is said to be \(\eta\)-reflexive if \(E^{\eta \eta}=E\). Taking \(r=1\) in this definition we get \(E^{\alpha}\), i.e. \(\alpha\) dual of \(E \subset{ }_{2} w\).

The proof of the following result is obvious in view of the definition of \(\eta\)-dual of double sequences.

Lemma 1. (i) \(E^{\eta}\) is a linear subspace of \({ }_{2} w\) for every \(E \subset{ }_{2} w\).
(ii) \(E \subset F\) implies \(E^{\eta} \supset F^{\eta}\).
(iii) \(E \subset E^{\eta \eta}\) for every \(E, F \subset{ }_{2} w\).

The following result is the analogue of the Hölder's inequality for double sequences.

Lemma 2 (Hölder's inequality for double sequences). If \(a_{i j}, b_{i j}\) are positive real numbers then
\[
\sum_{i} \sum_{j} a_{i j} b_{i j} \leq\left\{\sum_{i}\left(\sum_{j} a_{i j}^{p}\right)\right\}^{\frac{1}{p}}\left\{\sum_{i}\left(\sum_{j} a_{i j}^{q}\right)\right\}^{\frac{1}{q}}
\]

Proof. We have
\[
\begin{aligned}
\sum_{i} \sum_{j} a_{i j} b_{i j} & =\sum_{i}\left(\sum_{j} a_{i j} b_{i j}\right) \leq \sum_{i}\left\{\left(\sum_{j} a_{i j}^{p}\right)^{\frac{1}{p}}\left(\sum_{j} b_{i j}^{q}\right)^{\frac{1}{q}}\right\} \\
& \leq\left\{\sum_{i}\left(\sum_{j} a_{i j}^{p}\right)\right\}^{\frac{1}{p}}\left\{\sum_{i}\left(\sum_{j} b_{i j}^{q}\right)\right\}^{\frac{1}{q}}
\end{aligned}
\]

\section*{3. Main results}

Theorem 1. \(\left({ }_{2} \ell_{r}\right)^{\eta}={ }_{2} \ell_{\infty}\) and \(\left({ }_{2} \ell_{\infty}\right)^{\eta}={ }_{2} \ell_{r}\). The spaces \({ }_{2} \ell_{r}\) and \({ }_{2} \ell_{\infty}\) are perfect spaces.

Proof. Let \(<a_{m n}>\in{ }_{2} \ell_{\infty}\). We have
\[
\sum_{m} \sum_{n}\left|a_{m n} b_{m n}\right|^{r}<\infty \text { for all }<b_{m n}>\in{ }_{2} \ell_{r}
\]

Hence \({ }_{2} \ell_{\infty} \subseteq\left({ }_{2} \ell_{r}\right)^{\eta}\).
Conversely, let \(<a_{m n}>\notin{ }_{2} \ell_{\infty}\). Then there exists a single sequence \(<a_{i, n_{i}}>\) such that \(a_{i, n_{i}} \geq i^{s}\) for some \(s>0\). Consider the double sequence \(<b_{m n}>\) defined by
\[
b_{m n}=\left\{\begin{array}{l}
i^{-s}, \quad \text { if } m=i, n=n_{i}, i \in N \\
0, \quad \text { otherwise }
\end{array}\right.
\]

Then \(<b_{m n}>\in{ }_{2} \ell_{r}\) but \(<a_{m n} b_{m n}>\notin{ }_{2} \ell_{r}\). Hence \(\left({ }_{2} \ell_{r}\right)^{\eta} \subseteq{ }_{2} \ell_{\infty}\). The proof for the case \(\left({ }_{2} \ell_{\infty}\right)^{\eta}={ }_{2} \ell_{r}\) is easy so omitted.

This completes the proof of the theorem.
Theorem 2. \(\left({ }_{2} c^{R}\right)^{\eta}=\left({ }_{2} c_{0}^{R}\right)^{\eta}={ }_{2} \ell_{r}\). The spaces \({ }_{2} c^{R}\) and \({ }_{2} c_{0}^{R}\) are not perfect.

Proof. We first show that \(\left({ }_{2} c_{0}^{R}\right)^{\alpha}={ }_{2} \ell_{1}\). Since \({ }_{2} c_{0}^{R} \subseteq{ }_{2} \ell_{\infty}\) so \({ }_{2} \ell_{1}=\) \(\left({ }_{2} \ell\right)^{\alpha} \subseteq\left({ }_{2} c_{0}^{R}\right)^{\alpha}\). Next we show that \(\left({ }_{2} c_{0}^{R}\right)^{\alpha} \subseteq{ }_{2} \ell_{1}\). Let \(<\bar{a}_{n k}>\notin{ }_{2} \ell_{1}\).

Then we can find sequences \(<m_{i}>\) and \(<n_{i}>\) of naturals with \(m_{0}=\) \(n_{0}=1\) such that
\[
\sum_{m=1}^{m_{i}} \sum_{n=1}^{n_{i}}\left|a_{m n}\right|-\sum_{m=1}^{m_{i-1}} \sum_{n=1}^{n_{i-1}}\left|a_{m n}\right|>\frac{1}{(i+1)^{\frac{1}{2}}}, \quad i=0,1,2,3, \ldots
\]

Define the sequence \(<b_{m n}>\) by
\(b_{m n}=(i+1)^{-\frac{1}{3}}\) for \(m_{i-1}<m \leq m_{i}\) and \(n_{i-1}<n \leq n_{i}\), for all \(i \in N\).
Then \(<b_{m n}>\in{ }_{2} c_{0}^{R}\).
Now,
\[
\begin{aligned}
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left|a_{m n} b_{m n}\right| & =\sum_{i=0}^{\infty}\left(\sum_{m=1}^{m_{i}} \sum_{n=1}^{n_{i}}\left|a_{m n} b_{m n}\right|-\sum_{m=1}^{m_{i-1}} \sum_{n=1}^{n_{i-1}}\left|a_{m n} b_{m n}\right|\right) \\
& =\sum_{i=0}^{\infty} \frac{1}{(i+1)^{\frac{1}{3}}}\left(\sum_{m=1}^{m_{i}} \sum_{n=1}^{n_{i}}\left|a_{m n}\right|-\sum_{m=1}^{m_{i-1}} \sum_{n=1}^{n_{i-1}}\left|a_{m n}\right|\right) \\
& >\sum_{i=0}^{\infty} \frac{1}{(i+1)^{\frac{1}{3}}(i+1)^{\frac{1}{2}}}=\infty
\end{aligned}
\]

Thus \(<a_{n k}>\in\left({ }_{2} c_{0}^{R}\right)^{\alpha}\). Hence we have \(\left({ }_{2} c_{0}^{R}\right)^{\alpha} \subseteq{ }_{2} \ell_{1}\). Thus \(\left({ }_{2} c_{0}^{R}\right)^{\alpha}={ }_{2} \ell_{1}\). Using this one can easily show that \(\left({ }_{2} c_{0}^{R}\right)^{\eta}={ }_{2} \ell_{r}\).

Next \(\left({ }_{2} c^{R}\right)^{\eta}={ }_{2} \ell_{r}\) follows from Theorm 1 and the inclution relation
\[
{ }_{2} c_{0}^{R} \subseteq{ }_{2} c^{R} \subseteq{ }_{2} \ell_{\infty}^{R}
\]

The spaces are not perfect follows from Theorem 1. This completes the proof of the theorem.

The following result is immediate from the above result.
Corollary 1. \(\left({ }_{2} c \cap{ }_{2} \ell_{\infty}\right)^{\eta}=\left({ }_{2} c_{0} \cap{ }_{2} \ell_{\infty}\right)^{\eta}={ }_{2} \ell_{r}\). The spaces \({ }_{2} c \cap{ }_{2} \ell_{\infty}\) and \({ }_{2} c_{0} \cap{ }_{2} \ell_{\infty}\) are not perfect.

Theorem 3. \(\left({ }_{2} b v\right)^{\eta}=\left({ }_{2} b v_{0}\right)^{\eta}={ }_{2} \ell_{r}\). The spaces \({ }_{2} b v\) and \({ }_{2} b v_{0}\) are not perfect.

Proof. We have \({ }_{2} b v \subseteq{ }_{2} \ell_{\infty}\). Hence \({ }_{2} \ell_{r}=\left({ }_{2} \ell_{\infty}\right)^{\eta} \subseteq\left({ }_{2} b v_{0}\right)^{\eta}\). Now, we show that \(\left({ }_{2} b v_{0}\right)^{\eta} \subseteq{ }_{2} \ell_{r}\).

Let \(<b_{n k}>\notin{ }_{2} \ell_{r}\). Then we can find a sequence \(\left(n_{k}\right)\) of naturals with \(n_{1}=1\) such that
\[
\sum_{m=1}^{\infty} \sum_{n=n_{k}}^{n_{k+1}-1}\left|b_{m n}\right|^{r}>k^{r} \text { for all } k=1,2,3,4, \ldots
\]

Consider the sequence \(<a_{m n}>\) defined by
\[
a_{m n}=k^{-1} \text { if } n_{k} \leq n<n_{k+1}, \text { for all } k=1,2,3,4, \ldots
\]

Then
\[
\begin{aligned}
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left|\Delta a_{m n}\right| & =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left(\sum_{n=n_{k}}^{n_{k+1}-1}\left|\Delta a_{m n}\right|\right) \\
& =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left(\sum_{n=n_{k}}^{n_{k+1}-1}\left|a_{m n}-a_{m, n+1}-a_{m+1, n}+a_{m+1, n+1}\right|\right) \\
& =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{n=n_{k}}^{n_{k+1}-1}\left|\frac{1}{k}-\frac{1}{k+1}-\frac{1}{k}+\frac{1}{k+1}\right|=0
\end{aligned}
\]

Hence \(<a_{m n}>\in{ }_{2} b v_{0}\).
Now,
\[
\begin{aligned}
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left|a_{m n} b_{m n}\right|^{r} & =\sum_{m=1}^{\infty} \sum_{k=1}^{\infty} \sum_{n=n_{k}}^{n_{k+1}-1}\left|a_{m n} b_{m n}\right|^{r} \\
& =\sum_{k=1}^{\infty} \frac{1}{k^{r}} \sum_{m=1}^{\infty} \sum_{n=n_{k}}^{n_{k+1}-1}\left|b_{m n}\right|^{r}=\sum_{k=1}^{\infty} \frac{1}{k^{r}} k^{r}=\infty
\end{aligned}
\]

Thus we arrive at a contradiction. Hence \(\left({ }_{2} b v_{0}\right)^{\eta} \subseteq{ }_{2} \ell_{r}\). Therefore \(\left({ }_{2} b v_{0}\right)^{\eta}={ }_{2} \ell_{r}\). The rest of the proof follows from the inclusion \({ }_{2} b v_{0} \subset{ }_{2} b v \subset\) \({ }_{2} \ell_{\infty}\) and Theorem 1.

Theorem 4. \(\left({ }_{2} \sigma\right)^{\eta}={ }_{2} \ell_{r}\). The space \({ }_{2} \sigma\) is not perfect.
Proof. We have \({ }_{2} \sigma \subseteq{ }_{2} \ell_{\infty} \Rightarrow{ }_{2} \ell_{r} \subseteq\left({ }_{2} \sigma\right)^{\eta}\). Let \(<b_{m n}>\in\left({ }_{2} \sigma\right)^{\eta}\). Then \(\sum_{m} \sum_{n}\left|a_{m n} b_{m n}\right|^{r}<\infty\) for all \(<a_{m n}>\in{ }_{2} \sigma\).

Consider the sequence \(<a_{m n}>\) defined by \(a_{m n}=1=-a_{m+1, n}=\) \(-a_{m, n+1}\) for all \(m, n \in N\). Then \(\left\langle a_{m n}>\in{ }_{2} \sigma\right.\).
\[
\Rightarrow \sum_{m} \sum_{n}\left|b_{m n}\right|^{r}<\infty \Rightarrow<b_{m n}>\in_{2} \ell_{r} \Rightarrow\left({ }_{2} \sigma\right)^{\eta} \subseteq{ }_{2} \ell_{r}
\]

Hence \(\left({ }_{2} \sigma\right)^{\eta}={ }_{2} \ell_{r}\). The rest of the proof follows from Theorem 1. The proof of the following result is easy in view of the definition and the properties of the spaces \({ }_{2} w\) and \({ }_{2} \phi\).

Theorem 5. \(\left({ }_{2} w\right)^{\eta}={ }_{2} \phi,\left({ }_{2} \phi\right)^{\eta}={ }_{2} w\). The spaces \({ }_{2} w\) and \({ }_{2} \phi\) are perfect.
Theorem 6. \(\left({ }_{2} w_{p} \cap{ }_{2} \ell_{\infty}\right)^{\eta}={ }_{2} \ell_{r}\). The space \({ }_{2} w_{p} \cap{ }_{2} \ell_{\infty}\) is not perfect.
Proof. Clearly \({ }_{2} \ell_{r} \subseteq\left({ }_{2} w_{p} \cap{ }_{2} \ell_{\infty}\right)^{\eta}\). Conversely, let \(<a_{m n}>\notin{ }_{2} \ell_{r}\), then \(\sum_{m} \sum_{n}\left|a_{m n}\right|^{r}=\infty\). Consider the sequence \(<b_{m n}>\) defined by
\[
b_{m n}=1, \quad \text { for all } m, n \in N
\]

Then \(<b_{m n}>\in{ }_{2} w_{p} \cap{ }_{2} \ell_{\infty}\), but \(\sum_{m} \sum_{n}\left|a_{m n} b_{m n}\right|^{r}=\infty\). Hence \(<a_{m n}>\notin\) \(\left({ }_{2} w_{p} \cap{ }_{2} \ell_{\infty}\right)^{\eta}\). Therefore \(\left({ }_{2} w_{p} \cap{ }_{2} \ell_{\infty}\right)^{\eta} \subseteq{ }_{2} \ell_{r}\). Thus \(\left({ }_{2} w_{p} \cap{ }_{2} \ell_{\infty}\right)^{\eta}={ }_{2} \ell_{r}\). The rest of the proof is obvious.

\section*{References}
[1] Basarir M., Solancan O., On some double sequence spaces, J. Indian Acad. Math., 21(2)(1999), 193-200.
[2] Browmich T.J.IA., An Introduction to the Theory of Infinite Series, Macmillan \& Co. Ltd., New York 1965.
[3] Chandra P., Tripathy B.C., On Generalized Köthe-Toeplitz Duals of some sequence spaces, Indian J. of Pure and Appl. Math., 33(8)(2002), 1301-1306.
[4] Cook R.G., Infinite Matrices and Sequence Spaces, Dover Publ., 1955.
[5] Hardy G.H., On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19(1917), 86-95.
[6] Kamthan P.K., Gupta M., Sequence Spaces and Series, Marcel Dekker, New York 1981.
[7] Köтне G., Topological Vector Spaces I, Springer Verlag, 1969.
[8] Köthe G., Toeplitz O., Lineare Räume mit unendlichvielen Koordinaten and Ringe unenlicher Matrizen, J.F. Reine U. Angew Math., 171(1934), 193-226.
[9] Lascarides C.G., A study of certain sequence spaces of Maddox and a generalization of a theorem of Iyer, Pac. Jour. Math., 38(2)(1971), 487-500.
[10] Maddox I.J., Continuous and Köthe-Toeplitz duals of certain sequence spaces, Proc. Camb. Phil. Soc., 65(1969), 431-435.
[11] Maddox I.J., Infinite Matrices of Operators, Lecture Notes in Mathematics, Springer-Verlag 1980.
[12] Moricz F., Extentions of the spaces \(c\) and \(c_{0}\) from single to double sequences, Acta Math. Hung., 57(1-2)(1991), 129-136.
[13] Okutoyi J.I., A note on generalized Köthe-Toeplitz duals, Acta Math. Hungerica, 3-4(1992), 291-299.
[14] Patterson R.F., Analogue of some fundamental theorems of summability theory, Internat. J. Math. Math. Sci., 23(1)(2000), 1-9.
[15] Tripathy B.C., On statistically convergent double sequences, Tamkang J. Math., 34(3)(2003), 231-237.
[16] Tripathy B.C., Choudhary B., Sarma B., Some difference double sequence spaces defined by Orlicz function, Kyungpook Mathematical Journal, 48(4)(2008)(in press).

\author{
Binod Chandra Tripathy \\ Mathematical Sciences Division \\ Institute of Advanced Study in Science and Technology Paschim Boragaon, Garchuk, Guwahati-781 035, India e-mail: tripathybc@yahoo.com or tripathybc@rediffmail.com
}

Bipul Sarma
Mathematical Sciences Division
Institute of Advanced Study in Science and Technology Paschim Boragaon, Garchuk, Guwahati-781 035, India
e-mail: sarmabipul01@yahoo.co.in
Received on 20.07.2007 and, in revised form, on 22.02.2008.```

